Comparative study of the ferromagnetic resonance behavior of coupled rectangular and circular Ni_{80}Fe_{20} rings

G. Shimon,1,2 A. O. Adeyeye,1,2,* and C. A. Ross2,3,†

1Department of Electrical and Computer Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
2Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576, Singapore
3Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 23 September 2013; revised manuscript received 29 November 2013; published 7 January 2014)

A systematic investigation of the dynamic behavior of Ni_{80}Fe_{20} ring arrays using broadband ferromagnetic resonance spectroscopy as a function of inter-ring spacing and ring thickness is presented. Four distinct resonance modes were found for rectangular rings compared to the two modes seen in circular rings of identical width due to the presence of sharp corners and nonuniform demagnetization field distribution. The resonance peaks were sensitive to the inter-ring spacing and the ring thickness due to magnetostatic coupling. Micromagnetic simulations and analytical calculations are compared with the experiment results.

DOI: 10.1103/PhysRevB.89.024302 PACS number(s): 75.75.–c, 76.50.+g, 75.78.Cd

I. INTRODUCTION

The investigation of dynamic behavior in ferromagnetic patterned elements is important in designing high-frequency memory elements [1,2], logic devices [3–5], and tunable magnonic filters [6,7]. Ferromagnetic rings are particularly interesting because they show a range of magnetic states at remanence such as the onion (or bi-domain) state, with two 180° domain walls (DWs), and the vortex (flux-closed) state, depending on the reversal process and the ring dimensions. To date, there are many reports on the static behavior of magnetic rings including circular [8–10], elliptical [11], triangular [12,13], square [14,15], rhombic [16], rounded rectangular [17,18], and rectangular rings [19]. The effect of ring dimensions [20–22], shapes [19,23], inter-ring spacing [24,25], configurational anisotropy [11,26,27], and engineered defects [28,29] on static reversal of the rings have also been examined. In contrast, reports on dynamic behavior of ring elements have focused on the investigation of circular ring [30–33] and limited work on other ring shapes such as rounded rectangular [34] and triangular rings [35].

It is well known that the large demagnetizing fields associated with the boundaries of elements affect their magnetic configuration and switching mechanism. In circular rings, the boundaries of the structure as well as inhomogeneous internal fields become the source of spin wave confinement [36] and determine whether spin wave propagation is allowed or forbidden. In nanowires and nanostrips, the existence of bends and kinks also introduces nonuniform internal fields that can change the character of propagating spin waves or act as a propagation barrier [37]. Correspondingly, the sharp 90° corners in square or rectangular rings can become barriers to a propagating spin wave, in addition to trapping DWs [19,38]. A comparison between the dynamic behavior of a rectangular ring with sharp corners and a circular ring is useful in providing model structures to study spin wave confinement and the effect of shape anisotropy on dynamic behavior of ring arrays. Furthermore, an investigation of their packing density is important in designing compact spin wave guides [39] and tunable magnonic filters [6].

In this paper, we compare the dynamic behavior of narrow rectangular Ni_{80}Fe_{20} (NiFe) rings with sharp corners with those of circular rings. Using broadband ferromagnetic resonance (FMR) spectroscopy, four resonance modes were found in rectangular rings instead of two resonance modes in circular rings. The corners of rectangular rings are responsible for the detection of one of the additional modes. Another mode is observed due to the nonuniform demagnetizing field in the hard-axis arms of rectangular rings, which causes two modes to exist instead of the one found for circular rings. The ring shape affects not only the number of resonance modes but also frequency values by modifying the anisotropy field and demagnetizing field in different sections of the rings. We also investigated the effect of magnetostatic interactions as a function of inter-ring spacing s for varying ring thickness t. The effect of shape anisotropy and the dynamic interaction between neighboring rings on the high-frequency response of ring array will be useful in the design of magnonic crystal devices based on arrays of patterned magnetic elements.

II. EXPERIMENTAL DETAILS

The arrays of NiFe rectangular and circular rings were fabricated on a silicon substrate using deep ultraviolet lithography at 248-nm exposure wavelength and electron beam evaporation followed by a liftoff process. Details of the fabrication process were described previously [40]. NiFe rings with t in the range of 30 nm to 120 nm were deposited at a rate of 0.2 Å/s with a base pressure of 4 × 10^{-3} Torr. The liftoff was determined visually by a contrast change in the patterned film during the process and was confirmed using scanning electron microscopy (SEM). Figure 1 presents SEM micrographs of rectangular and circular ring arrays with a well-defined edge profile. The rectangular rings had an outer edge dimension of 5 μm × 3 μm, while the circular rings had an outer diameter of 3 μm. The ring width for both shapes was fixed at 350 nm. The inter-ring spacing s was varied from s = 550 nm to s = 150 nm.

1Corresponding author: eleaao@nus.edu.sg
2caross@mit.edu

1098-0121/2014/89(2)/024302(7) 024302-1 ©2014 American Physical Society
To excite and detect FMR of a ring array, a ground-signal-ground (G-S-G)-type coplanar waveguide (CPW) was fabricated on top of it using photolithography and deposition of an Al₂O₃(50 nm)/Ti(5 nm)/Au(200 nm) stack. The FMR response of the nanostructures was measured using a microwave vector network analyzer connected to the CPWs using G-S-G-type microwave coplanar probes [35]. The FMR response was measured at room temperature by sweeping the frequency for fixed applied field \(H_{\text{app}} \) in the 1–20 GHz range. This process was repeated for a series of \(H_{\text{app}} \) values starting from a negative saturation field \(H_{\text{sat}} \) of −1400 Oe to a positive saturation of 1400 Oe. A reference signal was taken at negative saturation \(H_{\text{sat}} = −1400 \) Oe prior to the actual sample measurement to subtract the background noise from the measurement.

Micromagnetic simulations were performed using the LLG Micromagnetics Simulator™ [41]. The saturation magnetization was taken as \(M_{s,\text{NiFe}} = 860 \) emu cm⁻³, exchange constant \(A_{\text{NiFe}} = 13 \times 10^{-7} \) erg cm⁻¹, and magnetocrystalline anisotropy \(K_1,\text{NiFe} = 0 \). A unit cell size of 10 nm × 10 nm × 10 nm thickness was used in the simulations. A simulation using a smaller cell, 5 nm × 5 nm × 10 nm, gave similar results. The masks used in the simulations were extracted from SEM images of the fabricated structures. To simulate the FMR response and quantify the spatial characteristics of different resonance modes, time-dependent simulations were performed using a gyromagnetic ratio \(\gamma = 2.8 \) GHz/kOe and \(\alpha = 0.008 \). The dynamic simulation results were analyzed in the frequency domain by performing Fast Fourier Transform processing.

III. RESULTS AND DISCUSSION

A. Arrays with inter-element separation of 550 nm

Figures 2(a) and (b) show the two-dimensional (2D) FMR absorption spectra plots for \(t = 30 \) nm and \(s = 550 \) nm rectangular and circular rings, respectively. The overlapping symbol plots are the corresponding simulated FMR peaks for single rings. The number of modes and the trends in the resonance peak versus interring spacing agree well with the experiments. We observed four resonance modes in rectangular rings and two resonance modes in circular rings. Common to both rings are the resonance in the sides of the rings oriented parallel to \(H_{\text{app}} \) [easy axis mode A; Figs. 2(f), 2(l)] and perpendicular to \(H_{\text{app}} \) [hard axis mode B; Figs. 2(g), 2(m)]. Mode A undergoes a splitting when a vortex state is formed, i.e., for 125 Oe < \(H_{\text{app}} < 330 \) Oe for the rectangular ring and 95 Oe < \(H_{\text{app}} < 420 \) Oe for circular ring. The splitting occurs due to the two opposite magnetization directions in each ring arm when a vortex is formed, i.e., one parallel and one antiparallel to the \(H_{\text{app}} \) direction. The former exhibits a negative dispersion in resonance frequency \((df_{\text{res}}/dH < 0) \), while the latter exhibits a positive dispersion \((df_{\text{res}}/dH > 0) \) [42]. These modes have been identified in circular rings previously [30].

Another two modes, labeled C and D, were observed only in rectangular rings. Mode C is an edge mode in the short arms of the rectangular ring [Fig. 2(h)] occurring at higher fields. In rectangular rings, there is a strong maximum \(H_{\text{demag}} \) along the edge of the short arms [see Fig. 3(b)], which causes mode C to have a lower resonance frequency of 6.15 GHz at 1400 Oe (near saturation) compared to mode B. This observation is similar to the case of the hard-axis edge response in a triangular ring [35]. Mode C was not observed in circular rings due to a broader \(H_{\text{demag}} \) distribution in the curved arms [compare Figs. 3(b) and 3(d)]. Mode D is the resonance mode around the 180° DWs (180DW), which occur in the straight sides of the rings, and the 90° DWs (90DW), which occur at the corners [see Figs. 2(i) and 2(j)]. Mode D has a low intensity but appears around −700 Oe < \(H_{\text{app}} < −300 \) Oe in experiment, a field range in which 180DW and 90DW are expected to be present. Figure 2(j) shows these walls in a simulation at 400 Oe. The sharp corners in the rectangular ring provide locations for 90DW at moderate field values [19,43].

From the 2D-FMR spectra, we observed that \(f_A > f_B \) for both ring shapes at all \(H_{\text{app}} \) values. The resonance peaks of \(t = 30 \) nm rings at \(H_{\text{sat}} = −1400 \) Oe are shown in Figs. 2(c) and 2(d). For rectangular rings \(f_A = 13.17 \) GHz and \(f_B = 7.64 \) GHz, while for circular rings \(f_A = 12.88 \) GHz and \(f_B = 8.02 \) GHz. The resonance frequencies of modes A and B can be explained using the Kittel formula below. This is done by considering only a specific section of a ring’s arm in the saturated state and estimating the effect of ring shape and neighboring interaction as the modifying factor(s) in the formula:

\[
f_{\text{res}} = \frac{\gamma}{2\pi} \sqrt{(H_{\text{eff}} + (N_z - N_y)M_x)(H_{\text{eff}} + (N_x - N_y)M_y),}
\]

(1)

where \(N_x, N_y, \) and \(N_z \) are the demagnetizing factors for \(x, y, \) and thickness (z) directions, respectively; \(N_z + N_y + N_x = 4\pi, \gamma \) is the gyromagnetic ratio; \(M_x \) is the magnetization of the sample along \(H_{\text{app}}, \) i.e., along the y direction; and \(H_{\text{eff}} \) is the effective field in the y direction. In mode A, the effective field is enhanced by an anisotropy field \((H_{\text{an}}) \) along the easy-axis.
FIG. 2. (Color online) (a), (b) 2D FMR absorption intensity plots of 30-nm-thick film NiFe rings. Plotted symbols are the corresponding simulated FMR frequency. (c), (d) FMR spectrum for each ring shape extracted at $H_{\text{sat}} = -1.4$ kOe. (e) SEM micrographs of the rectangular rings. (f)–(h) The simulated mode profiles showing modes A to C in a rectangular ring at $H_{\text{sat}} = -1.4$ kOe. (i)–(j) Simulated mode D and its corresponding static DW configuration in a rectangular ring at $H_{\text{app}} = -400$ Oe. Inset in (j) shows the color wheel of the magnetization. The color scale bar shows normalized FMR absorption intensity. (k) SEM micrographs of the circular rings. (l), (m) The simulated mode profiles showing modes A and B in a circular ring at $H_{\text{sat}} = -1.4$ kOe.

FIG. 3. (Color online) Simulated stray field components (H_x and H_y) at $h = 5$ nm above the surface of (a), (b) rectangular rings and (c), (d) circular rings. Film thickness $t = 30$ nm. Scale bar represents the stray field in Oe. The rings were saturated along y at $H_{\text{sat}} = -1.4$ kOe.

direction, i.e., $H_{\text{eff}} = H_{\text{app}} + H_{\text{ani}}$, which produces a larger resonance frequency as compared to mode B. In mode B, the effective field is reduced by the demagnetization field $|H_{\text{demag}}|$ of the hard-axis arms to $H_{\text{eff}} = H_{\text{app}} - |H_{\text{demag}}|$ to yield a lower resonance frequency. Comparing the two ring shapes at saturation, the rectangular ring had a larger f_A by $\Delta f_A = 240$ MHz but a smaller f_B by $\Delta f_B = 380$ MHz compared with circular rings. The higher f_A is attributed to the stronger shape anisotropy (larger H_{ani}) of the rectangular ring along the y direction, while the lower f_B is attributed to the larger $|H_{\text{demag}}|$.

B. Interacting ring arrays

In this section, we compare the f_A in rectangular and circular rings as a function of s and t at saturation. Figures 4(a) and 4(b) show FMR spectra of $t = 30$ nm rings at 1400 Oe, while $s = 550$ nm and $s = 150$ nm to show a typical decrease in f_A as s reduces. In this example, for $t = 30$ nm, the rectangular ring $\Delta f_A = 240$ MHz, while for the circular ring $\Delta f_A = 190$ MHz. The f_A values for the range of 150 nm $\leq s \leq 550$ nm and 30 nm $\leq t \leq 120$ nm for both rings’ shapes are given in Figs. 4(e) and 4(f). Over the range of t, the same trend of decreasing f_A values occurred as s was reduced, and Δf_A was generally larger for rectangular rings than for circular
rings. For \(t = 80 \text{ nm} \), \(\Delta f_A \) reaches its maximum value of \(\Delta f_A = 390 \text{ MHz} \) for rectangular rings and \(\Delta f_A = 320 \text{ MHz} \) for circular rings. \(f_A \) reached its maximum value at \(t = 100 \text{ nm} \) for all \(s \) in both ring shapes.

FMR simulations with 2D periodic boundary condition for \(t = 30 \text{ nm} \) were carried out for rectangular and circular rings [Figs. 4(c) and 4(d)]. We found a similar decrease of \(\Delta f_A \sim 150 \text{ MHz} \) for both ring shapes when \(s \) was reduced from 550 nm to 150 nm. These \(\Delta f_A \) values become larger for \(t = 80 \text{ nm} \) rings, with \(\Delta f_A = 240 \text{ MHz} \) for rectangular and \(\Delta f_A = 200 \text{ MHz} \) for circular rings. These trends are consistent with the experimental results [Figs. 4(e) and 4(f)].

1. The effect of inter-ring spacing

To investigate the decreasing trend of \(f_A \) with the reduction of \(s \), we estimate the stray field distribution away from the ring edge using, as an example, 30-nm-thick rings magnetized parallel to \(y \). At height \(h = 5 \text{ nm} \) above the ring’s surface, there is a stray field in the \(y \) direction \(|H_y| \sim 1.5 \text{ kOe} \) around the edges of the rings [Figs. 3(b), 3(d)] and also in the \(x \) direction \(|H_x| \sim 1.5 \text{ kOe} \) at the corners of the rectangular ring [Fig. 3(a)]. These stray fields decrease to a negligible value at \(\sim 150 \text{ nm} \) away from the edge. The stray fields from one ring affect the \(f_A \) of a neighboring ring in two ways: (1) \(H_x \) in the direction of the applied field increases \(H_{eff} = H_{app} + H_x \); and (2) \(H_x \) lowers the effective \(H_{demag} \) in \(x \) direction and modifies \(N_x \) according to \(\Delta N_x = \frac{H_x}{M_s} \) and consequently increases \(N_y \) and \(N_z \).

To simplify the analysis, one arm of the rectangular ring is treated as a strip magnet [Fig. 5(a)], with normalized stray field adapted from J. Norpoth et al. [44].

\[
H_x(\text{norm.}) = \ln \left\{ \frac{\sqrt{\alpha^2 + (z - 0.5c)^2} \cdot (\beta + \sqrt{\alpha^2 + \beta^2 + (z + 0.5c)^2})}{\sqrt{\alpha^2 + (z + 0.5c)^2} \cdot (\beta + \sqrt{\alpha^2 + \beta^2 + (z - 0.5c)^2})} \right\}_{\beta = y + 0.5b}^{\beta = y - 0.5b} \quad (\alpha = \alpha - 0.5a, \beta = \beta - 0.5b)}
\]

\[
H_y(\text{norm.}) = \frac{1}{4\pi} \times \left\{ \arctan \left[\frac{\alpha \cdot \beta}{(z - 0.5c) \cdot \sqrt{\alpha^2 + \beta^2 + (z - 0.5c)^2}} \right] - \arctan \left[\frac{\alpha \cdot \beta}{(z + 0.5c) \cdot \sqrt{\alpha^2 + \beta^2 + (z + 0.5c)^2}} \right] \right\}_{\beta = y + 0.5b}^{\beta = y - 0.5b} \quad (\alpha = \alpha - 0.5a, \beta = \beta - 0.5b)}
\]

As shown in Fig. 5(b), the width \(w \), length \(l \), and \(t \) of a strip are along the \(x, y \), and \(z \) direction, and the origin is at the body center of the strip such that its boundaries are given as \(-0.5a \leq x \leq 0.5a, -0.5c \leq y \leq 0.5c \) and \(-0.5b \leq z \leq 0.5b\), where \(a = w = 350 \text{ nm}, b = t \text{ nm}, \) and \(c = l = 5 \mu\text{m} \).

First, the resonance frequency of an isolated strip was calculated from expressions developed by Aharoni [45] to estimate the demagnetizing factors of the isolated strip. Taking the dimensions of the strip as \(w = 350 \text{ nm}, l = 5 \mu\text{m}, \) and \(t = 30 \text{ nm} \), the demagnetizing factors were \(N_x = 0.424\pi, N_y = 0.028\pi, \) and \(N_z = 3.548\pi \). Substituting \(H_x = 1400 \text{ Oe}, M_s = 860 \text{emu.cm}^{-3}, \gamma = 2.8 \text{ GHz/kOe} \), and the estimated demagnetizing factors into (1), the resonance frequency of an isolated strip would be 14.54 GHz.

Subsequently, using (2) and (3), the \(H_x(\text{norm.}) = \frac{H_x}{4\pi M_s} \) and \(H_y(\text{norm.}) = \frac{H_y}{4\pi M_s} \) at \(h = 5 \text{ nm} \) was calculated above the ring’s surface (following the numerical simulations), i.e., at \(z = (0.5b + 5) \text{ nm} \). The 2D stray field profiles are plotted in Figs. 5(c) and 5(d). From Fig. 5(c), it is clear that the majority of the \(H_x \) arises from the corners of the strip, similar to the simulated \(H_x \) in a rectangular ring [Fig. 4(a)]. \(H_x \) is concentrated at the strip’s ends [Fig. 5(d)]. The maximum \(|H_x(\text{norm.})| \) was estimated as \(\sim 0.2 \) or a field of \(\sim 2.16 \text{ kOe} \), slightly larger than the maxima in simulations.

To give a clearer picture of the stray field distribution, the normalized stray field along the width at \(y = 0.501c \) and along the length at \(x = 0.5a \) for both \(x \) and \(y \) directions are shown in Figs. 5(e)–5(h). Based on these plots, we estimated...
FIG. 5. (Color online) (a), (b) Schematic diagram of strip magnet used in analytical calculation of stray field. Dotted line in (a) highlights the part of the rectangular ring estimated as a strip. (c), (d) The calculated 2D plot of normalized stray field \((H_x/4\pi M_s) \) and \((H_y/4\pi M_s) \) for \(t = 30 \) nm and \(h = 5 \) nm. Scale bar indicates the normalized stray field value with respect to \(4\pi M_s \). (e)–(h) Plots of normalized stray field calculated at \(h = 5 \) nm along \(x (y = 0.501c) \) and along \(y (x = 0.5a) \) for various film thicknesses. \(H_{x,y} \) (norm.) at a distance \(s = 150 \) nm away from the strip’s edges for \(t = 30 \) nm, \(H_t \) (norm.) was \(-0.0143 \) or about \(-154 \) Oe along the strip’s length [Fig. 5(b) at \(y/c = 0.53 \)]. Similarly, \(H_t \) (norm.) was estimated as \(-0.011 \) or \(-118 \) Oe along the strip’s width [Fig. 5(e) at \(x/a = 0.93 \)]. Then \(\Delta N_z \) due to \(H_t \) was determined as \(\Delta N_z = -H_t/|H_t| = -0.0439\pi \); consequently, \(\Delta N_x = |\Delta N_x| \times N_x/N_{x+N_z} = 3.416 \times 10^{-4}\pi \), and \(\Delta N_y = |\Delta N_y| \times N_y/N_{x+N_y} = 0.0436\pi \).

The stray field \(H_t = -154 \) Oe would be expected to raise the resonance frequency to 15.09 GHz or \(\Delta f_{\text{res}} = 550 \) MHz according to Eq. (1). This is inconsistent with the observed decrease of \(f_A \) for closer spaced rings in experiment and simulation. This suggests that \(H_t \) may be overestimated and may not be significant in the ring structure. \(H_t \) is strong in saturated rings only in the hard-axis arms, away from the regions of maximum amplitude of mode \(A \), and it will be smaller than the model as the moments bend around the perimeter of the ring.

Considering instead the contribution of \(H_x \) \((-118 \) Oe) in modifying the demagnetizing factors, it is expected to decrease the resonance frequency by 280 MHz. This matches the experimental result for \(\Delta f_{\text{A}} \) for a rectangular ring in experiment, though it is twice that of the simulation. These calculations suggest that \(H_t \) is the major factor contributing to the decrease in \(f_A \) as \(s \) is reduced. Furthermore, the curvature of the circular ring increases the average spacing between rings and leads to a smaller influence of \(H_t \) on \(f_A \) for circular rings; hence smaller \(\Delta f_A \) values were observed for all \(t \).

2. The effect of thickness

Next, we consider the effect of increasing \(t \) on \(f_A \) and \(\Delta f_A \). As \(t \) increases, \(N_z \) decreases, while \(N_x \) and \(N_y \) will increase, changing \(f_A \). Based on the rectangular prism model of Aharony, \(N_z \) decreases from 3.548\pi to 3.096\pi as \(t \) increases from 30 nm to 80 nm, while \(N_x \) increases from 0.424\pi to 0.849\pi and \(N_y \) increases from 0.028\pi to 0.055\pi. As such, there is a more
rapid increase of \((N_x - N_y)\) than the decrease of \((N_x - N_y)\), and the resonance frequency will increase. Indeed, by incorporating these parameters into (1) we obtained \(\Delta f_A = 1.805 \, \text{GHz}\), a value close to the experimental \(\Delta f_A = 2.199 \, \text{GHz}\). However, at \(t > 100 \, \text{nm}\), the \(f_A\) decreased slightly for all \(s\). This may be a result of nonuniform magnetization in a thick ferromagnetic film [19,46–48]. Chen et al. [46] suggested that the uniform mode \((k = 0)\) of spin waves may be scattered into magnons \((k \neq 0)\) by this locally nonuniform magnetization and cause the resonance frequency to shift.

Next, we analyze the effect of \(t\) on \(\Delta f_A\) as a result of changes in the demagnetizing factors. Thicker rings produce higher stray field \(H_r\) and a larger \(\Delta f_A\). However, \(\Delta f_A\) becomes smaller with further increase of \(t\) above 80 nm in experiments, possibly as a result of competition with increasing \(H_r\) (calculated as 513 Oe at \(t = 120 \, \text{nm}\)).

IV. CONCLUSION

The dynamic behaviors of rectangular and circular rings were compared. Four resonance modes were present in rectangular rings, while only two resonance modes were observed in circular rings. The additional modes in rectangular modes were attributed to edge modes and to resonance related to DWs, respectively. The experimental results are described based on the Kittel formulation and an analytical stray field model. The frequency \(f_A\) of the highest intensity mode \(A\) was investigated at saturation as a function of spacing \(s\) and thickness \(t\). \(f_A\) decreased as \(s\) was reduced for all \(t\), which was attributed to changes in the stray field \(H_r\). For the thickest rings, the stray field \(H_r\) apparently becomes significant and competes with \(H_r\) and lowers \(\Delta f_A\). Micromagnetic simulation results are in good agreement with the experiments.

These rings arrays provide a model structure to study the effect of shape anisotropy and dynamic interactions in modifying high-frequency response in structures such as magnonic crystals. The high-frequency response in these structures as a function of \(s\) and \(t\) may be useful in the design of a broadband high-frequency tunable filter [49,50]. For example, we have shown that by varying \(s\) and \(t\), one can achieve a broadband frequency response. Furthermore, by varying the shape of the ring, one can tune the strength of dynamic coupling between neighboring rings. These results may be helpful in the development of DW logic, memory, and magnonic devices.

ACKNOWLEDGMENT

The support of the Singapore-MIT Alliance and SMF-NUS New Horizon Award is gratefully acknowledged.