Structural Basis of Rev1-mediated Assembly of a Quaternary Vertebrate Translesion Polymerase Complex Consisting of Rev1, Heterodimeric Polymerase (Pol), and

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1074/jbc.M112.394841</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Society for Biochemistry and Molecular Biology (ASBMB)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 16 11:50:01 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/86395</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric Pol ζ and Pol κ*

Jessica Wojtaszek1,4, Chul-Jin Lee1,4, Sanjay D'Souza2, Brenda Minesinger2, Hyungjin Kim3, Alan D. D'Andrea1, Graham C. Walker2, and Pei Zhou1,5

1Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
4These authors contributed equally to this work.
5To whom correspondence should be addressed: Pei Zhou, Dept. of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA. Tel.: (919) 668-6409; Fax: (919) 684-8885; E-mail: peizhou@biochem.duke.edu

Keywords: translesion synthesis; Rev1; Pol ζ; Pol κ; Rev3; Rev7

Background: Translesion synthesis in mammalian cells is achieved by sequential actions of insertion and extension polymerases.

Results: We determined the Rev1-Pol ζ-Pol κ complex structure and verified the binding interface with in vivo studies.

Conclusion: Mammalian insertion and extension polymerases could cooperate within a mega translesion polymerase complex nucleated by Rev1.

Significance: The Rev1-Pol ζ interface is a target for developing novel cancer therapeutics.

SUMMARY

DNA synthesis across lesions during genomic replication requires concerted actions of specialized DNA polymerases in a potentially mutagenic process known as translesion synthesis. Current models suggest that translesion synthesis in mammalian cells is achieved in two sequential steps, with a Y-family DNA polymerase (κ, η, λ, or Rev1) inserting a nucleotide opposite the lesion and with the heterodimeric B-family polymerase ζ, consisting of the catalytic Rev3 subunit and the accessory Rev7 subunit, replacing the insertion polymerase to carry out primer extension past the lesion. Effective translesion synthesis in vertebrates requires the scaffolding function of the C-terminal domain (CTD) of Rev1 that interacts with the Rev1-interacting region (RIR) of polymerases κ, η, and λ, and with the Rev7 subunit of polymerase ζ. We report the purification and structure determination of a quaternary translesion polymerase complex consisting of the Rev1 CTD, the heterodimeric Pol ζ complex, and the Pol κ RIR. Yeast two-hybrid assays were employed to identify important interface residues of the translesion polymerase complex. The structural elucidation of such a quaternary translesion polymerase complex encompassing both insertion and extension polymerases bridged by the Rev1 CTD provides the first molecular explanation of the essential scaffolding function of Rev1 and highlights the Rev1 CTD as a promising target for developing novel cancer therapeutics to suppress translesion synthesis. Our studies support the notion that vertebrate insertion and extension polymerases could structurally cooperate within a mega translesion polymerase complex (translesionsome) nucleated by Rev1 to achieve efficient lesion bypass without incurring an additional switching mechanism.

Timely replication of genetic information prior to mitosis is essential for maintaining genome stability. Although high-fidelity DNA replicases are proficient at duplicating genomic DNA, they are intolerant of most forms of DNA lesions continuously generated in large numbers by endogenous cellular processes and environmental
genotoxic agents (1). Despite the presence of highly efficient DNA repair processes in cells, a small number of lesions inevitably evade the surveillance of sophisticated repair machinery and block the progression of high-fidelity replicases during genomic replication, resulting in arrested replication forks and generation of single-stranded replication gaps. Both of these events contribute to genome instability and pose a serious challenge for cell viability. In order to resolve stalled replication forks and gaps at lesion sites, cells have evolved a special set of DNA polymerases that are capable of directly replicating across DNA lesions (translesion synthesis) at the cost of replication fidelity (2,3).

Two distinct translesion synthesis pathways have been genetically defined in *S. cerevisiae*; one involves relatively error-free bypass of TT cyclobutane pyrimidine dimers by Pol η (Rad30), and the other one involves Rev1 and the heterodimeric Pol ζ, consisting of the catalytic Rev3 subunit and the accessory Rev7 subunit, that are responsible for error-prone translesion synthesis across lesions caused by UV and a variety of other DNA damaging agents. Indeed, *REV1, REV3*, and *REV7* were the first translesion polymerase genes identified based on mutations that resulted in significantly reduced mutagenicity (nonmutable or “reversionless” phenotype) (4,5), highlighting their essential roles in the mutagenic branch of translesion synthesis in yeast.

A greater number of translesion polymerases have been identified in mammalian cells, including four Y-family translesion polymerases, Pol κ, Pol η, Pol ι and Rev1, and one B-family translesion polymerase, Pol ζ (2,3). These polymerases account for the vast majority of translesion synthesis activities in mammalian cells, and they cooperatively achieve efficient lesion bypass in two sequential steps (6). In the first step, one of the four Y-family polymerases, each with its own distinct lesion specificity, inserts a nucleotide(s) opposite the DNA lesion. After nucleotide incorporation, the insertion polymerase is “switched” to an extension polymerase for primer extension past the lesion site. Although Pol η may specifically contribute to primer extension past TT cyclobutane pyrimidine dimers, substantial evidence supports the notion that primer extension past lesion sites is predominantly carried out by the Rev1-Pol ζ complex in mammalian cells (7).

Rev1, which is conserved from yeast to human, is a unique member of the Y-family polymerases. It was the first enzymatically characterized translesion polymerase and possesses a deoxycytidyl transferase activity (8). Two key findings have led to the suggestion of a “second function” of Rev1 that is separate from its catalytic activity (9). First was the observation that Rev1 was required for bypassing a T-T(6-4) UV photoproduct independent of its catalytic activity. Second was the discovery that the nonmutable phenotype of the *S. cerevisiae rev1-1* mutant is caused by a mutation outside the catalytic domain that does not impair Rev1’s deoxycytidyl transferase activity. Indeed, further experimentation has shown that mutation of the catalytic residue of Rev1 did not affect the levels of mutagenesis induced by a wide range of DNA-damaging agents (10,11), except for causing a change of mutation spectrum, arguing that the non-catalytic role of Rev1 in translesion synthesis is to serve as an essential scaffolding protein to mediate the assembly of translesion polymerase complexes in response to DNA damage.

The scaffolding function of Rev1 in vertebrates is critically dependent on its C-terminal domain of ~100 amino acids (11), which has been shown to bind insertion polymerases κ, η and ι through their Rev1-interaction region (RIR) (12-15) and extension polymerase ζ through its Rev7 subunit (12,13,16). Rev1-interaction is required for the protective role of Pol κ against benzo[a]pyrene in mammalian cells, and it promotes Pol η-mediated suppression of spontaneous mutations in human cells (17,18). Although the interactions between the Rev1 CTD and the RIR of Y-family polymerases κ, η, and ι are only found in vertebrates (15), the Rev1 CTD-Pol ζ interaction is evolutionarily conserved from yeast to human, highlighting the essential role of the Rev1-Pol ζ interaction in translesion synthesis. Consistent with this notion, the Rev1 CTD is required for effective DNA damage tolerance in mammalian cells, and mutations of the Rev1 CTD display a profound defect in translesion synthesis with significantly reduced damage-induced mutagenesis in yeast (11,19). In spite of the rapid progress in our understanding of the non-catalytic
role of the Rev1 CTD in translesion synthesis, the molecular basis of its scaffolding function has remained poorly understood until recently.

We and others have recently reported the solution structures of the mouse and human Rev1 CTD and their complexes with the RIR peptide of Pol κ and Pol η (20,21). Using yeast two-hybrid assays, we have also mapped the Rev1 surface responsible for interaction with the Rev7 subunit of Pol ζ. Our previous studies show that the Pol κ RIR and Rev7 bind to two neighboring, but non-overlapping surfaces of the Rev1 CTD. In this work, we present evidence that the Rev1 CTD simultaneously binds to Pol κ and the Pol κ RIR and report the crystal structure of the quaternary Rev1 CTD-Pol κ-RIR complex. Yeast two-hybrid assays have been used to verify the Rev1 CTD-Pol κ binding interface and to identify a set of residues important for complex formation. Alteration of a representative residue that affects the Rev1-Rev7 interaction in yeast two-hybrid assays also largely inactivates Rev1 function in the chicken DT40 cell line, indicating that the observed interaction is relevant in the context of full-length Rev1 and Pol κ in vertebrate cells that have suffered DNA damage in vivo. Our studies present the first molecular details of the long speculated “second” and non-catalytic function of the Rev1 CTD and reveal an unexpected solution to the “switching” mechanism in the current model of two-step translesion synthesis. Since Rev1-Pol κ RIR fusion protein connected by a three-residue linker (Gly-Ser-Glu) for NMR titration studies and a His10-GB1-tagged protein with a TEV site between GB1 and the RIR for crystallography studies. The mPol κ was produced by co-expression of the Rev7-interacting fragment of mRev3 (residues 1844-1895) and full-length mRev7 containing an R124A mutation using a pCDFDuet-1 vector (Novagen). The mRev3 fragment was cloned into the first multiple cloning site and mRev7 containing an N-terminal His8 tag was cloned into the second cloning site.

The His8-MBP-tagged mRev1 CTD was overexpressed in GW6011 E. coli cells, induced with 0.1 mM IPTG at 18 °C for 18 hr after the O.D.600 reached 0.4. The mPol κ RIR constructs were overexpressed in BL21(DE3)STAR E. coli cells, induced with 1 mM IPTG at 37 °C for 6 hr after the O.D.600 reached 0.5. The GB1-Pol κ RIR fusion protein was purified using an IgG affinity column according to the standard protocol (GE Healthcare) followed by size-exclusion chromatography. For crystallography studies, the mRev1 CTD-Pol κ RIR complex was prepared by co-lysing E. coli cells overexpressing the MBP-TEV-Rev1 CTD and GB1-TEV-Pol κ RIR and copurified by Ni2+-NTA affinity chromatography. After TEV digestion to remove the His8-MBP tag from the mRev1 CTD and the His10-GB1 tag from mPol κ RIR, the mRev1 CTD-Pol κ RIR complex was further purified by size-exclusion chromatography. The mRev3 and mRev7 proteins were co-expressed in BL21(DE3)STAR E. coli cells, induced with 1 mM IPTG at 37 °C for 6 hr after O.D.600 reached 0.5. After lysing cells using a French pressure cell, the Rev3/7 complex was purified by Ni2+-NTA affinity chromatography and size-exclusion chromatography. The final crystallization sample containing the quaternary complex of the Rev1 CTD, Rev3/7, and Pol κ RIR complex was prepared by passing the protein mixture of Rev3/7 with a slight molar excess amount of the Rev1 CTD-Pol κ RIR complex through a size-exclusion column (HiPrep 26/60 Sephacryl S-200 HR, GE Healthcare).

EXPERIMENTAL PROCEDURES

Molecular cloning and protein purification—The mouse Rev1 (mRev1) CTD constructs contained 115 residues (1135-1249) for NMR studies or 100 residues (1150-1249) for crystallographic studies. The mRev1 CTD constructs were cloned into a modified pMAL-C2 vector (New England BioLabs) to yield His8-MBP-tagged protein with a TEV site between MBP and the Rev1 CTD. The mPol κ RIR of residues 560-577 was cloned into modified pET vectors (EMD Biosciences) to produce a GB1-Pol κ RIR fusion protein connected by a three-residue linker (Gly-Ser-Glu) for NMR titration studies and a His10-GB1-tagged protein with a TEV site between GB1 and the RIR for crystallography studies. The mPol κ was produced by co-expression of the Rev7-interacting fragment of mRev3 (residues 1844-1895) and full-length mRev7 containing an R124A mutation using a pCDFDuet-1 vector (Novagen). The mRev3 fragment was cloned into the first multiple cloning site and mRev7 containing an N-terminal His8 tag was cloned into the second cloning site.

NMR spectroscopy—Isotopically labeled Rev1 CTD samples were obtained by growing E. coli cells in M9 media containing either H2O or a high percentage of D2O (90%), using 15N-NH4Cl and...

13C-glucose as the sole nitrogen and carbon sources. NMR experiments were conducted using Agilent INOVA 800 MHz spectrometers at 25 °C. Resonance assignments of the free Rev1 CTD (1135-1249) were obtained using standard 3-D triple-resonance experiments (22). NMR titration was carried out by recording HSQC spectra of the 2H/15N-labeled Rev1 CTD in the presence of increasing molar ratios of unlabeled GB1-Pol κ RIR or Pol ζ (Rev3/7). The spectrum of the 15N-labeled Rev1 CTD in the presence of equal molar ratios of both GB1-Pol κ RIR and Pol ζ was also recorded to establish the formation of the quaternary Rev1 CTD-Rev3/7-Pol κ RIR complex.

Crystallization and structure determination—The quaternary Rev1 CTD-Rev3/7-Pol κ RIR complex used for crystallography studies contained 0.9 mM protein in a buffer of 25 mM HEPES, pH 7.2, 100 mM KCl and 2 mM TCEP (tris(2-carboxyethyl)phosphine). Rhombic-faced polyhedron crystals were obtained using the sitting-drop vapor-diffusion method at 4 °C in drops containing 1.6 μL of the quaternary protein complex and 0.7 μL of well solution consisting of 0.1 M Tris pH 8.5 and 1.5 M Ammonium dihydrogen phosphate. The crystals were cryoprotected by soaking in mother liquor containing 20% glycerol (v/v) before flash-freezing. Diffraction data were collected at 100 K (λ = 1.000 Å) on the 22-BM beamline at the SERCAT at Argonne National Laboratory and processed with HKL2000 (23). Molecular replacement using AUTOMR in the PHENIX package (24) was carried out by using two search models sequentially. The first one was the crystal structure of human Rev7 in complex with a human Rev3 fragment (PDB code: 3ABE) and the second one contained the ensemble of our previously determined solution structures of the mouse Rev1 CTD in complex with the Rev1-interacting Region (RIR) of Pol κ (PDB code: 2LSJ), of which both the N- and C-terminal loops and side-chain atoms were removed to reduce potential phase bias. The final coordinate was completed by iterative cycles of model building (COOT) and refinement (PHENIX) (24,25).

Yeast two-hybrid assays—Protein-protein interactions in the yeast two-hybrid system were performed in the PJ69-4A strain of yeast (26). The mRev1 CTD (1150-1249) and mRev7 harboring the previously described R124A substitution (27) were cloned into the pGAD-C1 (GAL4 activation domain) and pGBD-C1 (GAL4 DNA-binding domain) plasmids marked with leucine and tryptophan, respectively. The assay was performed by growing strains harboring the two plasmids in 3 mL of media lacking leucine and tryptophan for 2 days at 30 °C and spotting 5 μL of cells on selective media plates lacking leucine and tryptophan (-LW) and on medium also lacking adenine and histidine (-AHLW) to score positive interactions. Interactions were scored after 3 days of growth at 30 °C. Site-directed mutations were generated using the Quickchange protocol (Stratagene) and verified by sequencing.

DT40 cell culture and transfection—Chicken DT40 cells were grown at 39.5 °C in RPMI medium supplemented with 10% fetal calf serum, and 1% chicken serum. To generate stable transfectants, 30 μg of plasmid DNA was digested overnight with the restriction enzyme Mlu1. After ethanol precipitation, the linearized DNA was electroporated into ~1 × 107 rev1 DT40 cells using the Gene Pulser Apparatus (Bio-Rad) at 550 V, 25 μFD. Stable clones were selected after 1 week of growth in 2 mg/mL G418 (Sigma).

Plasmid DNA and site-directed mutagenesis—The cDNA encoding mREV1 was cloned into the pEGFP-C3 vector (Clontech). Site-directed mutations were generated using the Quikchange protocol (Stratagene) and verified by sequencing.

Immunoblot analysis and antibodies—For immunoblot analysis, cells were lysed in Lysis Buffer (1% NP40, 300 mM NaCl, 0.2 mM EDTA, 50 mM Tris, pH 7.5), supplemented with a protease inhibitor cocktail (Roche), resolved by NuPAGE (Invitrogen) gels, transferred to nitrocellulose membranes and detected with anti-GFP (JL-8, Clontech) and anti-β-Actin (Cell signaling) antibodies using the enhanced chemiluminescence system (Western Lightening, Perkin Elmer).

DT40 cytotoxicity assay—For survival assays, 1.5 × 10⁴ of cells were exposed to various concentrations of cisplatin/CDDP (cis-diammineplatinum(II) dichloride; Sigma) for 72 hr at 39.5 °C. Cell viability was determined using the Cell Titer-Glo Luminescent Cell Viability Assay
(Promega) according to the manufacturer’s instructions.

RESULTS

Formation of a quaternary translesion polymerase complex involving the Rev1 CTD, heterodimeric Pol ζ, and the Pol κ RIR

Our previous structural and biochemical studies of the mouse Rev1 (mRev1) CTD have revealed two distinct and non-overlapping binding surfaces on the Rev1 CTD that separately mediate its interactions with the Rev7 subunit of mouse Pol ζ and the RIR peptide of mouse Pol κ. In order to investigate whether the Rev1 CTD is capable of forming a quaternary complex consisting of Rev1, Pol ζ, and Pol κ in solution, we titrated the mouse Rev1 CTD (1135-1249) individually and sequentially with the Pol κ RIR as a GB1-fusion protein and a core Pol ζ complex, consisting of the Rev7-interacting fragment of Rev3 (1844-1895) and a R124A mutation of mouse Rev7 that has been previously shown to enhance the monomeric form of Rev7 and promote Rev1 interaction (27,28). Titrations of unlabeled GB1-Pol κ RIR and the Rev3/7 into the 15N-labeled Rev1 CTD each caused perturbation of a subset of resonances in the slow-exchange regime on the NMR time scale, indicating that both the Rev1 CTD-Pol κ RIR interaction and the Rev1 CTD-Rev3/7 interaction are tight. Although the 1H-15N HSQC spectrum of the Rev1 CTD-Rev3/7 complex at the equal molar ratio contains fewer number of signals compared to the free Rev1 CTD, we were able to observe a set of Rev1 CTD signals that are differentially perturbed by Pol κ RIR binding (e.g., the backbone resonance of E1183 in Fig. 1A) and by Rev3/7 binding (e.g., sidechain resonances of Q1235 in Fig. 1A). It is important to note that these signals are equally perturbed in the final spectrum of the Rev1 CTD in the presence of equal molar ratios of both Pol κ RIR and Rev3/7, and the perturbed signals overlap either with those of the Rev1 CTD-Pol κ RIR complex or with the Rev1 CTD-Rev3/7 complex, but not with signals from the free Rev1 CTD (right panels in Fig. 1A). This result is consistent with the formation of a quaternary Rev1 CTD-Rev3/7-Pol κ RIR complex in solution, but is incompatible with co-existence of the ternary Rev1 CTD-Rev3/7 complex and the binary Rev1-Pol κ RIR complex, as in the latter scenario, Rev1 CTD signals selectively perturbed by Pol κ binding, but unperturbed by Rev/37 binding (or vice versa), would be present in both the perturbed and unperturbed forms in the final spectrum of complex mixture.

Consistent with the formation of a tight-binding quaternary Rev1-Rev3/7-Pol κ RIR complex in the slow-exchange regime on the NMR time scale, such a quaternary complex is readily separated from the Rev1 CTD-Pol κ RIR complex and from the Rev3/7 complex on size-exclusion chromatography (Fig. 1B).

Overall Structure of the Rev1-Pol ζ-Pol κ RIR complex

After demonstrating the formation of a quaternary translesion polymerase complex consisting of the Rev1 CTD, Rev3/7, and the Pol κ RIR in solution, we went on to probe the molecular details of such a complex using X-ray crystallography. The complex structure was determined at 2.7 Å resolution by molecular replacement using the crystal structure of human Rev7 in complex with a Rev3 peptide (PDB code: 3ABE) and our previously reported solution structure of the mouse Rev1 CTD-Pol κ RIR complex (PDB code: 2LSJ) as search models. The final statistics are reported in Table 1.

The formation of the Rev1 CTD-Rev3/7-Pol κ RIR complex is centrally mediated by the Rev1 CTD, with Rev7 and Pol κ RIR binding to two distinct and non-overlapping surfaces on the Rev1 CTD (Fig. 2). The Rev3 peptide, which is topologically trapped within Rev7 to form the heterodimeric Pol ζ complex, does not interact with the Rev1 CTD. Likewise, no interaction is observed between the Pol κ RIR and the Rev3/7 complex, leaving the Rev1 CTD as the essential scaffolding protein to nucleate the assembly of the quaternary Rev1-Rev3/7-Pol κ RIR complex. Superimposition of the quaternary Rev1 CTD-Rev3/7-Pol κ complex with the previously reported crystal structure of the human Rev3/7 complex (PDB code: 3ABE) and the solution structure of the mouse Rev1 CTD-Pol κ RIR complex (PDB code: 2LSJ) reveals backbone RMSD values of 0.4 Å and 0.9 Å for the Rev3/7 complex and for the Rev1 CTD-Pol κ RIR complex, respectively, suggesting that the Rev1
CTD in the Rev1-Pol κ complex and Rev7 in the Rev3/7 complex are conformationally available for interacting with each other to assemble the quaternary translesion polymerase complex.

Rev1 CTD and its interface with Pol κ RIR

In the quaternary complex, the Rev1 CTD adopts an atypical four-helix bundle fold consisting of mixed parallel and antiparallel helices, with α1, α2, α4, and α3 positioned in a clockwise fashion (Fig. 3A). In addition to this core four-helix bundle, the Rev1 CTD also contains two prominent loops, one located at the N-terminus and one at the C-terminus.

The N-terminal loop, which is disordered in the free mouse Rev1 CTD (Fig. 3A, grey) (20), folds into a β-hairpin over the surface area between helices α1 and α2 of the Rev1 CTD and creates a deep hydrophobic pocket to interact with F566 and F567, two invariant phenylalanine residues of the binding-induced Pol κ RIR helix. The observation of extensive van der Waals interactions between these two phenylalanine residues and hydrophobic residues of the Rev1 CTD from the N-terminal loop (A1158 and L1169), the α1 helix (L1169, L1170, and W1173), the α1-α2 loop (I1177) and the α2 helix (V1188) nicely supports our previously reported solution structure of the Rev1 CTD-Pol κ RIR complex (Fig. 3B) (20). The crystal structure, however, has revealed other hydrophilic interactions in addition to those we previously reported (i.e., the intramolecular hydrogen bond between the sidechain hydroxyl group of the N-helix Cap S565 and amide of D568 within the Pol κ RIR helix as well as the intermolecular charge-charge interaction between the sidechains of K570 of the Pol κ RIR and E1172 of the Rev1 CTD). In particular, we observed intermolecular bidentate hydrogen bonds between D1184 of the Rev1 CTD and backbone amides of F566 and F567 of the Pol κ RIR (Fig. 3C). These two hydrogen bonds are strengthened by the favorable helix dipole effect, and they likely contribute to the stability of the Pol κ RIR helix in addition to providing anchoring points. Two additional intermolecular hydrogen bonds can also be detected between residues of the Rev1 CTD (N1156 of the N-terminal loop and Q1187 of α2) and the Pol κ RIR (R571 and D568) (Fig. 3C). Since these two Pol κ residues are not conserved and their alanine substitutions do not affect the Rev1 CTD-Pol κ RIR binding affinity (17), their crystallographically observed polar interactions may not contribute significantly to the binding energy.

Heterodimeric Pol ζ complex of Rev3 and Rev7

Rev7 is a member of the HORMA (Hop1, Rev7, and Mad2) family of proteins. The most thoroughly studied member of this family, Mad2 co-exists in two distinct conformations (open and closed states) in solution and only shifts to the closed state after binding to a ligand such as MBP1 (29). The REV7 conformation captured in the quaternary complex corresponds to the closed state of Mad2 (Fig. 4A), similar to that in the previously reported structure of the Rev3/7 complex (27).

The central β-sheet of Rev7 consists of five antiparallel β-strands, including β6, β4, β5, β8", β8’ arranged from left to right, leaving the edge of β6 available for interaction with its ligand, the invaded β1 strand of Rev3. The β1 strand of Rev3 is flanked by a small strand (β7’) of Rev7, which sandwiches the Rev3 strand between β6 and β7’ of Rev7, further expanding the central β-sheet of Rev7 to the left. On the back side of the central β-sheet lies a layer of helices (αA, αB, αC, and αD), with αA and αC sandwiched between the central β-sheet and a small β-sheet consisting of two small antiparallel β-strands (β2 and β3). The short β7’ strand flanking Rev3 is connected at its N-terminus via a short α-helix (αD) to β6 of the central β-sheet and at the C-terminus, through a 3_10 helix and a “seat-belt” loop extending across the central β-sheet to connect with β8’ located at the far end of the β-sheet.

In addition to interacting with the central β-sheet of Rev7 through backbone hydrogen bonds of its invaded β1 strand, Rev3 further interacts with Rev7 through an extensive set of hydrophobic residues (Fig. 4BC). In particular, L1875 and P1877 of Rev3 protrude into the core of Rev7 and interact with Rev7 residues that pack the αD and αB helices against the central β-sheet of Rev7 from the back side. On the front side of the Rev7 central β-sheet, I1874, K1876, and L1878 of the β1 strand of Rev3 form extensive interactions with Rev7 residues to anchor the β7’ strand.
strand, the 3_{10} helix and the following “seat-belt loop”. The residues C-terminal to the inserted $\beta 1$ strand of the Rev3 fragment form an extended loop followed by a short α-helix, with the helix fitting into a shallow groove defined by the termini of αA and αB helices and the $\beta 2$ and $\beta 3$ strands of Rev7 (Fig. 4C). Hydrophobic residues of both the extended loop (P1881 and P1882) and C-terminal helix (I1887, L1888, and L1891) of Rev3 form extensive van der Waals contacts with nearby Rev7 residues and are required for high-affinity Rev3-Rev7 interaction (27).

Interaction of the Rev1 CTD and Rev7

The closed conformation of Rev7, stabilized by its interaction with Rev3, leaves the front face of the central β-sheet open for binding to the Rev1 CTD. The Rev1 CTD-Rev7 interaction is mediated by a combination of hydrophobic and hydrophilic residues (Fig. 5). In particular, sidechains of L186 and P188, located on the front side of the $\beta 8'$ strand of Rev7, project from the central β-sheet and wedge into a deep and narrow hydrophobic pocket on the Rev1 CTD defined by L1201 and Y1242 and L1246 from the C-terminal tail of the Rev1 CTD (Fig. 5AB). In addition, Y202 from the neighboring $\beta 8''$ strand of Rev7 touches the edge of the hydrophobic pocket on the Rev1 CTD and forms van der Waals contacts with L1201 and Y1242 of the Rev1 CTD.

Such a core set of hydrophobic interactions are flanked by two extensive hydrogen bond networks (Fig. 5CD). At the center of the first hydrogen bond network, Q200 of Rev7 emanates from the N-terminus of the $\beta 8''$ strand and reaches toward the gap among the N-terminus of $\alpha 3$ and C-terminus of $\alpha 4$ and the following C-terminal tail of the Rev1 CTD. The sidechain of Q200 of Rev7 forms two hydrogen bonds with the Rev1 CTD, one interacting with the backbone amide group of K1199 of the Rev1 CTD and E101 from the $\beta 5$ strand of Rev7 and constrains the orientation of the $\alpha 2$-$\alpha 3$ loop of Rev1, and an exquisite set of hydrogen bonds to the right that secure the $\alpha 3$ helix of the Rev1 CTD to Rev7. The observed polar interactions include hydrogen bonds between the Rev7 T191 hydroxyl group and the E1202 amide group of the Rev1 CTD, and between the sidechains of Rev7 K190 and the Rev1 CTD E1202. E1202 of Rev1 also forms a second hydrogen bond with the amide group of Rev7 T191, further enhancing the hydrogen bond network that lashes the $\alpha 3$ helix of the Rev1 CTD to Rev7. Although not directly involved in Rev7 interaction, D1200 of Rev1 is engaged in the formation of an intramolecular hydrogen bond with the amide group of K1203 and serves as a helix cap to stabilize the $\alpha 3$ helix. Similarly, K1203 is not directly involved in the Rev7 interaction, but its sidechain instead constrains the orientation of the N-terminal loop of the Rev1 CTD by forming a hydrogen bond with the carbonyl group of V1161. Mutations of K1199, D1200, L1201, E1202 and K1203 all weakened or disrupted the Rev1-Rev7 interaction (20), consistent with the structural observation that these Rev1 residues are either directly involved in Rev7 interaction or their mutation reduces the stability of the Rev1 CTD, thus diminishing the Rev1-Rev7 binding.

The second set of the hydrogen bond network occurs exclusively around the C-terminal tail of the Rev1 CTD (Fig. 5D). In the Rev1-Rev7 interface, the C-terminal tail of the Rev1 CTD extends across the $\beta 8'$ strand of Rev7 and forms backbone hydrogen bonds between T1245 and K1247 of the Rev1 CTD and P184 and L186 of $\beta 8'$ of Rev7 that are characteristic of the hydrogen bond patterns found in parallel β-strands. The backbone hydrogen bond contacts between Rev1 and Rev7 are flanked by two sidechain-mediated hydrophilic interactions, one between the sidechains of S1244 at the N-terminus of the Rev1 C-terminal loop and E204 of Rev7, and the other between the sidechains of K1247 at the C-terminal end of the Rev1 loop and E205 of Rev7. The interactions between the C-terminal tail of Rev1 and the $\beta 8'$ strand of Rev7 are further supported by the formation of intramolecular bidentate hydrogen bonds between Q1235 of the $\alpha 4$ helix of
the Rev1 CTD and backbone of L1246 of the C-terminal loop, which fasten the Rev1 C-terminal tail for interaction with Rev7. It is interesting to note that although Q1235 is not directly involved in the Rev7 interaction, its sidechain chemical shift is significantly perturbed upon Rev7 binding, an effect that is likely caused by its enhanced interaction with the stabilized C-terminal loop in the complex state compared to the free Rev1 CTD.

Characterization of the Rev1-Rev7 interaction using yeast two-hybrid assays

Our previous yeast two-hybrid assays have mapped residues on the α2-α3 loop and the N-terminus of the α3 helix in the Rev1 CTD as the primary site for Rev7 interaction (20). Our structural elucidation of the Rev1-Rev3/7-Pol κ RIR complex has now provided a molecular view of the Rev1-Rev7 interface that extends beyond these biochemically defined interactions. Thus, in order to obtain a detailed view of the specific contributions of individual interface residues, we expanded our yeast two-hybrid assays to evaluate the energetic contribution of these additional residues toward the Rev1-Rev7 interaction. We therefore mutated Y1242, L1246, and K1247 in the C-terminal tail of the Rev1 CTD and probed their interaction with Rev7 using yeast two-hybrid assays. As shown in Table 2, point mutations of Y124A, L1246A, and K1247E completely abrogated the interaction of the Rev1 CTD with Rev7, attesting to the importance of the second hydrogen bond network in the C-terminal tail of Rev1.

To more fully characterize the Rev1-Rev7 interaction, we also explored the requirement of specific amino acids of Rev7 that reside at the Rev1-Rev7 interface in promoting an interaction between these two proteins. By yeast two-hybrid analysis, mutation of amino acids that comprise the Rev7 hydrophobic patch, specifically changing L186 to A, K or E, P188 to A or Y202 to A, completely ablated the interaction between the Rev1 CTD and Rev7 (Table 2). These results agree well with previously reported data that defined L186, Y202, as well as Q200 of Rev7 as a “hot spot” for Rev1 binding (27). Similarly, single amino acid substitutions of most of the amino acids in Rev7 that form hydrophilic interactions with the Rev1 CTD significantly disrupt the Rev1 CTD-Rev7 binding (Table 2). For example, the specific Rev7 mutations Q200A, E101A, K190A or E204A completely eliminated or severely diminished the interaction of Rev7 with the CTD of Rev1 (Table 2). Curiously, mutation of T191 to A or mutation of P184 to A or K (Table 2) did not disrupt the Rev1 CTD-Rev7 interaction by yeast two-hybrid assays (Table 2), suggesting that these amino acids may individually play a less critical role in the binding of Rev1. Taken together, these yeast two-hybrid data demonstrate the critical nature of the residues that define the interface between the Rev1 CTD and Rev7.

Rev1 is critical for DNA damage tolerance in vertebrate cells.

Although we have used yeast two-hybrid assays to characterize the details of the interaction between the mouse Rev1 CTD and mouse Rev7, this approach leaves open the issue of whether these Rev1-Rev7 interactions are important in the context of full-length proteins in vertebrate cells that have been exposed to DNA damage. We therefore utilized a well-characterized DT40 chicken cell line (30) to assess the ability of full-length Rev1 harboring a representative mutation (K1199E) to complement the DNA-damage sensitivity of the rev1 cell line. K1199 forms a salt bridge with E101 of Rev7 and mutation of K1199E weakens the Rev1-Rev7 interaction in yeast two-hybrid assays (20). We therefore generated stable derivatives of the rev1 cell line expressing either full-length wild-type Rev1 or the K1199E mutant, fused to an N-terminal GFP tag to follow the expression level of each protein. While wild-type Rev1 complements the cisplatin sensitivity of the rev1 deletion strain, the K1199E mutant failed to confer resistance to cisplatin treatment (Fig. 6A). We confirmed that the K1199E mutant Rev1 protein is expressed at a level similar to that of wild-type Rev1, demonstrating that the K1199E mutation does not drastically destabilize the protein (Fig. 6B). Taken together, these results suggest that the specific interaction between the Rev1 CTD and Rev7, characterized using yeast two-hybrid assays in our previous study (20) and in this paper, is indeed critical for the function of the Rev1-Pol ζ complex in vertebrate cells that have suffered DNA damage.

DISCUSSION
Structural implication of the Rev1-Rev3/7-Pol \(\kappa\) RIR complex in vertebrate translesion synthesis

Although translesion synthesis enables timely replication of genetic information before cell division, it is an inherently error-prone process, and its employment must be tightly regulated to minimize unintended mutagenesis. The current model suggests that in mammalian cells, translesion synthesis involves multiple polymerase switches (3,7). After replication arrest, one of the four Y-family polymerases, Pol \(\kappa\), Pol \(\eta\), Pol \(\iota\), or Rev1, is recruited to the stalled replication fork in replacement of the stalled replicase or to single-stranded DNA gaps for post-replicative gap filling. The insertion polymerase incorporates a nucleotide(s) opposite the lesion site, and it is then swapped with the extension polymerase, whose function is predominantly carried out by the heterodimeric Pol \(\zeta\) complex in mammalian cells. After primer extension past lesion sites, Pol \(\zeta\) is switched back to the high-fidelity polymerase for continued DNA replication. Although the structures of several ubiquitin-binding domains have been elucidated that mediate the recruitment of insertion polymerases in response to PCNA monoubiquitination following DNA damage (31-34), the molecular mechanism that promotes the switching from an insertion polymerase to the extension polymerase has remained a mystery.

Our previous NMR and biochemical studies have revealed two distinct and non-overlapping surface areas of the Rev1 CTD that separately mediate the interactions of the Rev1 CTD with the RIR of the insertion polymerase \(\kappa\) and the Rev7 subunit of Pol \(\zeta\) (20). In this study, we further demonstrate that the Rev1 CTD can simultaneously bind to the RIR of Pol \(\kappa\) and Pol \(\zeta\) to form a quaternary translesion polymerase complex. The structural observation of such a quaternary polymerase complex containing both insertion and extension polymerases suggests an elegant potential solution to the mechanism that governs the insertion-to-extension polymerase switch: The functional transition from insertion to extension could be achieved within a quaternary complex consisting of Rev1, one of three RIR-containing insertion polymerases, Pol \(\kappa\), Pol \(\eta\) or Pol \(\iota\), and the extension polymerase \(\zeta\). In such a complex, which we dub the translesionsome, the insertion and extension polymerases are nucleated by the Rev1 CTD to carry out efficient insertion and extension steps in translesion synthesis. In the translesionsome model, Rev1 becomes a central regulator of translesion synthesis activity, as spatial or temporal variation of Rev1 would directly affect the efficiency of translesion bypass, regardless of whether it is dependent on PCNA monoubiquitination or not (35,36).

Evolutionary conserved Rev1 CTD-Rev7 interaction

The similar genetic phenotypes caused by deficiencies of \(REV1\), \(REV3\), and \(REV7\) in yeast and mammalian cells have long implicated a functional connection of Rev1 with Rev3 and Rev7 in the Pol \(\zeta\) complex (5,30,37,38), and their physical interaction has been biochemically observed in yeast and vertebrate species (12,13,16,39-41). Despite the biochemical verification of an evolutionary conserved interaction between Rev1 and Rev7, there has been speculation about the structural conservation of such an interaction, as Rev1 and Rev7 both show a large degree of sequence variation in yeast and vertebrates, raising the question whether vertebrate and yeast Rev1 and Rev7 proteins use different molecular surfaces to interact with each other. Our structure of the Rev1 CTD-Rev3/7-Pol \(\kappa\) RIR complex has revealed a surprisingly small binding interface between Rev1 and Rev7. It is interesting to note that the Rev1 CTD residues forming the \(~121\ \text{Å}^3\) Rev7-interacting hydrophobic pocket are highly conserved, and four out of the five pocket-forming residues in mouse Rev1 (L1201, L1204, L1238, and L1246) are retained or substituted with hydrophobic residues in yeast Rev1 (Fig. 5E). Because these residues are also involved in the packing of the hydrophobic core of the Rev1 CTD, they are not easily identifiable as surface-exposed residues for conserved protein-protein interactions. There are an even smaller number of hydrophobic residues of Rev7 engaged in the interaction with the hydrophobic pocket of the Rev1 CTD, including only three amino acids, L186 and P188 located next to each other on the same side of the \(\beta 8'\) strand and Y202 of the adjacent \(\beta 8''\) strand. Each of these three residues in vertebrate Rev7 is similarly conserved or replaced with an analogous hydrophobic residue in yeast Rev7 (Fig. 5E). In
addition to these core hydrophobic interactions, we have also identified a set of backbone hydrogen bonds between the β8’ strand of Rev7 and the C-terminal loop of the Rev1 CTD that occur regardless of sequence variations. Taken together, these observations suggest it is highly likely that the binding mode of the mouse Rev1-Rev7 interaction is structurally conserved in yeast.

Structural implication on cancer therapeutics

Chemotherapy is one of the most widely employed treatment options for cancer patients. Broadly used chemotherapeutic agents such as cyclophosphamide, cisplatin, mitomycin C and psoralens introduce interstrand crosslinks whose repair requires Rev1 in both replication-coupled and replication-independent modes (42,43). Studies of cancer cell lines have suggested that Rev1-mediated translesion synthesis is a major contributor to cancer cell survival and development of drug resistance in response to cisplatin treatment (44,45) while recent mouse studies have shown that knocking down the level of Rev1 delays the development of chemoresistance in drug-susceptible tumors in vivo (46). Additional mouse studies have shown that knocking down Rev3 sensitizes inherently drug-resistant lung adenocarcinomas to cisplatin chemotherapy (47). Taken together, these studies suggest that the Rev1-Pol ζ interface characterized in this paper may be an attractive target of the translesion synthesis system that can be exploited for development of novel cancer therapeutics.

References

37. Lawrence, C. W., and Christensen, R. B. (1979) Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev3 mutant strains. *Genetics* 92, 397-408

Acknowledgements—The Rev1 DT40 clone was a generous gift from Dr. Shunichi Takeda.

FOOTNOTES

*This research was supported by grants from the National Institute of General Medical Sciences GM-079376 and Stewart Trust Foundation (to P.Z.) and from the National Institute of Environmental Health Sciences ES-015818 and an American Cancer Society Research Professorship (to G.C.W.), and by NIH grants R01DK43889, R37HL52725, and RC4DK090913 (to A.D.D.). H.K. is a recipient of the Leukemia and Lymphoma Society Career Development Fellowship.

1Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
4These authors contributed equally to this work.
5To whom correspondence should be addressed: Pei Zhou, Dept. of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA. Tel.: (919) 668-6409; Fax: (919) 664-8885; E-mail: peizhou@biochem.duke.edu

The abbreviations used are: CTD, C-terminal domain; RIR, Rev1-interacting region; Pol, polymerase.

Data deposition—The atomic coordinate and structure factors have been deposited to the Protein Data Bank, with PDB ID of 4FJO.
FIGURE LEGENDS

FIGURE 1. Formation of a quaternary complex consisting of the Rev1 CTD, Rev3/7, and Pol κ RIR. A, 1H-15N HSQC spectra of the free Rev1 CTD (black), the Rev1 CTD in the presence of an equal molar ratio of either the GB1-Pol κ RIR fusion protein (blue), or Rev3/7 (red), or both (purple). B, FPLC traces of the Rev1 CTD-Rev3/7-Pol κ RIR complex (purple), the Rev3/7 complex (light orange), and the Rev1 CTD-Pol κ RIR complex (blue) separated using a HiPrep 26/60 Sephacryl S-200 HR column (GE Healthcare). The elution volumes of known protein standards are labeled.

FIGURE 2. Structure of the quaternary Rev1 CTD-Rev3/7-Pol κ RIR complex. Ribbon diagrams of the complex are shown in stereo view and are colored with the Rev1 CTD in green, Rev3 in yellow, Rev7 in purple and the Pol κ RIR in cyan.

FIGURE 3. The Rev1 CTD-Pol κ RIR interface. A, structure of the Rev1 CTD-Rev3/7-Pol κ RIR complex superimposed with the NMR ensemble of the free Rev1 CTD. Components of the quaternary complex are colored, with the Rev1 CTD in green, Pol κ RIR in cyan, Rev7 in purple and Rev3 in yellow. The NMR ensemble of the free Rev1 CTD is shown in Ca traces and colored in grey. B, hydrophobic interactions between the Rev1 CTD and Pol κ RIR. C, hydrophilic interactions between the Rev1 CTD and Pol κ RIR.

FIGURE 5. The Rev1 CTD-Rev7 interface. A, hydrophobic interactions between the Rev1 CTD and Rev7. Rev7 residues are labeled in yellow and Rev1 residues in green. B, opposite view of panel A, illustrating the central hydrophobic pocket of the Rev1 CTD that accommodates P188 and L186 of Rev7. Rev7 residues are labeled in purple and Rev1 residues in yellow. Panels C and D illustrate hydrophilic interactions between the Rev1 CTD and Rev7, with panel C showing interactions centered at the α2-α3 loop of the Rev1 CTD and panel D showing interactions centered at the C-terminal tail of the Rev1 CTD. E, sequence alignment of the Rev1 CTD and Rev7 from mouse (Mus musculus, Mm), chicken (Gallus gallus, Gg), and yeast (Saccharomyces cerevisiae, Sc). Conserved hydrophobic residues are colored in yellow. Hydrophobic residues important for the Rev1-Rev7 interaction are boxed in red.

FIGURE 6. Rev1 is critical for DNA damage tolerance in vertebrate cells. A, wild-type chicken DT40 cells (DT40), Rev1 deletion chicken DT40 cells (Rev1) harboring full-length wild-type Rev1 (Rev1+WT), or the K1199E mutation (Rev1+K1199E) were treated with the indicated doses of cisplatin (CDDP), and cell viability was measured 72 hr later. B, immunoblot analysis of lysates prepared from Rev1 deletion chicken DT40 cells (-), cells expressing full-length GFP-tagged wild-type Rev1 (wild-type) and the K1199E mutation (K1199E) probed with an anti-GFP antibody. The same blot was probed with an anti-β-Actin antibody as a loading control.
TABLE 1. Data collection and refinement statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P4_{2}\text{,}2\text{,}2</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>145.7, 145.7, 70.8</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90.0, 90.0, 90.0</td>
</tr>
<tr>
<td>Reflections</td>
<td>20970 / 199455</td>
</tr>
<tr>
<td>Resolution range</td>
<td>23.98-2.72 (2.84-2.72)(^a)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.2 (96.0)</td>
</tr>
<tr>
<td>I/σ</td>
<td>28.7 (4.68)</td>
</tr>
<tr>
<td>R-merge (%)</td>
<td>8.1 (55.2)</td>
</tr>
<tr>
<td>No. of atoms</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>2818</td>
</tr>
<tr>
<td>Water</td>
<td>131</td>
</tr>
<tr>
<td>Other molecules</td>
<td>46</td>
</tr>
<tr>
<td>R-factor (%)</td>
<td>20.0</td>
</tr>
<tr>
<td>R-free (%)</td>
<td>23.6</td>
</tr>
<tr>
<td>Av. B-factor (Å(^2)) (^c)</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>55.00</td>
</tr>
<tr>
<td>Water</td>
<td>59.43</td>
</tr>
<tr>
<td>Other molecules</td>
<td>125.18</td>
</tr>
<tr>
<td>Rmsd from ideal geometry</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.007</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>0.950</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td>99.41</td>
</tr>
<tr>
<td>Favored (%)</td>
<td>99.41</td>
</tr>
<tr>
<td>Allowed (%)</td>
<td>100.00</td>
</tr>
<tr>
<td>MolProbity</td>
<td></td>
</tr>
<tr>
<td>All-atom clashscore</td>
<td>5.42</td>
</tr>
<tr>
<td>Clashscore percentile (^c)</td>
<td>100(^{th})</td>
</tr>
</tbody>
</table>

\(^a\) Values in parentheses are for the highest-resolution shell.

\(^b\) Ramachandran plot statistics were generated using MOLPROBITY.

\(^c\) 100\(^{th}\) percentile is the best among structures of comparable resolution; 0\(^{th}\) percentile is the worst.
TABLE 2. Summary of yeast two-hybrid results of perturbation of the Rev1 CTD-Rev7 interface

<table>
<thead>
<tr>
<th>AA changed in Rev7</th>
<th>Interaction with Rev1 CTD</th>
<th>AA changed in Rev1 CTD</th>
<th>Interaction with Rev7</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>+</td>
<td>WT</td>
<td>+</td>
</tr>
<tr>
<td>L186A</td>
<td>-</td>
<td>Y1242A</td>
<td>-</td>
</tr>
<tr>
<td>L186E</td>
<td>-</td>
<td>L1246A</td>
<td>-</td>
</tr>
<tr>
<td>L186K</td>
<td>-</td>
<td>K1247E</td>
<td>-</td>
</tr>
<tr>
<td>Q200A</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y202A</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P188A</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E101A</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E204A</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K190A</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T191A</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P184A</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P184K</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ indicates growth on selective media; - indicates no growth on selective media.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.