Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in pp Collisions at $s = 8$ TeV with the ATLAS Detector.

http://dx.doi.org/10.1103/PhysRevLett.112.041802

American Physical Society

Final published version

Sun Mar 10 16:35:22 EDT 2019

http://hdl.handle.net/1721.1/87737

Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

G. Aad et al.*

(Received 16 September 2013; published 29 January 2014)

A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 8$ TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.

DOI: 10.1103/PhysRevLett.112.041802

PACS numbers: 13.85.Rm, 14.70.Fm, 14.80.Bn, 95.35.+d

Although the presence of dark matter in the Universe is well established, little is known of its particle nature or its nongravitational interactions. A suite of experiments is searching for a weakly interacting massive particle (WIMP), denoted by χ, and for interactions between χ and standard model (SM) particles [1].

One critical component of this program is the search for pair production of WIMPs at particle colliders, specifically $pp \rightarrow \chi \bar{\chi}$ at the Large Hadron Collider (LHC) via some unknown intermediate state. These searches have greatest sensitivity at low WIMP mass m_χ, where direct detection experiments are less powerful. At the LHC, the final-state WIMPs are invisible to the detectors, but the events can be detected if there is associated initial-state radiation of a SM particle [2]; an example is shown in Fig. 1.

The Tevatron and LHC collaborations have reported limits on the cross section of $pp \rightarrow \chi \bar{\chi} + X$ where X is a hadronic jet [2–4] or a photon [5,6]. Other LHC data have been reinterpreted to constrain models where X is a leptonically decaying W [7] or Z boson [8,9]. In each case, limits are reported in terms of the mass scale M_χ of the unknown interaction expressed in an effective field theory as a four-point contact interaction $[10–18]$. In the models considered until now, the strongest limits come from monojet analyses, due to the large rate of gluon or quark initial-state radiation relative to photon, W or Z boson radiation. The operators studied in these monojet and monophoton searches assume equal couplings of the dark matter particles to up-type and down-type quarks $[C(u) = C(d)]$. For W boson radiation there is interference between the diagrams in which the W boson is radiated from the u quark or the d quark. In the case of equal coupling, the interference is destructive and gives a small W boson emission rate. If, however, the up-type and down-type couplings have opposite signs $[C(u) = -C(d)]$ to give constructive interference, the relative rates of gluon, photon, W or Z boson emission can change dramatically [7], such that mono-W-boson production is the dominant process.

In this Letter, a search is reported for the production of W or Z bosons decaying hadronically (to $q\bar{q}$'s or $q\bar{q}$, respectively) and reconstructed as a single massive jet in association with large missing transverse momentum from the undetected $\chi\bar{\chi}$ particles. This search, the first of its kind, is sensitive to WIMP pair production, as well as to other dark-matter-related models, such as invisible Higgs boson decays (WH or ZH production with $H \rightarrow \chi\bar{\chi}$).

The ATLAS detector [19] at the LHC covers the pseudorapidity $|\eta| < 4.9$ and the full azimuthal angle ϕ. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating large superconducting toroidal magnets. A three-level trigger system is used to select interesting events for recording and subsequent offline analysis. Only data for which beams were stable and all subsystems described

* Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.
Jet candidates are reconstructed using the Cambridge–Aachen algorithm [22] with a radius parameter of 1.2, and selected using a mass-drop filtering procedure [23,24], referred to as large-radius jets. These large-radius jets are supposed to capture the hadronic products of both quarks from W or Z boson decay. The internal structure of the large-radius jet is characterized in terms of the momentum balance of the two leading subjets, as $\sqrt{\Delta \mathbf{R}} = \min(p_{T1}, p_{T2}) \Delta R/m_{\text{jet}}$ where $\Delta \mathbf{R} = \sqrt{(\Delta \phi_{1,2})^2 + (\Delta \eta_{1,2})^2}$ and m_{jet} is the calculated mass of the jet. Jet candidates are also reconstructed using the anti-k_t clustering algorithm [25] with a radius parameter of 0.4, referred to as narrow jets. The inputs to both algorithms are clusters of energy deposits in calorimeter cells seeded by those with energies significantly above the measured noise and calibrated at the hadronic energy scale [26]. Jet momenta are calculated by performing a four-vector sum over these clusters, treating each topological cluster [26] as an (E, \mathbf{p}) four vector with zero mass. The direction of \mathbf{p} is given by the line joining the reconstructed interaction point with the energy cluster. Missing transverse momentum $E_{T\text{miss}}$ is measured using all clusters of energy deposits in the calorimeter with $|\eta| < 4.5$. Electrons, muons, jets, and $E_{T\text{miss}}$ are reconstructed as in Refs. [26–29], respectively. The reconstruction of hadronic W boson decays with large-radius jets is validated in a $\ell \ell$-dominated control region with one muon, one large-radius jet ($p_T > 250$ GeV, $|\eta| < 1.2$), two additional narrow jets ($p_T > 40$ GeV, $|\eta| < 4.5$) separated from the leading large-radius jet, at least one b tag, and $E_{T\text{miss}} > 250$ GeV (Fig. 2).

Candidate signal events are accepted by an inclusive $E_{T\text{miss}}$ trigger that is more than 99% efficient for events with $E_{T\text{miss}} > 150$ GeV. Events with significant detector noise and noncollision backgrounds are rejected as described in Ref. [3]. In addition, events are required to have at least one large-radius jet with $p_T > 250$ GeV, $|\eta| < 1.2$, m_{jet} between 50 GeV and 120 GeV, and $\sqrt{\Delta \mathbf{R}} > 0.4$ to suppress background without hadronic W or Z boson decays. Two signal regions are defined by two thresholds in $E_{T\text{miss}}$: 350 and 500 GeV. To suppress the $\ell \ell$ background and multijet background, events are rejected if they contain more than one narrow jet with $p_T > 40$ GeV and $|\eta| < 4.5$ which is not completely overlapping with the leading large-radius jet by a separation of $\Delta \mathbf{R} > 0.9$, or if any narrow jet has $\Delta \mathbf{R}(E_{T\text{miss}}$ jet) < 0.4. Finally, to suppress contributions from $W \rightarrow \ell \nu$ production, events are rejected if they have any electron, photon, or muon candidates with $p_T > 10$ GeV and $|\eta| < 2.47, 2.37,$ or 2.5, respectively.

The dominant source of background events is $Z \rightarrow \nu \bar{\nu}$ production in association with jets from initial-state radiation. A secondary contribution comes from production of jets in association with W or Z bosons with leptonic decays in which the charged leptons fail identification requirements or the τ leptons decay hadronically. These three backgrounds are estimated by extrapolation from a common data control region in which the selection is identical to that of the signal regions except that the muon veto is inverted and W/Z + jets with muon decays are the dominant processes. In this muon control region dominated by W/Z + jets with muon decays, the combined W and Z boson contribution is measured after subtracting other sources of background that are estimated using MC simulation [30] based on GEANT4 [31]. Two extrapolation factors from the contribution of W/Z + jets in the muon control region to the contributions of Z → $\nu \bar{\nu}$ + jets and W/Z + jets with leptonic decays in the muon-veto signal region, respectively, are derived as a function of m_{jet} from simulated samples of W and Z boson production in association with jets that are generated using SHERPA1.4.1 [32] and the CT10 [33] parton distribution function (PDF) set. A second control region is defined with two muons and $E_{T\text{miss}} > 350$ GeV, which has limited statistics and is used only for the validation of the Z boson contribution. The W boson contribution is validated in a low-$E_{T\text{miss}}$ control region with the same selection as the signal region but 250 GeV < $E_{T\text{miss}}$ < 350 GeV.

Other sources of background are diboson production, top quark pair production, and single-top production, which are estimated using simulated events. The MC@NLO4.03 generator [34] using the CT10 PDF with the AUET2 [35] tune, interfaced to HERWIG6.520 [36] and JIMMY4.31 [37] for the
TABLE I. Data and estimated background yields in the two signal regions. Uncertainties include statistical and systematic contributions.

<table>
<thead>
<tr>
<th>Process</th>
<th>$E_T^{miss} > 350$ GeV</th>
<th>$E_T^{miss} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \ell \ell$</td>
<td>402$^{+39}_{-34}$</td>
<td>54$^{+8}_{-10}$</td>
</tr>
<tr>
<td>$W \rightarrow \ell \nu$, $Z \rightarrow \ell^+ \ell^-$</td>
<td>210$^{+20}_{-18}$</td>
<td>22$^{+4}_{-5}$</td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>57$^{+11}_{-8}$</td>
<td>9.1$^{+1.3}_{-1.1}$</td>
</tr>
<tr>
<td>$t\bar{t}$, single t</td>
<td>39$^{+10}_{-9}$</td>
<td>3.7$^{+1.2}_{-1.0}$</td>
</tr>
<tr>
<td>Total</td>
<td>707$^{+48}_{-38}$</td>
<td>89$^{+9}_{-12}$</td>
</tr>
<tr>
<td>Data</td>
<td>705</td>
<td>89</td>
</tr>
</tbody>
</table>

simulation of underlying events, is used for the productions of $t\bar{t}$ and single-top processes, both s-channel and Wt production. The single-top, t-channel process is generated with ACERMC3.8 [38] interfaced to PYTHIA8.1 [39], using the CTEQ6L1 [40] PDF with the AUET2B [35] tune. The diboson (ZZ, WZ, and WW) samples are produced using HERWIG6.520 and JIMMY4.31 with the CTEQ6L1 PDF and AUET2 tune.

Background contributions from multijet production in which large E_T^{miss} is due to mismeasured jet energies are estimated by extrapolating from a sample of events with two jets and are found to be negligible [3].

Samples of simulated $pp \rightarrow WZ$ and $pp \rightarrow ZZ$ events are generated using MADGRAPH5 [41], with showering and hadronization modeled by PYTHIA8.1 using the AU2 [35] tune and CT10 PDF, including b quarks in the initial state. Four operators are used as a representative set based on the definitions in Ref. [14]: $C1$ scalar, $D1$ scalar, $D5$ vector (both the constructive and destructive interference cases), and $D9$ tensor. In each case, $m_f = 1.50, 100, 200, 400, 700, 1000,$ and 1300 GeV are used. The dominant sources of systematic uncertainty are due to the limited number of events in the control region, theoretical uncertainties in the simulated samples used for extrapolation, uncertainties in the large-radius jet energy calibration and momentum resolution [23], and uncertainties in the E_T^{miss}. Additional minor uncertainties are due to the levels of initial-state and final-state radiation, parton distribution functions, lepton reconstruction and identification efficiencies, and momentum resolution.

The data and predicted backgrounds in the two signal regions are shown in Table I for the total number of events and in Fig. 3 for the m_{jet} distribution. The data agree well with the background estimate for each E_T^{miss} threshold. Exclusion limits are set on the dark matter signals using the predicted shape of the m_{jet} distribution and the CL$_S$ method [42], calculated with toy simulated experiments in which the systematic uncertainties have been marginalized. Figure 4 shows the exclusion regions at 90% confidence level (C.L.) in the M_χ vs m_f plane for various operators, where M_χ need not be the same for the different operators.

FIG. 3 (color online). Distribution of m_{jet} in the data and for the predicted background in the signal regions (SR) with $E_T^{miss} > 350$ GeV (top) and $E_T^{miss} > 500$ GeV (bottom). Also shown are the combined mono-W-boson and mono-Z-boson signal distributions with $m_f = 1$ GeV and $M_\chi = 1$ TeV for the $D5$ destructive and $D5$ constructive cases, scaled by factors defined in the legends. Uncertainties include statistical and systematic contributions.

Limits on the dark matter–nucleon scattering cross sections are reported using the method of Ref. [14] in Fig. 5 for both the spin-independent ($C1$, $D1$, $D5$) and the spin-dependent interaction model ($D9$). References [14,50] discuss the valid region of the effective field theory, which becomes a poor approximation if the mass of the intermediate state is below the momentum transferred in the interaction. The results are compared with measurements from direct detection experiments [43–49].

FIG. 4 (color online). Observed limits on the effective theory mass scale M_χ as a function of m_f at 90% C.L. from combined mono-W-boson and mono-Z-boson signals for various operators. For each operator, the values below the corresponding line are excluded.
This search for dark matter pair production in association with a W or Z boson extends the limits on the dark matter–nucleon scattering cross section in the low mass region \(m_T < 10 \text{ GeV} \) where the direct detection experiments have less sensitivity. The new limits are also compared to the limits set by ATLAS in the 7 TeV monojet analysis [3]. For the spin-independent case with the opposite-sign up-type and down-type couplings, the limits are improved by about 3 orders of magnitude, as the constructive interference leads to a very large increase in the W-boson-associated production cross section. For other cases, the limits are similar.

To complement the effective field theory models, limits are calculated for a simple dark matter production theory with a light mediator, the Higgs boson. The upper limit on the cross section of Higgs boson production through WH and ZH modes and decay to invisible particles is 1.3 pb at 95% C.L. for \(m_H = 125 \text{ GeV} \). Figure 6 shows the upper limit of the total cross section of WH and ZH processes with \(H \rightarrow \chi \chi \), normalized to the SM next-to-leading order prediction for the WH and ZH production cross section (0.8 pb for \(m_H = 125 \text{ GeV} \)) [51], which is 1.6 at 95% C.L. for \(m_H = 125 \text{ GeV} \).

In addition, limits are calculated on dark matter W\(\chi \chi \) or Z\(\chi \chi \) production within two fiducial regions defined at parton level: \(p_T^{\rm W/Z} > 250 \text{ GeV}, |\eta^{\rm W/Z}| < 1.2 \); two quarks from W or Z boson decay with \(\sqrt{s} > 0.4 \); at most one additional narrow jet \(|p_T| > 40 \text{ GeV}, |\eta| < 4.5, \Delta R \) (narrow jet, W or Z) > 0.9; no electron, photon, or muon with \(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.47, 2.37, \) or 2.5, respectively; \(p_T^{\rm Z} > 350 \) or 500 GeV. The fiducial efficiencies are similar for various dark matter signals, and the smallest value is (63 ± 1)% in both fiducial regions. The observed upper limit on the fiducial cross section is 4.4 fb (2.2 fb) at 95% C.L. for \(p_T^{\rm Z} > 350 \text{ GeV} \) (500 GeV) and the expected limit is 5.1 fb (1.6 fb) with negligible dependence on the dark matter production model.

In conclusion, this Letter reports the first LHC limits on dark matter production in events with a hadronically decaying W or Z boson and large missing transverse momentum. In the case of constructive interference between up-type and down-type contributions, the results set the strongest limits on the mass scale of \(M_\chi \) of the unknown mediating interaction, surpassing those from the monojet signature.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STScI, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICyT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMIT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSI and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark,
School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

INFN Sezione di Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York, USA

Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFN Sezione di Pavia, Italy

Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Petersburg Nuclear Physics Institute, Gatchina, Russia

INFN Sezione di Pisa, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratorio de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal

Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina, Saskatchewan, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma I, Italy

Dipartimento di Fisica, Università La Sapienza, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Italy

Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies- Université Hassan II, Casablanca, Morocco

Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
136c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
136d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
136e Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEASaclay (Commissariat à l’Energie Atomique et aux Énergies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
139 Department of Physics, University of Washington, Seattle, Washington, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, California, USA
145a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
145b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146a Department of Physics, University of Cape Town, Cape Town, South Africa
146b Department of Physics, University of Johannesburg, Johannesburg, South Africa
146c School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147a Department of Physics, Stockholm University, Sweden
147b The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto, Ontario, Canada
160a TRIUMF, Vancouver BC, Canada
160b Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
163 Centro de Investigaciones, Universidad AntonioNarino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
165a INFN Gruppo Collegato di Udine, Italy
165b ICTP, Trieste, Italy
165c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana, Illinois, USA
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich 2 Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven, Connecticut, USA
178 Yerevan Physics Institute, Yerevan, Armenia

a Deceased.
b Also at Department of Physics, King’s College London, London, United Kingdom.
c Also at Laboratorio de Instrumentacion e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
d Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
\[c\] Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
\[d\] Also at TRIUMF, Vancouver BC, Canada.
\[e\] Also at Department of Physics, California State University, Fresno CA, United States of America.
\[f\] Also at Novosibirsk State University, Novosibirsk, Russia.
\[g\] Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
\[h\] Also at Università di Napoli Parthenope, Napoli, Italy.
\[i\] Also at Institute of Particle Physics (IPP), Canada.
\[j\] Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
\[k\] Also at Louisiana Tech University, Ruston LA, United States of America.
\[l\] Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
\[m\] Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
\[n\] Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America.
\[o\] Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
\[p\] Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
\[q\] Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
\[r\] Also at CERN, Geneva, Switzerland.
\[s\] Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
\[t\] Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India.
\[u\] Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
\[v\] Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France.
\[w\] Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
\[x\] Also at Section de Physique, Université de Genève, Geneva, Switzerland.
\[y\] Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
\[z\] Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America.
\[aa\] Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
\[ab\] Also at DESY, Hamburg and Zeuthen, Germany.
\[ac\] Also at International School for Advanced Studies (SISSA), Trieste, Italy.
\[ad\] Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America.
\[ae\] Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
\[af\] Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America.
\[ag\] Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America.
\[ah\] Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia.
\[ai\] Also at Department of Physics, Oxford University, Oxford, United Kingdom.
\[aj\] Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
\[ak\] Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America.
\[al\] Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.