An improved beam waist formula for ultrashort, tightly focused linearly, radially, and azimuthally polarized laser pulses in free space

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1364/OL.39.001258</td>
</tr>
<tr>
<td>Publisher</td>
<td>Optical Society of America</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Mar 16 05:21:49 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/86106</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
An improved beam waist formula for ultrashort, tightly-focused linearly, radially, and azimuthally polarized laser pulses in free space

Liang Jie Wong1,*, Franz X. Kärtner2,3, and Steven G. Johnson1

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
2 Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
3 Center for Free-Electron Laser Science – DESY, and Department of Physics, University of Hamburg, Notkestraße 85, D-22607 Hamburg, Germany

*Corresponding author: ljwong@mit.edu

Received Month X, XXXX; revised Month X, XXXX; accepted Month X, XXXX; posted Month X, XXXX (Doc. ID XXXXX); published Month X, XXXX

We derive an asymptotically accurate formula for the beam waist of ultrashort, tightly-focused fundamental linearly-polarized, radially-polarized, and azimuthally-polarized modes in free space. We compute the exact beam waist via numerical cubature to ascertain the accuracy with which our formula approximates the exact beam waist over a broad range of parameters of practical interest. Based on this, we describe a method of choosing parameters in the model given the beam waist and pulse duration of a laser pulse.

We first give an overview of the model in [10]. Next, we outline the derivation of Eq. (1) and verify its accuracy by comparing its results with the exact waists computed via numerical cubature over a broad range of parameters of practical interest. Finally, we numerically ascertain that the pulse duration is practically independent of \(a \) in the parameter range of interest. This suggests that to determine \(a \) and \(s \) for a given beam waist and pulse duration, one should first determine \(s \) from the pulse duration and then use Eq. (1) to determine \(a \).

The model in [10] is based on the complex-source-point method, first introduced by Deschamps to model a beam of electromagnetic radiation using the fields of a point source at an imaginary distance along the propagation axis [12]. Couture and Bélanger showed [13] that the

\[
W_{\text{pulse}} = \frac{2a}{k_0} \left(\frac{s}{s + 1 + \frac{\zeta_0^2}{2}} \right)^{1/2},
\]

which is exact in various limits, and which we show to be empirically highly accurate for all practical values of \(a \) and \(s \). Specifically, it is exact for the conditions \(s << 1, s << k_0 a \) or \(k_0 a >> 1, \forall s \). In Eq. (1), \(\zeta_0 \equiv 2^{1/2} \) for the LP01 mode and \(\zeta_0 \equiv 1 \) for the TM01 or TE01 mode. \(k_0 = 2\pi/\lambda_0 \), with \(\lambda_0 \) being the peak wavelength of the pulse.
paraxial Gaussian beam becomes the complex-source-point wave when every order of non-paraxial correction is made according to the prescription of Lax et al. [14], making the complex-source-point wave a natural generalization of the Gaussian beam commonly encountered in paraxial optics. One may superpose two counter-propagating solutions to remove the singularities [10,15] inherent in the original model [16-18]. One may also employ a Poisson spectrum to ensure an absence of DC components in the pulsed solution [8,19]. Combining these strategies, [10] uses a spectrum proportional to

$$\tilde{\Psi} = \frac{\sin(kR')}{R' \exp(ka)} \omega' \exp\left(-\frac{s\omega}{\omega_0}\right) \theta(\omega), \tag{2}$$

where the pre-factor on the right-hand-side is associated with the beam divergence, and the square-bracketed expression (the Poisson spectrum) is associated with the pulse envelope. $R' = (r' + (z + ja)^2)$, $j = (-1)^{1/2}$, $k = \omega/c = 2\pi/\lambda$, λ is the vacuum wavelength, s is a parameter that affects degree of focusing, a is a parameter related to pulse duration, $\omega_0 = k_0c = 2\pi/\lambda_0$ is the peak angular frequency of the Poisson spectrum and $\theta(\cdot)$ is the Heaviside step function. r and z are respectively the radial and longitudinal coordinates of the cylindrical coordinate system. Eq. (2) exactly solves the Helmholtz equation at any ω. Although Eq. (2) does not suffer from singularities, it contains backward-propagating components which a large a is required to suppress. The inverse Fourier transform of Eq. (2) is

$$\Psi = \frac{1}{R'} \left(f_s - f_{-s} \right), \tag{3}$$

where $f_s = 1 - j/s(\omega_0 a \pm k_0 R' + j k_0 a)$, and we have dropped constant factors. Eq. (3) is then used in the components of the Hertz potentials (which must also satisfy the vector wave equation) to obtain the electric and magnetic fields E and H in free space. Here, we focus on the lowest-order radially-polarized (TM_{00}) and lowest-order linearly-polarized (LP_{00}) modes [10]. By the property of electromagnetic duality, the beam waist of the lowest-order azimuthally-polarized (TE_{00}) mode is identical to that of the TM_{00} mode.

The continuous-wave (CW) counterpart of the model in [10] is given in [1], where the authors define a beam waist w_{CW} according to the geometry of the oblate spheroidal beam:

$$w_{CW} = \frac{\sqrt{2}}{k_0} \sqrt{1 + \left(k_0 a \right)^2} - 1. \tag{4}$$

Although it is tempting to use this beam waist formula for the pulsed solution in [10], Eq. (4) in fact approximates the actual waist well only when both pulse duration and waist are large (in which case $w_{CW} \approx w_{puls} \approx (2a/k_0)^{1/2}$). Counter-intuitively – since a occurs only in the beam factor, and s the pulse factor, of Eq. (2) – the beam waist becomes a strong function of both a and s when s is small. This was noted in [10] but a formula was not provided. The definition we use for the exact beam waist w_{exact}, illustrated in Fig. 1, is

$$w_{exact} = \sqrt{2 \int R^2 \left(1 + \left(k_0 a \right)^2 \right) - 1}, \tag{5}$$

where the $\sqrt{ \cdot \cdot \cdot }$ factor is the second irradiance moment of the pulse at the focal plane and pulse peak. The double integrals are over the entire focal plane and $S_{z''}$ is the z-directed Poynting vector component $S_z = E \times H \cdot \hat{z}$ evaluated at the focal plane, pulse peak and carrier amplitude of the respective mode. ω_0 is included so that in the paraxial, CW limit we get fields $\sim \exp\left[-r^2/w_{exact}^2 \right]$. For the TM_{00} mode,

$$E_r = \text{Re}\left\{ A_r \frac{jra}{R'} \right\}, \quad \eta_0 H_0 = \text{Re}\left\{ -B_r \frac{r}{R'} \right\}, \tag{6}$$

in the focal plane, where $A_r = \frac{\partial^2 \Psi}{\partial r^2} + \frac{1}{r} \frac{\partial \Psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \theta^2}$ and $B = \frac{\partial^2 \Psi}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \phi^2}$ evaluated at the focal plane, pulse peak and carrier amplitude of the respective mode. ω_0 is included so that in the paraxial, CW limit we get fields $\sim \exp\left[-r^2/w_{exact}^2 \right]$. For the TM_{00} mode,

$$\int r'^2 S_{zz'} \, dxdy = C \int r'^{d+1} dr \text{Re}\left\{ \frac{ja}{R'^2} \left[\frac{3}{k_0 R'^3} g_1 - \frac{3(s+1)}{s^2 R''} g_{2+} \right. \right.$$

$$+ \left. \frac{(s+1)(s+2)k_0}{s^2 R'} g_{3+} \right\}, \tag{7}$$

where $g_1 \equiv f_{s}^{1-s-1} - f_{s}^{1-s-1}, \quad g_{2+} \equiv f_{s+}^{1-s-2} \pm f_{s-}^{1-s-2}, \quad g_{3+} \equiv f_{s+}^{1-s-3} \pm f_{s-}^{1-s-3}, \quad d \in \{0,2\}$, and C is some constant factor. Under the condition $s << 1$, we can replace all instances of $s + n, n \in \mathbb{Z}^+$ with n. After some tedious algebra, we find that

$$\int r'^d S_{zz'} \, dxdy = C \int d(R^2 + a^2)^{d/2} + O(s), \tag{8}$$

where $b = a + s/jk_0$ and C is some constant factor. Note that $R^2 = r'^2 - a^2 \in \mathbb{R}^+$ in the focal plane. Substituting Eq. (8) in Eq. (5), and using the condition $s << k_0 a$,

$$k_0 w_{exact} = \frac{2}{3} \left(b^2 - a^2 \right) + O(s^{3/2}), \tag{9}$$

which agrees with Eq. (1) when $s << 1, s << k_0 a$.

For the case $\eta_0a >> 1$, we use the expansion $R' = ja(1 - r'/2a^2)$ since power transport is significant only where $r' < a$. From Eq. (7), we have
\[\int r^d S_z' \, dx \, dy = \]
\[C^n_{k_0} \rho \left(2a^2 \rho \right)^{d/2} \rho (1 + \rho) \, 2^{-6} \left[1 + O \left(\frac{1}{k_0 a} \right) \right], \] \hspace{1cm} \text{(10)}

where \(h = k_0 a / s, \), \(\rho = r^2 / 2a^2, \Delta \ll 1 \) is a value many times larger than \(k_0 a, \), and \(C^n \) is some constant factor. Applying Eq. (10) to Eq. (5) gives

\[k_0 w_{\text{exact}}^2 = \frac{\sqrt{2} k_0 a}{s} \cdot \frac{1}{s + 3/2} + O \left(\frac{1}{k_0 a} \right) \]
\[= k_0 w_{\text{pulse}} + O \left(\frac{1}{\sqrt{k_0 a}} \right), \] \hspace{1cm} \text{(11)}

which reduces to Eq. (1) for the TM01 case when \(k_0 a >> 1 \). Since the TE01 mode is obtained via the changes \(\tilde{E} \rightarrow H, \tilde{H} \rightarrow -E, \mu_0 \rightarrow \varepsilon_0, \varepsilon_0 \rightarrow \mu_0, \), in the description of the TM01 mode, Eq. (7) also applies for the TE01 mode, making the beam waists of the TM01 and TE01 modes identical. The transverse fields of LP01 mode in the focal plane:

\[E_x = \text{Re} \left\{ A \frac{x^2}{R^2} - A_r + B \frac{i a}{R} \right\} \]
\[E_y = \eta_0 H_x = \text{Re} \left\{ A \frac{xy}{R^2} \right\} \]
\[\eta_0 H_y = \text{Re} \left\{ A \frac{y^2}{R^2} - A_r + B \frac{i a}{R} \right\} \] \hspace{1cm} \text{(12)}

Substituting Eq. (12) in Eq. (5) we find ourselves with integrals in which the integrand is once again azimuthally symmetric, making it convenient to perform the integrations in polar coordinates, as in Eq. (7). One can verify Eq. (1) for the LP01 mode by considering the individual cases \(s << 1, s << k_0 a, \) and \(k_0 a >> 1 \) using the procedure undertaken for the TM01 mode in each of the respective cases.

A natural question to ask at this point is whether the pulse duration is also a function of both \(a \) and \(s \). To answer this question, we define pulse duration \(t \) as the normalized second moment of time in the laser’s focal plane:

\[\tau = \sqrt{\frac{\iiint \tilde{r}^2 \, S_z \, dx \, dy \, dz}{\iiint \tilde{r}^2 \, S_z \, dx \, dy \, dz}}, \] \hspace{1cm} \text{(13)}

where the triple integrals are over the entire focal plane and temporal axis, and plot \(\tau \) (computed via numerical cubature) as a function of \(a \) and \(s \) for both the LP01 and TM01 modes in Fig. 2, where the corresponding plots for \(w_0 \) are also given. In our simulations, we exclude the region \(k_0 a < 5 \) since a reasonably large value of \(k_0 a \) is required to suppress the backward-propagating components inherent in Eqs. (2) and (3) for the model to be an accurate description of a single forward-propagating pulse.

In Figs. 2(a) and (c) we see that the pulse duration is approximately independent of \(a \) in our regime of interest. Figs. 2(b) and (d) show that the waist is approximately independent of \(s \) at large values of \(a \), but begins to be strongly affected by \(a \) in the few-cycle and sub-cycle pulse regimes (\(s = 1 \) corresponding roughly to a single-cycle pulse). Since Eq. (4) is not a function of \(s \), it is clearly unsuitable as a model of beam waist in this regime. To model a pulsed beam of given beam waist \(w_{\text{exact}} \) and pulse duration \(\tau \), one should first determine \(s \) from \(\tau \) [10] and then use \(s \) and \(w_{\text{exact}} \) to determine \(a \) via Eq. (1). If even more accurate approximations to the waist and pulse duration are desired, the values obtained through this procedure may be used as a starting point for manual adjustment or numerical iteration.

In Fig. 3, we examine the accuracies of Eq. (4) and Eq. (1) quantitatively. The relative error of Eq. (4) exceeds 350% at low pulse durations in Fig. 3(b), making Eq. (4) a very poor estimate for short pulses in general. It is interesting, however, that Eq. (4) predicts the waist very accurately along the line \(s \approx 2^{1/2} \varepsilon_0 k_0 a \), but the error increases rapidly elsewhere. Note that the relative error in Eq. (1) becomes significant only at low \(a \) (and large \(s \)), where the use of Eqs. (2) and (3) to model a single propagating pulse is unreliable in the first place due to the significant presence of backward-propagating components.

In conclusion, we have derived a beam waist formula, Eq. (1), that is asymptotically accurate at small \(s \) and/or large \(a \). We have verified that the pulse durations of pulsed LP01, TM01, and TE01 free space modes are approximately independent of \(a \) in our regime of interest (\(k_0 a > 5 \)). The beam waist, however, is significantly affected by both \(s \) and \(a \), and the beam waist formula Eq. (4) derived for a continuous-wave beam is thus a poor estimate of the actual beam waist at small pulse durations, even at large \(a \). To model a pulsed LP01, TM01 or TE01 mode in free space given waist radius \(w_0 \) and pulse duration \(\tau \), one should first determine \(s \) from \(\tau \) and then use \(s \) and \(w_{\text{exact}} \) to determine \(a \) via Eq. (1).

LJW acknowledges support from the Agency for Science, Technology and Research (A*STAR), Singapore.

References

Fig. 1: Color maps of the Poynting vector’s z-component for a single-cycle LP₀¹ pulse of parameters \(k_0a = 500 \) and \(s = 1 \) at various propagation times. The arrows in (b) indicate the waist diameter (corresponding radius defined in Eq. (5)). Note that the second irradiance moment is evaluated on the focal plane at the pulse peak and carrier peak. The waist radius for this particular case is about 2.9 \(\lambda \).

Fig. 2: Color maps of numerically-obtained (a): exact pulse duration \(\tau \) and (b) exact beam waist \(w_{\text{exact}} \) of the LP₀¹ mode as a function of \(a \) and \(s \). (c) and (d) contain the same information as (a) and (b) respectively, except for the TM₀¹ (or TE₀¹) mode. The dotted lines are contour lines, which show relative invariance of pulse duration with \(a \), especially at large \(a \), in (a) and (b).

Fig. 3: Relative error \(\varepsilon \) of the beam waist formulas in (a) Eq. (1) and (b) Eq. (4) for the LP₀¹ mode. (c) and (d) present the information in (a) and (b) respectively in a different form. (c) and (d) correspond to (c) and (d) for the TM₀¹ (or TE₀¹) mode. The color maps corresponding to (a) and (b) for the TM₀¹ (or TE₀¹) mode are visually very similar and thus omitted.
References