$L_{g} = 60\text{nm}$ recessed $\text{In}_{0.7}\text{Ga}_{0.3}\text{As}$ metal-oxide-semiconductor field-effect transistors with $\text{Al}_{2}\text{O}_{3}$ insulator.

Citation

Kim, D.-H., J. A. del Alamo, D. A. Antoniadis, J. Li, J.-M. Kuo, P. Pinsukanjana, Y.-C. Kao, et al. “$L_{g} = 60\text{Nm}$ Recessed \text{In}_{0.7}\text{Ga}_{0.3}\text{As} \text{Metal-Oxide-Semiconductor Field-Effect Transistors with Al}_{2}\text{O}_{3} \text{Insulator}.” Appl. Phys. Lett. 101, no. 22 (2012): 223507. © 2012 American Institute of Physics

As Published

http://dx.doi.org/10.1063/1.4769230

Publisher

American Institute of Physics (AIP)

Version

Final published version

Accessed

Sun Dec 16 18:44:34 EST 2018

Citable Link

http://hdl.handle.net/1721.1/85946

Terms of Use

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
The increasing difficulty in shrinking Si complementary-metal-oxide-semiconductor (CMOS) transistor footprint while managing power consumption and extracting improved performance threatens to bring Moore’s law to a halt. At its heart, the problem is the need to reduce operating voltage and the difficulty of obtaining sufficient drain current drive. A solution to this problem appears in the use of certain III-V compound semiconductors, which are endowed with very high electron mobilities and thermal velocities (Ref. 1 and references therein). Transistors with record high frequency characteristics have been demonstrated.2 Recently, these materials have also shown great promise for a next-generation ultra-low power and high density III-V CMOS logic technology.

In this Letter, we report on sub-100 nm recessed In0.7Ga0.3As metal-oxide-semiconductor field-effect transistors (MOSFETs) with outstanding logic and high-frequency performance. The device features ex-situ atomic-layer-deposition (ALD) 2-nm Al2O3 layer on a molecular-beam-epitaxy (MBE) 1-nm InP layer and is fabricated through a triple-recess process. An $L_g = 60$ nm MOSFET exhibits on-resistance (R_{ON}) = 220 $\Omega \cdot \mu$m, subthreshold-swing (S) = 100 mV/decade, and drain-induced-barrier-lowering (DIBL) = 200 mV/V at $V_{DS} = 0.5$ V, together with enhancement-mode operation. More importantly, this device displays record maximum transconductance ($g_{m,max}$) = 2000 μS/(μm and current-gain cutoff frequency (f_T) = 370 GHz at $V_{DS} = 0.5$ V, in any III-V MOSFET technology. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769230]
and 150 nm. The devices exhibit excellent pinch-off characteristics up to $V_{DS} = 0.5$ V, and a fairly small value of ON-resistance ($R_{ON} = 220 \Omega \cdot \mu m$) at $V_{GS} = 0.8$ V for the device with $L_g = 60$ nm. This is mainly the consequence of combining the proposed triple-recess process and the epi layer design with a multi-layer cap, which provides a tight control of the side-recess spacing ($L_{side} = 5$ nm) on each side of the gate as can be observed in the TEM image of Fig. 1(c).

From transmission line method (TLM) measurements after S/D ohmic, we obtain a contact resistance (R_c) to the heavily doped cap of $15 \Omega \cdot \mu m$ and a sheet resistance (R_{sh}) of $50 \Omega/sq$. This outstanding value of R_{ON} yields a maximum transconductance ($g_{m, max}$) of $2000 \mu A/\mu m$ at $V_{DS} = 0.5$ V, which is the highest g_{m} reported in any III-V MOSFET.

Figure 2(b) shows subthreshold characteristics at V_{DS} of 0.5 V, for $L_g = 60, 100$ and 150 nm devices. Using a definition for V_T as the value of V_{GS} that yields I_{D} = 1 mA/mm, the 60 nm device exhibits enhancement-mode operation with $V_T = 0.02$ V at $V_{DS} = 0.5$ V. More importantly, the device exhibits excellent short-channel effects as manifested by a subthreshold-swing (S) of 110 mV/dec and drain-induced-barrier-lowering (DIBL) of 200 mV/V at $V_{DS} = 0.5$ V. These numbers are comparable to the device in Ref. 3, which had $S = 100$ mV/dec and DIBL = 130 mV/V for $L_g = 75$ nm. In addition, we find that the gate leakage current (I_{G}) is lower than 0.1 nA/µm at all the measured bias conditions, and that our device delivers $I_{ON} = 0.27$ mA/µm at an $I_{OFF} = 100$ nA/µm with $V_{DS} = 0.5$ V. In other words, an I_{ON}/I_{OFF} ratio is easily in excess of 10^3 in our devices, even with supply voltage of 0.5 V.

Microwave performance was characterized using a precision-network-analyzer (PNA) system with an off-wafer standard line-reflection-reflection-match (LRRM) calibration from 1 GHz to 50 GHz. We used on-wafer open and short structures to subtract pad capacitances and inductances from the measured device S-parameters. Figure 3 plots $|h_{21}|^2$, maximum-available-gain (MAG) and Mason’s unilateral-gain (U_g) against frequency from 1 to 50 GHz for a 60 nm gate length device with $W_G = 2 \times 20 \mu m$ at $V_{GS} = 0.6$ V and $V_{DS} = 0.5$ V. In this particular measurement, values of $f_T = 370$ GHz and $f_{max} = 280$ GHz were, respectively, obtained by extrapolating $|h_{21}|^2$ and U_g with a slope of −20 dB/decade using a least-squares fit. The value of f_T in our device was also verified by Gummel’s approach (inset), yielding $f_T = 371$ GHz. This is the highest f_T ever reported in any III-V MOSFET on any material system. In addition, it should be noted that the short-circuit current gain ($|h_{21}|^2$) keeps increasing with a −20 dB/decade slope as frequency decreases even with the positive gate bias of 0.6 V, unlike conventional HEMTs with Schottky gate. This is due to the
dramatic reduction of I_G by using the Al$_2$O$_3$ dielectric layer, as shown in the inset of Fig. 2(b).

In order to assess the significance of our work, we have benchmarked our device against reported III-V MOSFETs. From a logic operation standpoint, what matters in the end is how to maximize current driving capability at low V_{DS} while minimizing OFF-state current. As a result, both the transconductance (g_m) and subthreshold-swing (S) are of great importance, as proposed in Ref. 10. Figure 4 plots $g_{m,\text{max}}$ as a function of S, for the devices in this work, as well as reported III-V MOSFETs with planar architectures.3,6,7,11–13 The subthreshold-swing that we have obtained in this work is among the best reported III-V MOSFET technologies, while our $g_{m,\text{max}}$ stands out against all of them.

Table I summarizes key device parameters for our devices in contrast with previously demonstrated $L_g = 75$ nm InGaAs MOSFET.3 Our recessed In$_{0.7}$Ga$_{0.3}$As MOSFETs combine an outstanding g_m and R_{ON}, together with excellent high-frequency response and short-channel effects down to $L_g = 60$ nm. This is mainly attributed to the triple-recess process that yields a very tight side-recess spacing ($L_{\text{side}} = 5$ nm) plus aggressive EOT scaling (EOT = 1.2 nm). This in turn suggests a very small interface density (D_{it}) below the conduction band edge, revealing that a composite dielectric stack of ALD grown Al$_2$O$_3$ and MBE-grown InP is very promising for future III-V MOSFET.

In conclusion, we have demonstrated $L_g = 60$ nm recessed In$_{0.7}$Ga$_{0.3}$As quantum-well MOSFETs with EOT = 1.2 nm. The devices exhibit excellent logic characteristics, such as $S = 110$ mV/dec and DIBL = 200 mV/V with E-mode operation. More significantly, our devices feature record performance for any III-V MOSFET technology in terms of $g_{m,\text{max}}$ and f_T. The outstanding performance that we demonstrate stems from the triple-recess fabrication process that yields a very tight side recess spacing, coupled with aggressive EOT scaling. Our work strongly reveals that with further device optimization in the form of self-aligned ohmic contacts, the proposed InGaAs MOSFETs with Al$_2$O$_3$ insulator could well become the technology of choice for sub-10 nm CMOS logic and THz applications.
This work was supported by the internal R&D program at Teledyne Scientific Company (TSC). The authors would like to thank Juan Paniagua, Paul Hundal, Chris Regan, and Don Deakin at TSC for help with the device fabrication. The MIT portion of this work is funded by Intel Corporation and Focus Center Research Program Center on Materials, Structures and Devices.

<table>
<thead>
<tr>
<th></th>
<th>Lg [nm]</th>
<th>EOT [nm]</th>
<th>R_DON [Ω·μm]</th>
<th>f_m_max [μs/μm]</th>
<th>f_T [GHz]</th>
<th>S [mV/dec.]</th>
<th>DIBL [mV/V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>InGaAs MOSFET (This work)</td>
<td>60</td>
<td>1.2</td>
<td>220</td>
<td>2000</td>
<td>370</td>
<td>110</td>
<td>200</td>
</tr>
<tr>
<td>InGaAs MOSFET (Ref. 3)</td>
<td>75</td>
<td>2.2</td>
<td>440</td>
<td>1750</td>
<td>N/A</td>
<td>100</td>
<td>130</td>
</tr>
</tbody>
</table>

Downloaded 27 Nov 2012 to 18.62.2.225. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions