A SPACE-TIME PETROV–GALERKIN CERTIFIED REDUCED BASIS METHOD: APPLICATION TO THE BOUSSINESQ EQUATIONS

MASAYUKI YANO†

Abstract. We present a space-time certified reduced basis method for long-time integration of parametrized parabolic equations with quadratic nonlinearity which admit an affine decomposition in parameter but with no restriction on coercivity of the linearized operator. We first consider a finite element discretization based on discontinuous Galerkin time integration and introduce associated Petrov–Galerkin space-time trial- and test-space norms that yield optimal and asymptotically mesh independent stability constants. We then employ an hp Petrov–Galerkin (or minimum residual) space-time reduced basis approximation. We provide the Brezzi–Rappaz–Raviart a posteriori error bounds which admit efficient offline-online computational procedures for the three key ingredients: the dual norm of the residual, an inf-sup lower bound, and the Sobolev embedding constant. The latter are based, respectively, on a more round-off resistant residual norm evaluation procedure, a variant of the successive constraint method, and a time-marching implementation of a fixed-point iteration of the embedding constant for the discontinuous Galerkin norm. Finally, we apply the method to a natural convection problem governed by the Boussinesq equations. The result indicates that the space-time formulation enables rapid and certified characterization of moderate-Grashof-number flows exhibiting steady periodic responses. However, the space-time reduced basis convergence is slow, and the Brezzi–Rappaz–Raviart threshold condition is rather restrictive, such that offline effort will be acceptable only for very few parameters.

Key words. space-time Petrov–Galerkin, parametrized parabolic equations, discontinuous Galerkin, certified reduced basis, Brezzi–Rappaz–Raviart theory, Boussinesq equations

AMS subject classifications. 35K15, 35K55, 65M15, 65M60

DOI. 10.1137/120903300

1. Introduction. We present a certified reduced basis (CRB) method for long-time integration of parametrized parabolic partial differential equations (PDEs) with quadratic nonlinearity which admit an affine decomposition in parameter but with no restriction on coercivity of the linearized operator.¹ Our equations of interest include, but are not limited to, the unsteady incompressible Navier–Stokes equations and the Boussinesq equations that exhibit moderate unsteadiness including time-periodic responses. While reduced basis approximation based on, for example, proper orthogonal decomposition (POD) readily applies to unsteady equations [12, 13], certification based on traditional time-marching $L^2(\Omega)$ error bounds has been shown to be ineffective when the spatial operator linearized about the solution trajectory is noncoercive [19, 16]. In particular, the time-marching $L^2(\Omega)$ error bound—which is based on the consideration of the worst-case perturbation at each time step and the propagation of its effect over time—grows exponentially in time for a noncoercive (linearized) spatial operator even if the solution is asymptotically stable (and steady).

¹Submitted to the journal’s Methods and Algorithms for Scientific Computing section December 20, 2012; accepted for publication (in revised form) November 19, 2013; published electronically February 20, 2014. This work was supported by OSD/AFOSR/MURI grant FA9550-09-1-0613 and ONR grant N00014-11-1-0713.

http://www.siam.org/journals/sisc/36-1/90330.html

†Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (myano@mit.edu).

¹We assume that the first term of the decomposition of the linear term is positive and symmetric; the precise mathematical form of the assumption is provided in section 2.1.
In order to overcome the limitation of the time-marching $L^2(\Omega)$ error bound and enable effective long-time certification of a reduced basis approximation of noncoercive (but asymptotically stable) PDEs, Urban and Patera have recently introduced an error bound based on a space-time variational formulation [25, 24]. Instead of accumulating the effect of the worst-case perturbation at each time step, the formulation directly considers the space-time structure of the problem and constructs a space-time error bound. For spatially noncoercive and asymptotically stable convection-diffusion equations, the formulation has been shown (empirically) to yield an error bound that grows linearly, rather than exponentially, with the final time.

More recently, we (Yano, Patera, and Urban) have applied the space-time approximation and error certification technique in a simple nonlinear setting: one-parameter, one-dimensional Burgers’ equation [28]. The work employed an interpolation-based reduced basis approximation and the associated Brezzi–Rappaz–Raviart (BRR) error bound [3] specialized for quadratic nonlinearity (as used by Veroy and Patera for steady Navier–Stokes [26]). The primary advantage of the formulation in [28] is its simplicity in many aspects: the Crank–Nicolson in time truth discretization, the reduced basis approximation (in fact, interpolation), the inf-sup stability bound, and the sampling procedure. The method however has a number of disadvantages: a (stringent) restriction on the form of the equation—the linearized form must be independent of the parameter; the weak stability of the natural space-time norm associated with the Crank–Nicolson time stepping; the associated poor behavior of the Sobolev embedding constant (which is required for the BRR error bound); and the nonoptimality of the interpolation-based (as oppose to projection-based) reduced-basis approximation. Nevertheless the simple formulation demonstrated the applicability of the space-time formulation for Burgers’ equation and significant improvement in the effectivity of the error bound compared to the time-marching formulation.

The point of departure for the current work is the above work on Burgers’ equation [28]. Our new formulation improves upon the previous approach in several regards. First, we relax the constraint that the linearized form is independent of the parameter; specifically, we consider equations whose linear and quadratic spatial operators admit decompositions that are affine in functions of the parameter. (Again, we assume that the first term of the decomposition of the linear term is positive and symmetric in the sense defined in section 2.1; the diffusion term of the parabolic equation constitutes this operator.) Second, we employ a new “truth” space-time finite element discretization based on the discontinuous Galerkin (DG) time stepping [15, 10] and introduce associated space-time trial and test norms, which yield unity inf-sup and continuity constants for the heat equation and produce an L^4 embedding constant that is only weakly dependent on the mesh and final time. Third, we employ an hp Petrov–Galerkin projection-based (or minimum residual) reduced basis approximation [18] instead of the interpolation-based approximation used in the previous work, facilitating applicability of the method in a multiparameter setting. Fourth, we use a modified version of the natural-norm successive constraint method [14] in the space-time context that provides a tighter bound than the original formulation while maintaining a similar cost for nonlinear equations. Fifth, we present a variant of the hp-adaptive reduced basis sampling strategy [9] that is particularly suited for nonlinear equations with limited stability. Finally, we apply the new space-time certified reduced basis formulation to a natural convection problem governed by the unsteady

\footnote{Due to its simplicity, in particular from an implementation perspective, certain aspects of the formulation in [28] may be preferred in some cases.}
Boussinesq equations—a system for which the classical time-marching $L^2(\Omega)$ error bound produces pessimistic and meaningless error bounds.

We, however, note that the space-time CRB method proposed in this work suffers from a number of limitations that warrant future work. The first is the disadvantage of space-time snapshots relative to POD-Greedy approaches in terms of the convergence of the reduced basis approximation and hence offline effort; future work will consider how we may incorporate a POD-Greedy approximation into a space-time certification. The second is the very restrictive (normalized) residual criterion imposed by the BRR theory, which in turn requires a very accurate reduced basis approximation (“overkill”) before we can endow the solution with any error certificate; it might be difficult to address this from a purely computational perspective, but in an estimation or controls context—one of the target applications of reduced basis methods—data may help to mitigate the effect. We will observe both of these limitations in our model Boussinesq equations.

The results nevertheless demonstrate that rigorous long-time a posteriori error bounds are possible for unsteady and “unstable” hydrodynamic and transport systems. The natural convection system considered in the results section exhibits qualitatively different responses as the Grashof number increases: from a Stokes-like smooth transition at a low Grashof number to a convection-dominated steady-periodic response at a high Grashof number. The method is able to rigorously confirm that these changes in flow regime are not the result of an overly truncated low-order model, which is a demonstrated danger in a reduced-order approximation of unsteady flows [7]. With the space-time formulation we achieve a rigorous bound (by avoiding spurious dynamics), but to achieve this rigor, we do not lose the sharpness.

This paper is organized as follows. Section 2 introduces a space-time variational and finite element formulation based on DG time-marching and associated space-time trial and test norms. Section 3 presents our space-time certified reduced basis framework. The section describes the construction of the reduced basis approximation and the three ingredients of the BRR-based error certification: the dual norm of the residual, an inf-sup constant lower bound, and a Sobolev embedding constant. Section 4 presents our hp-adaptive reduced basis sampling strategy. Finally, section 5 shows the result of applying the space-time certified reduced basis method to a laterally heated natural convection problem.

2. Truth solution.

2.1. Problem description. Let us first recall a few standard spaces that are used throughout this work [20]. The L^2 Hilbert space over a domain $\Omega \in \mathbb{R}^d$ is denoted by $L^2(\Omega)$ and is equipped with an inner product $(\psi, \phi)_{L^2(\Omega)} \equiv \int_\Omega \phi(x)\psi(x)\,dx$ and the induced norm $\|\psi\|_{L^2(\Omega)} \equiv \sqrt{(\psi, \psi)_{L^2(\Omega)}}$. The space of vector valued $L^2(\Omega)$ functions is denoted by $(L^2(\Omega))^m$, where m is the dimension of vectors, and is equipped with an inner product $(\xi, \eta)_{L^2(\Omega)} \equiv \int_\Omega \eta_j(x)\xi_j(x)\,dx = \sum_{j=1}^m (\xi_j, \eta_j)_{L^2(\Omega)}$ and the induced norm $\|\xi\|_{L^2(\Omega)} \equiv \sqrt{(\xi, \xi)_{L^2(\Omega)}}$; to avoid notational clutter, we will not explicitly indicate in the subscript that the inner product (or norm) is taken in the vector sense. The summation on repeated indices is implied throughout this paper unless stated otherwise; however, we will employ the explicit summation notation when the limit of summation is ambiguous. The L^p norm is defined by $\|\psi\|_{L^p(\Omega)} \equiv \left(\int_\Omega |\sum_{j=1}^m \psi_j(x)\phi_j(x)|^{p/2}\,dx\right)^{1/p}$.

The $H^1(\Omega)$ space is equipped with an inner product $(\psi, \phi)_{H^1(\Omega)} \equiv (\nabla \psi, \nabla \phi)_{L^2(\Omega)}$.

In the sense of having a noncoercive (linearized) spatial operator.
and the induced norm \(\|\psi\|_{H^1(\Omega)} = \sqrt{\langle \psi, \psi \rangle_{H^1(\Omega)}} \). We will also consider the Gelfand triple \((V, H, V')\) and associated duality pairing \(\langle \cdot, \cdot \rangle_{V' \times V'}\); we take \(H = L^2(\Omega)\) (or \((L^2(\Omega))^m\)) throughout this work and appropriately choose \(V\) to suit the equation of interest. The norm of \(\ell\) is bounded in the sense that
\[
\|\ell\|_{V'} \equiv \sup_{\psi \in V} \langle \ell, \psi \rangle_{V' \times V} / \|\psi\|_V.
\]

The Riesz representation \(RH \in V\) satisfies \(\|RH\|_V = \|\ell\|_{V'}\), where the Riesz operator is defined as \(R : V' \to V\) such that, for each \(\ell \in V'\), \((RH, \phi)_V = \langle \ell, \phi \rangle_{V' \times V}, \forall \phi \in V\).

We now introduce the form of governing equation considered in this work. Let \(\Omega \subset \mathbb{R}^d\) be the spatial domain, \(I = (0, T]\) be the time interval, and \(\mathcal{D} \subset \mathbb{R}^P\) be the parameter domain. We consider parametrized quadratically nonlinear parabolic equations of the following form: find \(u \in C^0(I; H) \cap L^2(I; V)\) such that \([20, 22]\)

\[
\begin{align}
(\dot{u}, v)_H + a(u, v; \mu) + c(u, u, v; \mu) &= f(v; \mu) \quad \forall v \in V, \ t \in I, \ \mu \in \mathcal{D}, \tag{2.1}
(\mu(0), \eta)_H = (h(\mu), \eta)_H \quad \forall \eta \in H, \tag{2.2}
\end{align}
\]

where \(\dot{u} \equiv \frac{\partial u}{\partial t}\), \(h(\mu) \in H\) is the initial condition, and, as mentioned above, \(V\) is a Hilbert space appropriately chosen for the particular equation of interest. We assume that the parametrized linear form \(f(\cdot, \cdot)\), bilinear form \(a(\cdot, \cdot, \cdot)\), trilinear form \(c(\cdot, \cdot, \cdot)\), and initial condition \(h(\cdot)\) are affine in functions of parameters and admit decompositions

\[
\begin{align}
f(v; \mu) &= \sum_{q=1}^{Q^f} \Theta_f^q(\mu)f_q(v), \\
a(w, v; \mu) &= \sum_{q=0}^{Q^a} \Theta_a^q(\mu)a_q(w, v), \\
c(w, z, v; \mu) &= \sum_{q=1}^{Q^c} \Theta_c^q(\mu)c_q(w, z, v), \\
h(\mu) &= \sum_{q=1}^{Q^h} \Theta_h^q(\mu)h_q,
\end{align}
\]

where \(f_q(\cdot), a_q(\cdot, \cdot), c_q(\cdot, \cdot, \cdot), h_q \in \mathcal{H}\), \(q = 1, \ldots, Q^f, a^a(\cdot, \cdot), q = 0, \ldots, Q^a, c^c(\cdot, \cdot, \cdot), q = 1, \ldots, Q^c\), are parameter-independent forms, \(h_q \in \mathcal{H}, q = 1, \ldots, Q^h\), is a parameter-independent function, and \(\Theta_f^q, \Theta_a^q, \Theta_c^q, \text{and } \Theta_h^q\) are parameter-dependent functions that map from \(\mathcal{D}\) to \(\mathbb{R}\). We assume that \(a_0(\cdot, \cdot)\) is symmetric and positive and defines a natural inner product and norm for the space \(V\) according to

\[
(w, v)_V = a_0(w, v) \quad \text{and} \quad \|w\|_V \equiv \sqrt{(w, w)_V}.
\]

Furthermore, we assume that each of the trilinear forms is symmetric in the first two arguments

\[
c_q(w, z, v) = c_q(z, w, v) \quad \forall w, z, v \in V, \ \ q = 1, \ldots, Q^c,
\]

and is bounded in the sense that

\[
c_q(w, z, v) \leq C_q \|w\|_{L^4(\Omega)} \|z\|_{L^4(\Omega)} \|v\|_V \quad \forall w, z, v \in V, \ \ q = 1, \ldots, Q^c,
\]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
for some constants $C^e, q = 1, \ldots, Q^e$. For the inequality to be meaningful, we assume that $\|w\|_{L^2(I;V)} \leq \rho_{L^2(I;V)} \|w\|_V \forall w \in V$, for some Sobolev embedding constant $\rho_{L^2(I;V)}$. Note that, for many governing equations of fluid flows, we may associate the diffusion term (positive and symmetric) with $a_0(\cdot, \cdot)$ and the convection term (written in a symmetrized form) with $c_1(\cdot, \cdot, \cdot)$.

2.2. Space-time variational formulation.

We now define Bochner spaces used in our space-time formulation. The $L^2(I;V)$ space is equipped with an inner product $(w,v)_{L^2(I;V)} \equiv \int_I (w(t), v(t))_V dt$ and the induced norm $\|w\|_{L^2(I;V)} \equiv \sqrt{(w,w)_{L^2(I;V)}}$. Its dual, $L^2(I;V')$, is equipped with an inner product $(w,v)_{L^2(I;V')} \equiv \int_I (Rw(t), Rv(t))_V dt$ and the induced norm $\|w\|_{L^2(I;V')} \equiv \sqrt{(w,w)_{L^2(I;V')}}$, where $R : V' \to V$ is the aforementioned Riesz operator on (V, H, V'). Finally, the space $H^1(I;V')$ is equipped with a (semi-)inner product $(w,v)_{H^1(I;V')} \equiv (w,v)_{L^2(I;V')} \equiv \sqrt{(w,w)_{H^1(I;V')}}$ and a (semi)norm $\|w\|_{H^1(I;V')} \equiv \sqrt{(w,w)_{H^1(I;V')}}$.

In order to treat nonzero initial conditions in a variational manner, we choose our space-time trial and test spaces following the work of Schwab and Stevenson [22]. The space-time trial space is given by

$$\mathcal{X} = L^2(I;V) \cap H^1(I;V')$$

and is equipped with an inner product

$$\langle w, v \rangle_{\mathcal{X}} \equiv (w,v)_{H^1(I;V')} + (w,v)_{L^2(I;V)} + (w(T),v(T))_H$$

and the induced norm $\|w\|_{\mathcal{X}} \equiv \sqrt{\langle w, w \rangle_{\mathcal{X}}}$, Note that \mathcal{X} is not restricted to functions that vanish at $t = 0$. The norm is not the graph norm but includes the control of the solution at the final time as used by Urban and Patera [25]. Our space-time test space \mathcal{Y} is

$$\mathcal{Y} = L^2(I;V) \times H$$

equipped with an inner product

$$\langle w, v \rangle_{\mathcal{Y}} \equiv (w^{(1)}, v^{(1)})_{L^2(I;V)} + (w^{(2)}, v^{(2)})_H$$

and the induced norm $\|w\|_{\mathcal{Y}} = \sqrt{\langle w, w \rangle_{\mathcal{Y}}}$ for $w \equiv (w^{(1)}, w^{(2)})$ and $v \equiv (v^{(1)}, v^{(2)})$. The second part of the couple, which is in H, is used to enforce the initial condition in a weak manner.

Our space-time semilinear form $\mathcal{G}(\cdot, \cdot, \cdot) : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is given by

$$\mathcal{G}(w,v,\mu) = \mathcal{M}(w,v^{(1)}) + \mathcal{A}(w,v^{(1)};\mu) + \mathcal{C}(w,w,v^{(1)};\mu) + \mathcal{F}(v;\mu) + (w(0),v^{(2)})_H$$

where the parametrized space-time forms are given by integrating corresponding space-only forms with respect to time. Each space-time form inherits from its space-
only counterpart the operator decomposition that is affine in functions of parameters:

\[
\mathcal{M}(w, v) = \int_I (\dot{w}, v)_{V, V} dt,
\]

\[
\mathcal{A}(w, v; \mu) = \int_I a(w, v; \mu) dt = \sum_{q=0}^{Q^c} \Theta_q^c(\mu) \int_I a_q(w, v) dt \equiv \sum_{q=0}^{Q^c} \Theta_q^c(\mu) A_q(w, v),
\]

(2.6)

\[
\mathcal{C}(w, z, v; \mu) = \int_I c(w, z, v; \mu) dt = \sum_{q=1}^{Q^e} \Theta_q^e(\mu) \int_I c_q(w, z, v) dt \equiv \sum_{q=1}^{Q^e} \Theta_q^e(\mu) C_q(w, z, v),
\]

\[
\mathcal{F}(v; \mu) = \int_I -f(v^{(1)}; \mu) dt + (-h(\mu), v^{(2)})_H
\]

(2.7)

where \(Q^f = Q^l + Q^h\); for notational convenience, we group the data terms that arise from the volume forcing \(f\) and the initial condition \(h\) into a single space-time functional \(\mathcal{F}\). The space-time trilinear forms \(C_q(\cdot, \cdot, \cdot)\), \(q = 1, \ldots, Q^e\), inherit the symmetry with respect to the first two arguments and the boundedness, i.e.,

\[
C_q(w, z, v) = C_q(z, w, v) \quad \forall w, z \in X, \forall v \in L^2(I; V), \quad q = 1, \ldots, Q^e,
\]

(2.8)

\[
C_q(w, z, v) \leq C^e \|w\|_{L^4(I; L^4(\Omega))} \|z\|_{L^4(I; L^4(\Omega))} \|v\|_{L^2(I; V)}, \quad \forall w, z \in X, \forall v \in L^2(I; V), \quad q = 1, \ldots, Q^e,
\]

where \(C^e, \quad q = 1, \ldots, Q^e\), are the constants in (2.3). The boundedness of the space-time trilinear form follows from integrating the inequality equation (2.3) in time and then twice invoking the Cauchy–Schwarz inequality. Note that for the bound to be useful, we have assumed that \(\|w\|_{L^4(I; L^4(\Omega))} \leq \rho_{L^4, X} \|w\|_X \quad \forall w \in X\), for some Sobolev embedding constant \(\rho_{L^4, X}\); we will later verify this assumption for our discrete spaces.

Our space-time variational formulation yields the following weak statement: find \(u(\mu) \in X\) such that

\[
\mathcal{G}(u(\mu), v; \mu) = 0 \quad \forall v \in Y.
\]

The Fréchet derivative bilinear form associated with \(\mathcal{G}\) evaluated about \(z \in X\) is denoted by \(\partial \mathcal{G}(\cdot, z, \cdot, \cdot)\) and is given by

\[
\partial \mathcal{G}(w, z, v; \mu) = \mathcal{M}(w, v) + \mathcal{A}(w, v; \mu) + 2\mathcal{C}(w, z, v; \mu);
\]

the linearization of \(\mathcal{C}\) follows from its symmetry with respect to the first two arguments.

2.3. Finite element discretization. We consider the standard Galerkin discretization in space and a DG discretization in time [15, 10]. Let us denote our spatial finite element space by \(V_h\), where the subscript \(h\) signifies the characteristic diameter of elements in the triangulation \(T_h\) of the domain \(\Omega\). The choice of the spatial finite element is dependent on the particular equation of interest; for example, the standard linear finite element may be used for Burgers’ equation, whereas the Taylor–Hood finite element would be better suited for the incompressible Navier–Stokes equations.
inner product is coupled in time through the jump terms in the lifting term and

function values in the intervals

in a manner that is consistent with the DG interpretation of the temporal derivative
element spaces by

respectively. The subscript \(\delta \equiv (\Delta t, h) \) signifies that the spaces are dependent on both
the temporal and spatial meshes; we denote the dimension of the space-time finite
element space is nonconforming and discontinuous in time.

We denote our space-time finite element trial and test spaces by

\(\mathcal{X}_\delta = S_{\Delta t} \otimes V_h \quad \text{and} \quad \mathcal{Y}_\delta = S_{\Delta t} \otimes V_h, \)

respectively. The subscript \(\delta \equiv (\Delta t, h) \) signifies that the spaces are dependent on both
the temporal and spatial meshes; we denote the dimension of the space-time finite
element space by \(\mathcal{N} \), i.e., \(\mathcal{N} \equiv \dim(\mathcal{X}_\delta) = \dim(\mathcal{Y}_\delta) \). Note that unlike its continuous
counterpart, our choice of the \(\mathcal{Y}_\delta \) space is not a couple of functions over \(\Omega \times I \) and \(\Omega \),
the latter of which is used to enforce the initial condition.

To facilitate the presentation of norms associated with our finite element space,
we first recall the DG discretization of the temporal evolution bilinear form \(\mathcal{M}(\cdot, \cdot) \).
The DG discretization for the evolution term is given by

\[
\mathcal{M}_\delta(w, v) \equiv \sum_{k=1}^{K} \int_{I_k} \langle \dot{w}, v \rangle_{V^* \times V} \, dt + \sum_{k=2}^{K} (w(t_{k-1}^+), v(t_{k-1}^-))_H,
\]

where \(w(t_{k-1}^-) = \lim_{\epsilon \to 0^+} w(t_{k-1} + \epsilon) \) and \(w(t_{k-1}^+) = \lim_{\epsilon \to 0^+} w(t_{k-1} - \epsilon) \) are based on the
function values in the intervals \(I^{k+1} \) and \(I^k \), respectively [10].

We equip our space-time finite element test space \(\mathcal{Y}_\delta \) with a discrete analog of the \(\mathcal{V} \) inner product (2.5),

\[
(w, v)_{\mathcal{Y}_\delta} \equiv (w, v)_{L^2(I; V)} + (w(t_0^+), v(t_0^+))_H,
\]

and the induced norm \(\|v\|_{\mathcal{Y}_\delta} \equiv \sqrt{(w, v)_{\mathcal{Y}_\delta}} \). Note that the \(\mathcal{Y}_\delta \) inner product is decoupled
in time owing to the time-discontinuous test functions. The trial space \(\mathcal{X}_\delta \), on the
other hand, is equipped with an inner product

\[
(w, v)_{\mathcal{X}_\delta} \equiv \langle R_\delta w, R_\delta v \rangle_{\mathcal{X}_\delta} + (w, v)_{L^2(I; V)} + (w(t_K^+), w(t_K^+))_H + \sum_{k=2}^{K} (w(t_{k-1}^+), w(t_{k-1}^-))_H,
\]

where the lifting operator \(R_\delta : \mathcal{X}_\delta \to \mathcal{Y}_\delta \) satisfies, for each \(w \in \mathcal{X}_\delta, \)

\[
(\delta R_\delta w, v)_{\mathcal{Y}_\delta} = \mathcal{M}_\delta(w, v) \quad \forall v \in \mathcal{Y}_\delta;
\]

the associated induced norm is \(\|w\|_{\mathcal{X}_\delta} \equiv \sqrt{(w, w)_{\mathcal{X}_\delta}} \). We choose our lifting operator
in a manner that is consistent with the DG interpretation of the temporal derivative
operator, which includes the jump contribution. In addition, our \(\mathcal{X}_\delta \) norm includes
the extra jump penalty term. As we will see shortly, this choice of the \(\mathcal{X}_\delta \) norm in fact
arises naturally when we consider the DG discretization of the heat equation. The \(\mathcal{X}_\delta \)
inner product is coupled in time through the jump terms in the lifting term and the
penalty term.
The combination of the DG temporal scheme and spatial finite element discretization yields our space-time finite element statement: find \(u_\delta(\mu) \in \mathcal{X}_\delta \) such that

\[
G_\delta(u_\delta(\mu), v; \mu) = 0 \quad \forall v \in \mathcal{Y}_\delta,
\]

where the discrete semilinear form is given by

\[
G_\delta(w, v; \mu) \equiv \mathcal{M}_\delta(w, v) + \mathcal{A}(w, v; \mu) + \mathcal{C}(w, w, v; \mu) + \mathcal{F}_\delta(v; \mu) + (w(t_+^0), v(t_+^0))_H;
\]

here, the data term, which includes the initial condition, is given by

\[
\mathcal{F}_\delta(v; \mu) = \int_I -f(v; \mu) dt + (-h(\mu), v(t_+^0))_H.
\]

The well-posedness of the finite element formulation will be verified a posteriori by the BRR theory. The Fréchet derivative associated with \(G_\delta \) evaluated about \(z \in \mathcal{X}_\delta \) is denoted by \(\partial G_\delta \) and is given by

\[
\partial G_\delta(w, z, v; \mu) \equiv \mathcal{M}_\delta(w, v) + \mathcal{A}(w, v; \mu) + 2\mathcal{C}(w, z, v; \mu) + (w(t_+^0), v(t_+^0))_H,
\]

where we again appeal to the symmetry of \(\mathcal{C} \) in the first two arguments.

With the above space-time discretization and (discrete) norms, we have the following statement for the heat equation. \(^4\)

Theorem 2.1. For the heat equation, which is defined by the semilinear form

\[
G^\text{heat}_\delta(w, v) \equiv \mathcal{M}_\delta(w, v) + \mathcal{A}_0(w, v) + (w(t_+^0), v(t_+^0)) + \mathcal{F}_\delta(v),
\]

the inf-sup constant is

\[
\beta^\text{heat} \equiv \inf_{w \in \mathcal{X}_\delta} \sup_{v \in \mathcal{Y}_\delta} \frac{\partial G^\text{heat}_\delta(w, v)}{\|w\|_{\mathcal{X}_\delta} \|v\|_{\mathcal{Y}_\delta}} = 1,
\]

and the continuity constant is

\[
\gamma^\text{heat} \equiv \sup_{w \in \mathcal{X}_\delta} \sup_{v \in \mathcal{Y}_\delta} \frac{\partial G^\text{heat}_\delta(w, v)}{\|w\|_{\mathcal{X}_\delta} \|v\|_{\mathcal{Y}_\delta}} = 1,
\]

where \(\partial G^\text{heat}_\delta(w, v) \equiv \mathcal{M}_\delta(w, v) + \mathcal{A}_0(w, v) + (w(t_+^0), v(t_+^0))_H \).

Proof. First, because \(a_0(w, v) = (w, v)_V \), we have \(A_0(w, v) = (w, v)_{L^2(I; V)} \). Thus, our Fréchet derivative bilinear form is given by

\[
\partial G^\text{heat}_\delta(w, v) = \mathcal{M}_\delta(w, v) + \mathcal{A}_0(w, v) + (w(t_+^0), v(t_+^0))_H
\]

\[
= \mathcal{M}_\delta(w, v) + (w, v)_{L^2(I; V)} + (w(t_+^0), v(t_+^0))_H
\]

\[
= \mathcal{M}_\delta(w, v) + (w, v)_{Y_\delta},
\]

where the last equality follows from the definition of the \(Y_\delta \) inner product. Let us introduce a supremizing operator \(S : \mathcal{X}_\delta \to Y_\delta \) associated with the bilinear form,

\[
(Sw, v)_{Y_\delta} = \partial G^\text{heat}_\delta(w, v) \quad \forall w \in \mathcal{X}_\delta, \ v \in Y_\delta.
\]

\(^4\)In the context of the Navier–Stokes equations, the “heat equation” corresponds to the Stokes equations.
Because \(\partial \mathbf{G}_{\text{heat}}^\delta(w, v) = \mathbf{M}_\delta(w, v) + (w, v)_Y^\delta \), the supremizing operator may be decomposed as \(S = S^M + Id \), where
\[
(S^M w, v)_Y^\delta = \mathbf{M}_\delta(w, v) \quad \forall w \in \mathcal{X}_\delta, v \in \mathcal{Y}_\delta.
\]
We recognize \(S^M = R_\delta \), where \(R_\delta \) is the DG lifting operator defined by (2.9). We then substitute the definition of the supremizing operator to the expression for the inf-sup constant and the continuity constant and solve the supremization problem on \(\mathcal{Y}_\delta \) using the Cauchy–Schwarz inequality (which yields \(v_{\text{sup}} = Sw \)) to obtain
\[
(\mathbf{M}_\delta(w, v))_{Y^\delta} = \mathbf{M}_\delta(w, v) \quad \forall w \in \mathcal{X}_\delta, v \in \mathcal{Y}_\delta.
\]
Thus, the numerator of (2.11) simplifies to
\[
(\mathbf{M}_\delta(w, v))_{Y^\delta} = \mathbf{M}_\delta(w, v) + (w, v)_{Y^\delta} + 2(R_\delta w, w)_{Y^\delta}.
\]
We now appeal to the definition of the lifting operator \(R_\delta \), invoke integration by parts to the (half of) \((\dot{w}, w)_{V^\prime \times V^\prime} \), and carry out algebraic manipulation to simplify the last term of the right-hand side:
\[
(R_\delta w, w)_{Y^\delta} = \mathbf{M}_\delta(w, w) = \sum_{k=1}^{K} \int_{t_k}^{t_{k+1}} \langle \dot{w}, w \rangle_{V^\prime \times V} dt + \sum_{k=2}^{K} (w(t_{k-1}^+), w(t_{k-1}^-))_H
\]
\[
= \frac{1}{2} \left[-\|w(t_{k}^+)^2\|_H^2 + \sum_{k=2}^{K} \|w(t_{k}^+)\|_H^2 - w(t_{k-1}^-)\|_H^2 + \|w(t_{K}^+)^2\|_H^2 \right].
\]
Thus, the numerator of (2.11) simplifies to
\[
\|Sw\|_{Y^\delta}^2 = (R_\delta w, R_\delta w)_{Y^\delta} + (w, w)_{Y^\delta} - \|w(t_0^+)^2\|_H^2 + \sum_{k=1}^{K-1} \|w(t_{k}^+)^2\|_H^2 - w(t_{k-1}^-)\|_H^2 + \|w(t_{K}^+)^2\|_H^2 \\
= (R_\delta w, R_\delta w)_{Y^\delta} + (w, w)_{L^2(I; V')} + \|w(t_{K}^+)^2\|_H^2 + \sum_{k=1}^{K-1} \|w(t_{k}^+)^2\|_H^2 - w(t_{k-1}^-)\|_H^2.
\]
This is precisely our definition of the \(\mathcal{X}_\delta \) norm. Thus, we have \(\|Sw\|_{Y^\delta}/\|w\|_{\mathcal{X}_\delta} = 1 \quad \forall w \in \mathcal{X}_\delta \), which proves the desired results.

Remark 2.2. The above proof shows that our \(\mathcal{X}_\delta \) norm (and inner product), which is closely related to the graph norm of \(H^1(I; V') \times L^2(I; V) \), is in fact the (space-time) natural norm (and inner product) [23] associated with the DG discretization of the heat equation with the \(\mathcal{Y}_\delta \) test norm. In section 3.5, we will take advantage of this equivalence to efficiently solve the \(\mathcal{X}_\delta \)-projection problem.

Remark 2.3. Our space-time DG discretization for piecewise constant \((p = 0) \) temporal approximation space is equivalent to the backward Euler discretization of the parabolic equation (see, e.g., Eriksson and Johnson [10]). Thus, the space-time DG finite element formulation and associated space-time norms yield a variational framework for the backward Euler scheme.
Let us make a few comments on the computational cost associated with the solution of the DG-in-time system, (2.10). Due to the time-discontinuous nature of the DG temporal discretization, (2.10) can be solved one time interval at a time, starting from \(I^1 \). Each time step requires the solution of a \((p+1)\text{-dim}(V_h)\)-dimensional nonlinear equation, which is solved using Newton’s method. Note that, to achieve second-order accuracy using the DG discretization, we must solve a system that is twice as large as the Crank–Nicolson system at each time step; however, we accept the additional cost for the \(L^2 \) and algebraic stability of the DG formulation [2].

The use of DG-in-time discretization instead of Crank–Nicolson time stepping—as considered in the preceding papers [25, 28]—is motivated by its better stability properties; in particular, the (discrete) \(L^4 \)-\(X_3 \) Sobolev embedding constant depends only weakly on the temporal and spatial meshes, as we will demonstrate in section 3.5. (Note that the DG discretization also enables arbitrarily high-order discretization by increasing the polynomial order—the property often noted by its practitioners; however, our primary interest here is its stability and variational construction, which facilitate the error analysis.)

3. Space-time certified reduced basis method. Our space-time certified reduced basis method is based on the \(hp \) reduced basis method of Eftang, Patera, and Rønquist [9]. In the \(hp \) reduced basis method, the parameter space \(D \subset \mathbb{R}^P \) is partitioned into \(N_\mu \) nonoverlapping subdomains \(D_j, j = 1, \ldots, N_\mu \). For each subdomain \(D_j \), we associate reduced basis approximation space \(X_{N_J,D_j} \subset X_j \) of dimension \(N_j \). In this section, we construct our space-time reduced basis approximation and associated error bounds for single partition assuming that the partitions \(D_j \) and the trial space \(X_{N_j,D_j} \) have already been constructed. We detail the selection of the partition and spaces in section 4. In addition, to avoid notational clutter—and as the focus of this section is approximation and certification for a single partition—we will simply denote the trial space associated with the partition of interest by \(X_N \) instead of \(X_{N_j,D_j} \), where the subscript \(N \) signifies the dimension of the particular reduced basis space.

3.1. Space-time Petrov–Galerkin reduced basis approximation. Because our space-time semilinear form is noncoercive, the standard Galerkin projection is not guaranteed to yield a good—or even a stable—approximation. Thus, we employ the minimum residual formulation of Maday, Patera, and Rovas [18] for our space-time semilinear form is noncoercive, the standard Galerkin projection is not guaranteed to yield a good—or even a stable—approximation. Thus, we employ the minimum residual formulation of Maday, Patera, and Rovas [18] for our space-time reduced basis approximation. First, note that the dual norm of the residual may be expressed as

\[
\|G_\delta(w_N, \cdot; \mu)\|_{Y_\delta'} = \sup_{v \in Y_\delta} \frac{G_\delta(w_N, v; \mu)}{\|v\|_{Y_\delta}} = \|S(w_N; \mu)\|_{Y_\delta'},
\]

where \(S(w_N; \mu) \in Y_\delta \) satisfies

\[
(S(w_N; \mu), v)_{Y_\delta} = G_\delta(w_N, v; \mu) \quad \forall v \in Y_\delta.
\]

Then, given a reduced basis trial space \(X_N \subset X_\delta \), we seek \(u_N(\mu) \in X_N \) such that

\[
u_N(\mu) = \arg\inf_{u_N \in X_N} \|G_\delta(w_N, \cdot; \mu)\|_{Y_\delta'} = \arg\inf_{u_N \in X_N} \sup_{v \in X_N} \frac{G_\delta(w_N, v; \mu)}{\|v\|_{Y_\delta}} = \arg\inf_{u_N \in X_N} \|S(w_N; \mu)\|_{Y_\delta'}.
\]

(3.1)

We remark on the optimality of the approximation in a certain sense.
Remark 3.1. The minimum residual scheme may be interpreted as a Petrov-Galerkin projection with the stability-maximizing test space. To see this, note that the first-order optimality condition associated with the minimization statement equation (3.1) is

\[(S(w_N; \mu), S'(w_N)(z_N; \mu))_{\mathcal{Y}_h} = 0 \quad \forall z_N \in \mathcal{X}_N,\]

where the derivative operator satisfies

\[(S'(w_N)(z_N; \mu), v)_{\mathcal{Y}_h} = \partial G_\delta(z_N, w_N, v; \mu) \quad \forall v \in \mathcal{Y}_h.\]

Then, by the definition of the supremizing operator, we have

\[G_\delta(u_N(\mu), S'(u_N(\mu))(z_N; \mu); \mu) = 0 \quad \forall z_N \in \mathcal{X}_N,\]

or, equivalently, by appealing to the definition of \(S'(u_N(\mu))(z_N; \mu), \)

\[G_\delta(u_N(\mu), v_N; \mu) = 0 \quad \forall v_N \in \mathcal{Y}_N(\mathcal{X}_N; u_N(\mu), \mu),\]

where

\[\mathcal{Y}_N(\mathcal{X}_N; u_N(\mu), \mu) = \left\{ v \in \mathcal{Y}_h : v = \arg \sup_{v' \in \mathcal{Y}_h} \frac{\partial G_\delta(w, u_N(\mu), v'; \mu)}{\|w\|_{\mathcal{X}_h} \|v'\|_{\mathcal{Y}_h}}, w \in \mathcal{X}_N \right\}.\]

Note that \(\mathcal{Y}_N(\mathcal{X}_N; u_N(\mu), \mu) \subset \mathcal{Y}_h \) is the space of the inf-sup supremizers of the Fréchet derivative bilinear form linearized about \(u_N \) associated with the space \(\mathcal{X}_N \). Consequently, the inf-sup constant of the Petrov-Galerkin reduced basis problem is bounded below by that of the finite element problem. In particular, the reduced basis problem is well-posed given the finite element problem is well-posed. (For a similar stability-guaranteed formulation for the Brezzi inf-sup condition (rather than the Babuška inf-sup condition used here), see Rozza and Veroy [21].)

We now demonstrate that the solution of (3.1) permits offline-online computational decomposition. Given a \(\mathcal{X}_h \)-orthonormal set of space-time trial-space basis functions, \(\{\xi_k\}_{k=1}^N \), we wish to find \(\alpha_N(\mu) \in \mathbb{R}^N \) such that \(u_N(\mu) = \xi_k \alpha_{N_k}(\mu) \). Appealing to the affine decomposition of our semilinear form, we can express our supremizer \(S(w_N; \mu) \) as

\[S(w_N; \mu) = \chi_k^{\tilde{M}} \alpha_{N_k} + \Theta_q^a(\mu) \chi_k^{A^q} \alpha_{N_k} + \Theta_q^c(\mu) \chi_k^{C^q} \alpha_{N_k} \alpha_{N_l} + \Theta_q^f(\mu) \chi_q^{F},\]

where the basis functions for the supremizer are the Riesz representations of our parameter-independent space-time forms:

\[(\chi_k^{\tilde{M}}, v)_{\mathcal{Y}_h} = \tilde{M}(\xi_k, v) \quad \forall v \in \mathcal{Y}_h, k = 1, \ldots, N,\]

\[(\chi_k^{A^q}, v)_{\mathcal{Y}_h} = A_q(\xi_k, v) \quad \forall v \in \mathcal{Y}_h, k = 1, \ldots, N, q = 0, \ldots, Q^a,\]

\[(\chi_k^{C^q}, v)_{\mathcal{Y}_h} = C_q(\xi_k, \xi_l, v) \quad \forall v \in \mathcal{Y}_h, k, l = 1, \ldots, N, q = 1, \ldots, Q^c,\]

\[(\chi_q^{F}, v)_{\mathcal{Y}_h} = F_q(v) \quad \forall v \in \mathcal{Y}_h, q = 1, \ldots, Q^f.\]

The supremizer \(S(w_N; \mu) \) is expressed as a linear combination of \(N + Q^a N + \frac{1}{2} Q^c N (N + 1) + Q^f \) parameter-independent basis functions. The (square of the) dual norm of the
residual is then expressed as
\[
\|S(\xi_k, \alpha_k; \mu)\|_{Y_i}^2 = (\chi_i^{\text{M}}, \chi_i^{\text{A}})_{Y_i} \alpha_i \alpha_k + 2\Theta_{\gamma}^a(\mu)(\chi_k^{\text{M}}, \chi_i^{\text{A}})_{Y_i} \alpha_i \alpha_k + 2\Theta_{\gamma}^c(\mu)(\chi_k^{\text{M}}, \chi_i^{\text{A}})_{Y_i} \gamma_i \alpha_i \alpha_k \alpha_j \\
+ 2\Theta_{\gamma}^f(\mu)(\chi_k^{\text{M}}, \chi^F)_{Y_i} \gamma_i \alpha_k \alpha_i \\
+ 2\Theta_{\gamma}^b(\mu)(\chi_k^{\text{M}}, \chi_i^{\text{A}})_{Y_i} \gamma_i \alpha_k \alpha_i \alpha_j + 2\Theta_{\gamma}^c(\mu)\Theta_{\gamma}^f(\mu)(\chi_k^{\text{M}}, \chi_k^{\text{A}})_{Y_i} \gamma_i \alpha_k \alpha_i \\
+ \Theta_{\gamma}^f(\mu)\Theta_{\gamma}^f(\mu)(\chi_k^{\text{M}}, \chi^F)_{Y_i} \gamma_i \alpha_k \alpha_i \alpha_j + 2\Theta_{\gamma}^c(\mu)\Theta_{\gamma}^f(\mu)(\chi_k^{\text{M}}, \chi^F)_{Y_i} \gamma_i \alpha_k \alpha_i \alpha_j
\]
(3.4)

Tedious but straightforward differentiation of (3.4) yields the first-order optimality condition for (3.1), which corresponds to (3.2). The differentiation of the optimality condition then yields the Hessian, which is used to solve the optimization problem using Newton’s method.

The offline-online computational procedure is now clear from (3.4). In the offline stage, we first compute the Riesz representations \(\chi_k^{\text{M}}, \chi_k^{\text{A}} \), and \(\chi_k^{\text{F}} \) in \(\mathcal{O}(N \cdot (1 + Qa + Qc N^2 + Qf^4)) \) operations. We then compute the inner products of Riesz representations that appear in (3.4). In the online stage, we assemble the residual basis (and the associated derivative and Hessian) using (3.4) in \(\mathcal{O}(Qf^2 N^4) \) operations and solve the nonlinear problem using Newton’s method. In particular, the online cost is independent of the finite element complexity \(N \), which includes the number of time steps \(K \) (cf. the time-marching POD-based approach of, e.g., Hansdonk and Ohlberger [13]).

Remark 3.2. In practice, for many problems we have considered, the standard Galerkin projection works well. However, the Galerkin formulation is theoretically less sound, i.e., unproven stability. As the size of the reduced basis system is small—especially in the space-time and \(hp \) context—we prefer the minimum residual (or Petrov–Galerkin) formulation presented above.

3.2. Brezzi–Rappaz–Raviart error bound

As in our previous work on Burgers’ equation [28], our space-time a posteriori error bound relies on the BRR theory [3].

Theorem 3.3. Let \(\tau_N(\mu) \) be a normalized residual associated with an approximation \(u_N(\mu) \) defined by
\[
\tau_N(\mu) \equiv \frac{4\gamma^2(\mu)}{(\beta_N^{LB}(\mu))^2} \epsilon_N(\mu),
\]
(3.5)

where the continuity constant of the trilinear form, \(\gamma(\mu) \), a lower bound of the inf-sup constant of the linearized form, \(\beta_N^{LB}(\mu) \), and the dual norm of the residual, \(\epsilon_N(\mu) \), satisfy, respectively,
\[
\forall (w, z, v; \mu) \leq \gamma^2(\mu)\|w\|_{X_\mu}\|z\|_{X_\mu}\|v\|_{Y_\mu},
\]
(3.6)
\[
\beta_N^{LB}(\mu) = \beta_N = \inf_{w \in X_\mu} \sup_{v \in Y_\mu} \frac{\partial \mathcal{G}(w, u_N(\mu), v; \mu)}{\|w\|_{X_\mu} \|v\|_{Y_\mu}},
\]
(3.7)
\[
\epsilon_N(\mu) = \|\mathcal{G}(u_N, \cdot; \mu)\|_{Y_\mu} = \sup_{v \in Y_\mu} \frac{\mathcal{G}(u_N(\mu), v; \mu)}{\|v\|_{Y_\mu}}.
\]

Suppose the normalized residual is less than unity:
\[
\tau_N(\mu) < 1.
\]
(3.8)
Then, there exists a unique solution $u_N(\mu) \in \mathfrak{B}(u_N(\mu), \beta_{N}^{LB}(\mu)/(2\gamma^2(\mu)))$ to (2.10), where $\mathfrak{B}(z, r) \equiv \{ w \in X_3 : \|w - z\|_{X_3} < r \}$. Moreover, the error in $u_N(\mu)$ is bounded by

\[
\|u_3(\mu) - u_N(\mu)\|_{X_3} \leq \Delta_N(\mu) \equiv \frac{\beta_{LB}^{LB}(\mu)}{2\gamma^2(\mu)} \left(1 - \sqrt{1 - \tau_N(\mu)} \right).
\]

Proof. The proof for quadratic nonlinearity is provided in, e.g., Veroy and Patera [26].

Remark 3.4. For a trilinear form (2.7) with the parameter-independent forms bounded in the sense of (2.8), the continuity constant γ is given by

\[
\gamma^2(\mu) = \rho^2 \Theta_q(\mu) C_{C^q},
\]

where C_{C^q}, $q = 1, \ldots, Q^C$, are the continuity constants in (2.3), and ρ is the space-time L^4-X_3 Sobolev embedding constant defined by

\[
\rho \equiv \sup_{w \in X_3} \frac{\|w\|_{L^4(\Omega)}}{\|w\|_{X_3}}.
\]

It can be shown [17] that, in two dimensions, the space-time L^4-X_3 embedding constant is bounded independently of the mesh size δ; however, in three dimensions, the constant is weakly dependent on the mesh size. We will study the behavior of the constant and provide associated computational techniques in section 3.5.

Remark 3.5. The condition (3.8) defines a neighborhood of the solution $u_N(\mu)$ about which the effect of the quadratic term is rigorously bounded and hence the linear theory applies. In the limit of $\epsilon_N(\mu) \to 0$, the BRR bound reduces to a more familiar linear bound: $\Delta_N(\mu) \to \epsilon_N(\mu)/\beta_{N}^{LB}(\mu)$; in addition, for any $\tau_N(\mu) < 1$, the BRR error bound is bounded from above by $\Delta_N(\mu) \leq 2\epsilon_N(\mu)/\beta_{N}^{LB}(\mu)$.

Remark 3.6. The condition on the normalized residual (3.8) imposes a constraint on the maximum error level that can be certified using the BRR error bound procedure. Namely, if $\tau_N < 1$, then

\[
\Delta_N < \frac{\beta_{LB}^{LB}(\mu)}{2\gamma^2(\mu)} = \frac{\beta_{LB}^{LB}(\mu)}{2\rho^2 \sum_{q=1}^{Q^C} \Theta_q(\mu) C_{C^q}} \equiv E.
\]

In other words, we cannot certify—that is, cannot provide any error bound for—a low-fidelity reduced basis approximation whose error is greater than E even if we assume perfect effectivity. This is unlike the linear case, where error bounds may be constructed for a reduced basis approximation of any fidelity.

The construction of our space-time error bound requires evaluation of the following quantities: (1) the dual norm of the residual defined by (3.7); (2) an inf-sup lower bound satisfying (3.6); and (3) the Sobolev embedding constant (3.10), which in turn provides a continuity constant γ. In the following three sections, we detail evaluation and approximation of these three quantities, with particular emphasis on offline-online computational decomposition.

3.3. Dual norm of the residual

In section 3.1, we have already developed an explicit expression for the dual norm of the residual, $\epsilon_N(\mu) \equiv \|G_3(w_N, \cdot; \mu)\|_{Y_3} = \|S(w_N; \mu)\|_{Y_3}$, in (3.4). The standard offline-online computational decomposition appeals directly to (3.4) and evaluates the residual in online complexity independently of N. However, this procedure is known to suffer from numerical precision issues if
high accuracy is desired \cite{4}; the precision issue arises because the residual evaluation relies on cancellation of $O(1)$ inner product pieces. A solution to this problem was recently proposed by Casenave \cite{5}. Casenave’s idea is based on representing the dual norm of the residual not as a linear combination of inner product pieces, each of which is of $O(1)$, but as a linear combination of residuals evaluated at different parameter points, each of which is of the order of the residual itself. Recently, Casenave, Ern, and Lelièvre have further improved the conditioning and computational efficiency of the procedure by incorporating the empirical interpolation method (EIM) \cite{1} into the residual evaluation procedure \cite{6}. We use this latter procedure to enable more round-off resistant offline online computational decomposition of the residual norm evaluation.

First, we note that the (square of the) dual norm of the residual, as expressed in (3.4), can be interpreted as an inner product of two M-vectors, where M is the number of terms in (3.4): a parameter-independent vector \(g \in \mathbb{R}^M \) whose entries consist of the inner products of the basis functions for the Riesz representation of the residual, e.g., \((\chi_i^M, \chi_i^M)_{\gamma_i}\), and a parameter-dependent vector \(\theta(\mu) \in \mathbb{R}^M \) whose entries consist of the affine decomposition weights \(\Theta(\mu) \) and reduced basis coefficients \(\alpha(\mu) \). We thus have
\[
\epsilon_\mathcal{N}^2(\mu) = \sum_{k=1}^{M} g_k \theta_k(\mu).
\]

To reduce the size of the problem, we now apply the EIM procedure to \(\theta : \mathcal{D} \to \mathbb{R}^M \) and approximate it as a linear combination
\[
\theta(\mu) \approx \sum_{j=1}^{M_{\text{EIM}}} \theta(\mu_j^*) \sigma_j(\mu),
\]
where \(M_{\text{EIM}} \leq M \) (formally, but \(M_{\text{EIM}} \ll M \) in practice) is the number of EIM interpolation points, and \(\sigma(\mu) \) is selected to satisfy the interpolation condition
\[
P_{\ast(i)}(\mu_j^*) = \sum_{j=1}^{M_{\text{EIM}}} P_{\ast(i)}(\mu_j^*) \sigma_j(\mu), \quad \text{(no sum on } i), \quad i = 1, \ldots, M_{\text{EIM}}.
\]

Here, \(\{\mu_j^*\}_{j=1}^{M_{\text{EIM}}} \) is a set of EIM parameter interpolation points and \(\{i^*(i)\}_{i=1}^{M_{\text{EIM}}} \) is a set of EIM interpolation indices; both sets are chosen in a greedy manner following the standard EIM procedure; see, e.g., Barrault et al. \cite{1} The variable \(P_{\ast(i)} \) is a simple preconditioner for the interpolation problem: \(P_{\ast(i)} = (\sup_{\mu \in \mathcal{D}} \theta(\mu_i^*))^{-1} \), \(i = 1, \ldots, M_{\text{EIM}} \). With the EIM approximation, (3.12) becomes
\[
\epsilon_\mathcal{N}^2(\mu) \approx g_k \left(\theta_k(\mu_j^*) \sigma_j(\mu) \right) = \left(g_k \theta_k(\mu_j^*) \right) \sigma_j(\mu) = \epsilon_\mathcal{N}^2(\mu_j^*) \sigma_j(\mu).
\]

The dual norm of the residual for a particular parameter is expressed as a linear combination of the dual norm of the residual at select \(M_{\text{EIM}} \) EIM interpolation points.

The online-offline computational decomposition of the EIM-based residual-norm approximation procedure is apparent from the construction. In the offline stage, we select the EIM interpolation parameters \(\{\mu_j^*\}_{j=1}^{M_{\text{EIM}}} \) and indices \(\{i^*(i)\}_{i=1}^{M_{\text{EIM}}} \), construct (the PLU factors of) the preconditioned EIM interpolation matrix \((P_{\ast(i)}^\dagger \hat{\theta}_{\ast(i)}(\mu_j^*))_{i,j=1}^{M_{\text{EIM}}} \),
and evaluate the residual vector \((e_N^2(\mu_j^*)_{j=1}^{M_{\text{EIM}}})\). In the online stage, we compute \((\theta^{i(i)}(\mu)_{i=1}^{M_{\text{EIM}}})\), solve the interpolation condition (3.13) for \(\sigma(\mu)\), and evaluate (3.14) in \(O(M_{\text{EIM}}^2)\) operations.

3.4. Inf-sup lower bound: A modified successive constraint method (SCM).

3.4.1. Lower bound formulation. Our objective is to compute a lower bound for the space-time inf-sup constant

\[
\beta_N(\mu) \equiv \inf_{w \in X_\beta} \sup_{v \in Y_\delta} \frac{\partial G_\delta(w, u_N(\mu), v; \mu)}{\|w\|_{X_\beta} \|v\|_{Y_\delta}}.
\]

The procedure presented here largely follows the natural-norm SCM [14] for linear stationary equations with a few modifications. First, we apply the method to the linearized form of a nonlinear equation; this introduces reduced basis coefficients in the expansion of the linearized form, which in turn requires a particular relationship between SCM control points and reduced basis snapshot points for an efficient computation. Second, we tighten the bounding boxes associated with the SCM method; as we will see shortly, the modification, unlike in the linear case, only moderately increases the cost in the nonlinear case (assuming the reduced basis dimension \(N\) is larger than the number of affine expansion coefficients \(Q^n\)). Third, we compute all coefficients in space-time spaces; we propose an effective time-marching-based computational procedure for the coefficients in the following subsection.

By way of preliminaries, we state two important assumptions of our modified SCM procedure:

- SCM Assumption 1: the SCM anchor point (\(\bar{\mu}\)) is included in the reduced basis snapshot points;
- SCM Assumption 2: the SCM control points (\(M_{\text{SCM}}\)) are included in the reduced basis snapshot points.

The roles that the anchor point and control points play in the procedure will become clear shortly. These two assumptions greatly simplify the extension of the natural-norm SCM algorithm to nonlinear equations. Both assumptions are verified by construction for the sampling algorithm proposed in section 4.

We now present the modified SCM procedure. As in the standard SCM, we first fix the supremizing operator to be that computed at an SCM anchor point \(\bar{\mu}\), i.e., \(S^\mu : X_\beta \to Y_\delta\) such that

\[
(S^\mu w, v)_{Y_\delta} = \partial G_\delta(w, u_N(\bar{\mu}), v; \bar{\mu}) \quad \forall w \in X_\beta, v \in Y_\delta.
\]

Note that, by SCM Assumption 1, the SCM anchor point is always included in the reduced basis snapshots; thus, \(u_N(\bar{\mu}) = u_\delta(\bar{\mu})\) and the supremizing operator \(S^\mu\) is independent of \(N\). Then we construct a lower bound of the inf-sup constant following

\[
\beta_N(\mu) \geq \inf_{w \in X_\beta} \frac{\partial G_\delta(w, u_N(\mu), S^\mu w; \mu)}{\|w\|_{X_\beta} \|S^\mu w\|_{Y_\delta}} \geq \left[\inf_{w \in X_\beta} \frac{\|S^\mu w\|_{Y_\delta}}{\|w\|_{X_\beta}} \right] \left[\inf_{w \in X_\beta} \frac{\partial G_\delta(w, u_N(\mu), S^\mu w; \mu)}{\|S^\mu w\|_{Y_\delta}^2} \right] \equiv \beta_N(\mu) \beta_N^\mu(\mu),
\]

where we have identified the term in the first bracket as \(\beta_N(\bar{\mu})\) and defined the term in the second bracket as \(\beta_N^\mu\). Note that \(\beta_N^\mu\) is dependent on \(N\) as our Fréchet derivative bilinear form changes with our reduced basis approximation \(u_N(\mu)\). The goal of
natural-norm SCM is to construct lower and upper bounds for the second term in a manner that permits offline-online computational decomposition. We make modifications to the SCM to improve the tightness of the lower bound.

To facilitate construction of bounds, we first express β^μ_N as

$$
(3.16) \quad \beta^\mu_N(\mu) \equiv \inf_{w \in Y} \frac{\partial G_0(w, u_N(\mu), S^\mu w; \mu)}{\|S^\mu w\|_Y^2}
= \inf_{w \in X} \left[\frac{M(w, S^\mu w) + A_0(w, S^\mu w)}{\|S^\mu w\|_Y^2} + \sum_{q=1}^{Q^u} \Theta^u_q(\mu) \frac{A_q(w, S^\mu w)}{\|S^\mu w\|_Y^2} \right.
\left. + \sum_{q=1}^{Q^u} \sum_{k=1}^N (\Theta_q^u(\mu) - \Theta_q^u(\bar{\mu})) \frac{2C_q(w, \xi_k, S^\mu w)}{\|S^\mu w\|_Y^2} \right].
$$

Now we regroup the terms to express the correction factor as a deviation from the linearization at the anchor point $\bar{\mu}$:

$$
\beta^\mu_N(\mu) = \inf_{w \in X} \left[\frac{\partial G_0(w, u(\bar{\mu}), S^\mu w; \mu)}{\|S^\mu w\|_Y^2} + \sum_{q=1}^{Q^u} (\Theta^u_q(\mu) - \Theta^u_q(\bar{\mu})) \frac{A_q(w, S^\mu w)}{\|S^\mu w\|_Y^2} \right.
\left. + \sum_{q=1}^{Q^u} \sum_{k=1}^N (\Theta_q^u(\mu) - \Theta_q^u(\bar{\mu})) \frac{2C_q(w, \xi_k, S^\mu w)}{\|S^\mu w\|_Y^2} \right]
= 1 + \inf_{w \in X} \left[\sum_{q=1}^{Q^u} (\Theta^u_q(\mu) - \Theta^u_q(\bar{\mu})) \frac{A_q(w, S^\mu w)}{\|S^\mu w\|_Y^2} \right.
\left. + \sum_{q=1}^{Q^u} \sum_{k=1}^N (\Theta_q^u(\mu) - \Theta_q^u(\bar{\mu})) \frac{2C_q(w, \xi_k, S^\mu w)}{\|S^\mu w\|_Y^2} \right];
$$

note that the reduced basis coefficients $\alpha_N, k = 1, \ldots, N$, enter the expansion as the coefficients of the trilinear form. The correction factor may then be expressed as

$$
\beta^\mu_N(\mu) = 1 + \inf_{z \in Z_N} J_N(z; \mu),
$$

where

$$
(3.17) \quad J_N(z; \mu) \equiv \sum_{q=1}^{Q^u} \sum_{k=1}^N (\Theta^u_q(\mu) - \Theta^u_q(\bar{\mu})) z_k + \sum_{q=1}^{Q^u} (\Theta_q^u(\mu) - \Theta_q^u(\bar{\mu})) z_{N+q}
$$

and

$$
Z_N = \left\{ z \in \mathbb{R}^{Q^u N + Q^u} : \exists w_z \in X, z_{(q-1)N+k} = \frac{2C_q(w_z, \xi_k, S^\mu w_z)}{\|S^\mu w_z\|_Y^2}, k = 1, \ldots, N, q = 1, \ldots, Q^u \quad z_{Q^u N+q} = \frac{A_q(w_z, S^\mu w_z)}{\|S^\mu w_z\|_Y^2}, q = 1, \ldots, Q^u \right\}.
$$
To compute a lower bound of $\tilde{\beta}_N^\mu(\mu)$, $\tilde{\beta}_N^{\mu,\text{LB}}(\mu)$, we construct $Z_N^{\text{LB}} \supseteq Z_N$. Towards this end, we first define a ($\bar{\mu}$-dependent) bounding box $B_{N,k}^\mu \subseteq \mathbb{R}^{Q^c+N+Q^\mu}$ defined by

$$
(3.18) \quad B_{N,(q-1)N+k}^\mu = \left[\inf_{w \in X_k} \frac{2C_q(w, \xi_k, S^\mu w)}{\|S^\mu w\|_{Y_k}^2}, \sup_{w \in X_k} \frac{2C_q(w, \xi_k, S^\mu w)}{\|S^\mu w\|_{Y_k}^2} \right],
$$

$$
(3.19) \quad k = 1, \ldots, N, \quad q = 1, \ldots, Q^c,
$$

$$
(3.20) \quad B_{N,Q^cN+q}^\mu = \left[\inf_{w \in X_k} \frac{A_q(w, S^\mu w)}{\|S^\mu w\|_{Y_k}^2}, \sup_{w \in X_k} \frac{A_q(w, S^\mu w)}{\|S^\mu w\|_{Y_k}^2} \right], \quad q = 1, \ldots, Q^\mu.
$$

Clearly, $Z_N \subseteq B_{N}^\mu$. We define our Z_N^{LB} as

$$
(3.21) \quad Z_N^{\text{LB}} = \left\{ z \in B_{N}^\mu : \sum_{q=1}^{Q^c} \sum_{k=1}^{N} \left(\Theta_q^c(\mu') - \Theta_q^c(\bar{\mu}) \alpha_{Nk}(\bar{\mu}) \right) z_k \right\}
$$

$$
(3.22) \quad + \sum_{q=1}^{Q^c} \left(\Theta_q^c(\mu') - \Theta_q^c(\bar{\mu}) \right) \gamma_{N+q} \geq \inf_{z \in Z_N^{\text{LB}}} \mathcal{J}_N(z; \mu') \forall \mu' \in M^{\text{SCM}},
$$

where $M^{\text{SCM}} \subseteq \mathcal{D}$ is a set of SCM control points. By SCM Assumption 2, our SCM control point, $\mu' \in M^{\text{SCM}}$, is a reduced basis snapshot. This implies that, once the constraint inf $z \in Z_N \mathcal{J}_N(z; \mu') = \beta_N^\mu(\mu') - 1$ is computed at the k'th reduced basis sampling point μ', it need not be updated as N increases because $\alpha_{Nk}(\mu_{k'}) = 0$, $k = k' + 1, \ldots, N$, due to the hierarchical construction of the basis. To evaluate a lower bound for the inf-sup correction factor, we solve a linear program

$$
(3.23) \quad \tilde{\beta}_N^{\mu,\text{LB}}(\mu) = 1 + \inf_{z \in Z_N^{\text{LB}}} \mathcal{J}_N(z; \mu),
$$

where \mathcal{J}_N is the function defined in (3.17). As regards the sharpness of the modified SCM inf-sup lower bound, we have the following proposition.

Proposition 3.7. Given the same set of SCM control points, the lower bound for the inf-sup correction factor presented above, $\tilde{\beta}_N^{\mu,\text{LB}}(\mu)$, is sharper than the original bound [14], here denoted by $\tilde{\beta}_N^{\mu,\text{LB},\text{orig}}(\mu)$, i.e.,

$$
(3.24) \quad \tilde{\beta}_N^{\mu,\text{LB}}(\mu) \geq \tilde{\beta}_N^{\mu,\text{LB},\text{orig}}(\mu).
$$

Proof. The only difference in the original formulation [14] and the above formulation is the choice of the bounding box. Thus, to prove (3.24), it suffices to show that

$$
B_{N,k}^\mu \subseteq B_{N,k}^{\mu,\text{orig}}, \quad k = 1, \ldots, Q^cN + Q^\mu.
$$

The original SCM bounding box is given by

$$
(3.25) \quad B_{N,k}^{\mu,\text{orig}} = \left[-\frac{\gamma_k}{\beta(\mu)} - \frac{\gamma_k}{\beta(\bar{\mu})} \right],
$$

where

$$
(3.26) \quad \gamma_k = \sup_{w \in X_k} \frac{\|T_k w\|_{Y_k}}{\|w\|_{X_k}},
$$

5Originally presented for Galerkin formulation; here generalized for the Petrov–Galerkin formulation.
and $T_k : \mathcal{X}_k \to \mathcal{Y}_k, k = 1, \ldots, Q^c N + Q^a$, satisfies

$$(T_{(q-1)N+k}(w))_{\mathcal{Y}_k} = 2C_q(w, \xi_k, v) \quad \forall w \in \mathcal{X}_k, v \in \mathcal{Y}_k, k = 1, \ldots, N, q = 1, \ldots, Q^c,$$

$$(T_{Q^c N+k}(w))_{\mathcal{Y}_k} = A_k(w, v) \quad \forall w \in \mathcal{X}_k, v \in \mathcal{Y}_k, k = 1, \ldots, Q^a.$$

Let us first show that the upper limit of $B_{N,k}^\mu$ is less than that of $B_{N,k}^{\mu,\text{orig}}$ for $k = Q^c N + 1, \ldots, Q^c N + Q^a$:

$$\sup_{w, v} \frac{A_{k-Q^c N}(w, S^h w)}{\|S^h w\|_{\mathcal{Y}_k}^2} \leq \sup_{w, v} \frac{|(T_k w, S^h w)_{\mathcal{Y}_k}|}{\|S^h w\|_{\mathcal{Y}_k}^2} \leq \sup_{w, v} \frac{\|T_k w\|_{\mathcal{Y}_k}}{\|S^h w\|_{\mathcal{Y}_k}} \leq \frac{\inf_{w, v} \|S^h w\|_{\mathcal{Y}_k}}{\|w\|_{\mathcal{X}_k}} \left(\frac{\inf_{w, v} \|S^h w\|_{\mathcal{Y}_k}}{\|w\|_{\mathcal{X}_k}} \right)^{-1} = \frac{\gamma_k}{\beta(\bar{\mu})};$$

we recognize that the final expression is precisely the upper limit of $B_{N,k}^{\mu,\text{orig}}$. Moreover, the lower limit of $B_{N,k}^\mu$ is greater than that of $B_{N,k}^{\mu,\text{orig}}$ because

$$\inf_{w, v} \frac{A_{k-Q^c N}(w, S^h w)}{\|S^h w\|_{\mathcal{Y}_k}^2} \geq -\sup_{w, v} \frac{|(T_k w, S^h w)_{\mathcal{Y}_k}|}{\|S^h w\|_{\mathcal{Y}_k}^2} \geq -\frac{\gamma_k}{\beta(\bar{\mu})}.$$

(The same arguments for the upper and lower bounds follow for $k = 1, \ldots, Q^c N$.) Thus, we have $B_{N,k}^\mu \subset B_{N,k}^{\mu,\text{orig}}, k = 1, \ldots, Q^c N + Q^a$, which is the desired result. \qed

We remark that the modified SCM improve the sharpness without a significant increase in the computational cost for nonlinear equations.

Remark 3.8. For linear equations (in which the linearized form is independent of the reduced basis approximation), the original bounding box construction procedure [14] is computationally less expensive than the new procedure as the factors γ_k defined in (3.25) are independent of the anchor point $\bar{\mu}$; i.e., the $\gamma_k, k = Q^c N + 1, \ldots, Q^c N + Q^a$ (with $N = 0$), need to be computed only once for all h^p-partitions. However, for equations with quadratic nonlinearity, $\gamma_k, k = 1, \ldots, Q^c N$, arising from the linearization of the quadratic term would have to be computed for each partition separately. Thus, the computational cost of the new procedure is comparable to that of the original formulation, while providing a tighter inf-sup lower bound.

3.4.2. Offline-online procedure. We first compute an upper bound of the inf-sup correction factor to facilitate the SCM sampling process. The construction is identical to the original procedure [14]; here we present a brief description for completeness. An upper bound for the correction factor is constructed by choosing $Z_N^{\text{UB}} \subseteq Z_N$. We simply choose

$$Z_N^{\text{UB}} = \left\{ z \in \mathbb{R}^{Q^c N + Q^a} : z_{(q-1)N+k} = \frac{C_q(w', \xi_k, S^h w')}{\|S^h w'\|_{\mathcal{Y}_k}^2}, k = 1, \ldots, N, q = 1, \ldots, Q^c; \right.$$

$$z_{Q^c N+j} = \frac{A_j(w', S^h w')}{\|S^h w'\|_{\mathcal{Y}_k}^2}, j = 1, \ldots, Q^a;$$

$$w' = \arg \inf_{w, v} \frac{\partial G_k(w, u^N(\mu'), S^h w; \mu')}{\|S^h w\|_{\mathcal{Y}_k}^2}, \mu' \in M^{\text{SCM}} \right\}.$$

In other words, $z \in Z_N^{\text{UB}}$ consists of the forms evaluated about the infimizer at a given SCM control point. Note that every element in this set must be updated when
\(N \) is increased, i.e., compute the new term arising from the addition of the trilinear form evaluated about the new linearization point. Our upper bound for the inf-sup correction factor is the solution of a linear program

\[
\hat{\beta}_{N,\text{UB}}^\mu (\mu) = 1 + \inf_{z \in \mathcal{L}^\text{UB}_N} \mathcal{J}_N(z; \mu),
\]

where again \(\mathcal{J}_N \) is the function defined in (3.17).

The \textit{online-offline} computational decomposition is apparent from the construction. In the offline stage, we compute
- the inf-sup constant at the anchor point \(\bar{\mu} \), \(\beta_N(\bar{\mu}) \);
- the SCM bounding box \(B^\mu_N \subset \mathbb{R}^{Q^N} \) defined by (3.20) and (3.19);
- and the SCM correction factors \(\hat{\beta}_N^\mu (\mu') \), \(\mu' \in M^{\text{SCM}} \), defined in (3.16) (for \(Z^\text{LB}_N \)) and its infimizers (for \(Z^\text{UB}_N \)) evaluated at the SCM control points.

In the online stage, we simply solve the linear programs (3.23) and (3.26) to obtain a lower bound \(\hat{\beta}_N^\mu,\text{LB} (\mu) \) and an upper bound \(\hat{\beta}_N^\mu,\text{UB} (\mu) \), respectively, for a select \(\mu \). The inf-sup lower and upper bounds are given by \(\beta_N^\mu (\mu) = \beta_N(\bar{\mu}) \hat{\beta}_N^\mu,\text{LB} (\mu) \) and \(\beta_N^\mu (\mu) = \beta_N(\bar{\mu}) \hat{\beta}_N^\mu,\text{UB} (\mu) \).

Before concluding this discussion on the construction of the inf-sup lower bound, let us clarify computations involved in the offline construction of \(Z^\text{LB}_N \). First, evaluation of the inf-sup constant at the SCM anchor point \(\bar{\mu} \), \(\beta_N(\bar{\mu}) \), requires the minimum eigenvalue of a generalized symmetric eigenproblem \(\mathbf{P} \mathbf{w} = \lambda \mathbf{Q} \mathbf{w} \) with

\[
\mathbf{P} = \mathbf{G}(\bar{\mu})^T \mathbf{Y}^{-1} \mathbf{G}(\bar{\mu}),
\]

\[
\mathbf{Q} = \mathbf{X},
\]

and setting \(\beta_N(\bar{\mu}) = \sqrt{\lambda_{\text{min}}} \). Here, the matrices, all of dimension \(\mathbb{R}^{N \times N} \), are given by \(\mathbf{G}(\bar{\mu})_{ij} = \partial \mathbf{G}(\phi_j, u(\bar{\mu}), \phi_i; \bar{\mu}) \), \(\mathbf{Y}_{ij} = (\phi_j, \phi_i)_Y \), and \(\mathbf{X}_{ij} = (\phi_j, \phi_i)_X \). The set \(\{ \phi_i \}_{i=1}^N \) is a space-time finite element basis. Effectively locating the minimum eigenvalue by a Krylov method requires generation of a Krylov space \(\mathcal{K}(\mathbf{P}^{-1} \mathbf{Q}) \). Application of \(\mathbf{P}^{-1} = \mathbf{G}(\bar{\mu})^{-1} \mathbf{Y} \mathbf{G}(\bar{\mu})^{-T} \) requires solution of the adjoint problem \((\mathbf{G}(\bar{\mu})^{-T}) \), multiplication by \(\mathbf{Y} \), followed by the solution of the linearized forward problem \((\mathbf{G}(\bar{\mu})^{-1}) \); all of these operations can be performed in a time-marching manner, not requiring fully coupled space-time solves.

The construction of the bounding boxes \(B^\mu_{N,k} \), \(k = 1, \ldots, Q^N \), defined by (3.19) require the extreme eigenvalues of \(\mathcal{Q}^N \) eigenproblems \(\mathbf{P} \mathbf{w} = \lambda \mathbf{Q} \mathbf{w} \) with

\[
\mathbf{P} = \mathbf{G}(\bar{\mu})^T \mathbf{Y}^{-1} \mathbf{C}_q(\xi_k) + \mathbf{C}_q(\xi_k)^T \mathbf{Y}^{-1} \mathbf{G}(\bar{\mu}),
\]

\[
\mathbf{Q} = \mathbf{G}(\bar{\mu})^T \mathbf{Y}^{-1} \mathbf{G}(\bar{\mu}),
\]

where \(\mathbf{C}_q(\xi_k) = \mathbf{C}_q(\phi_j, \xi_k, \phi_i) \) and \(\{ \xi_k \}_{k=1}^N \) is the \(\chi_i \)-orthonormalized reduced basis set. The maximum and minimum eigenvalues correspond to the upper and lower limits, respectively, of the bounding box. Similarly, the bounding boxes \(B^\mu_{N, Q^N + k} \), \(k = 1, \ldots, Q^N \) defined by (3.20) require extreme eigenvalues of \(\mathcal{Q}^N \) eigenproblems \(\mathbf{P} \mathbf{w} = \lambda \mathbf{Q} \mathbf{w} \) with

\[
\mathbf{P} = \frac{1}{2} \left[\mathbf{G}(\bar{\mu})^T \mathbf{Y}^{-1} \mathbf{A}_k + \mathbf{A}_k^T \mathbf{Y}^{-1} \mathbf{G}(\bar{\mu}) \right],
\]

\[
\mathbf{Q} = \mathbf{G}(\bar{\mu})^T \mathbf{Y}^{-1} \mathbf{G}(\bar{\mu}),
\]

where \((\mathbf{A}_k)_{ij} = \mathbf{A}_k(\phi_j, \phi_i) \). The extreme eigenvalues for the bounding boxes can be effectively approximated in a Krylov space \(\mathcal{K}(\mathbf{Q}^{-1} \mathbf{P}) \) (assuming the minimum
eigenvalue is negative and is far from the origin). The application of \(Q^{-1} \) is identical to the application of \(P^{-1} \) for the inf-sup calculation; the operation permits time marching.

The evaluation of the correction factor at an SCM control point \(\mu' \in M^{SCM} \), by (3.16) requires the minimum eigenvalue of \(Pw = \lambda Qw \) with

\[
P = \frac{1}{2} \left[G(\bar{\mu})^T Y^{-1} G(\mu') + G(\mu')^T Y^{-1} G(\bar{\mu}) \right],
\]

\[
Q = G(\bar{\mu})^T Y^{-1} G(\bar{\mu}).
\]

Effectively locating the minimum eigenvalue requires a Krylov space \(\mathcal{K}(QP^{-1}) \). Unfortunately, the application of \(P^{-1} \) cannot be performed in a time-marching manner in general. However, the eigenvalue of interest is one of the extreme eigenvalues, thus we have found that we can seek the eigenvalue in a Krylov space \(\mathcal{K}(Q^{-1}P) \), which allows for time-marching computation, and obtain a reasonable (albeit slower) convergence.

3.5. \(L^4 - \mathcal{X}_3 \) Sobolev embedding constant

The final piece required for the evaluation of the BRR error bound is the \(L^4 - \mathcal{X}_3 \) space-time Sobolev embedding constant, (3.10). To our knowledge, the embedding constant cannot be evaluated analytically due to the nonlinearity of the \(L^4 \) norm. However, a few numerical techniques for estimating the constant have been devised. Here, we employ the fixed point algorithm of Deparis [8] in the space-time context. We have found the algorithm converges more rapidly and reliably than the Newton-homotopy algorithm of Veroy and Patera [26]. For the purpose of relating numerical results to analysis, we restrict ourselves to a Cartesian-product domain, \(\Omega = \prod_{i=1}^{d} [0, L_i] \subset \mathbb{R}^d \) and take \(V = H_0^1(\Omega) \). However, the technique used here applies to arbitrary domains, and we expect properties of the \(L^4 - \mathcal{X}_3 \) space-time embedding constant observed for the particular case to be retained in more general cases.

First, we analyze a closely related linear problem: \(L^2 - \mathcal{X} \) embedding. A bound for the embedding constant can be found analytically using Fourier decomposition in space and time. (The technique is identical to that used in our previous work [28]; however, the temporal Fourier modes here are different as functions in \(\mathcal{X} \) do not vanish at \(t = 0 \).) The \(L^2 - \mathcal{X} \) constant is bounded by

\[
\rho_{L^2,\mathcal{X}} \equiv \sup_{w \in \mathcal{X}} \frac{\|w\|_{L^2(I; L^2(\Omega))}}{\|w\|_{\mathcal{X}}} \leq \left(\frac{\sup_{w \in \mathcal{X}} \|w\|_{L^2(I; L^2(\Omega))}^2}{\|w\|_{L^2(I; V)}^2 + \|w\|_{L^2(I; V')}^2} \right)^{1/2}
\]

\[
\leq \frac{1}{\pi \sqrt{\prod_{i=1}^{d} L_i}}.
\]

Note that the \(L^2 - \mathcal{X} \) embedding constant is bounded independent of the final time \(T \).

We now (computationally) demonstrate that the \(L^2 - \mathcal{X}_3 \) embedding constant for our \(\mathcal{X}_3 \) norm is largely independent of the final time \(T \) as well as the discretization resolution—both in space and time. To compute the embedding constant, we seek the maximum eigenvalue of a space-time eigenproblem: find \((w, \lambda) \in \mathcal{X}_3 \times \mathbb{R} \) such that

\[
(w, v)_{L^2(I; L^2(\Omega))} = \lambda (w, v)_{\mathcal{X}_3} \quad \forall v \in \mathcal{X}_3;
\]

we then evaluate the \(L^2 - \mathcal{X}_3 \) embedding constant, \(\rho_{L^2,\mathcal{X}_3} = \sqrt{\lambda_{\max}} \). Table 3.1(a) shows the variation in the embedding constant for several combinations of spatial
Variation in the L^2-X_3 and L^4-X_3 space-time Sobolev embedding constant with the space-time discretization and the final time T. The computation is carried out on the space-time domain $\Omega \times I \equiv ((0, 4) \times (0, 1)) \times (0, T)$ discretized by $|\mathcal{T}_h| = 2^2$ conforming finite elements in space and $K = 2$ DG elements in time. The results in (b) and (d) are obtained on the $|\mathcal{T}_h| = 32$ spatial mesh.

<table>
<thead>
<tr>
<th>(a) L^2-X_3 mesh dependence ($T = 1$)</th>
<th>(b) L^2-X_3 T-dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>0.3170</td>
</tr>
<tr>
<td>8</td>
<td>0.3170</td>
</tr>
<tr>
<td>16</td>
<td>0.3170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) L^4-X_3 mesh dependence ($T = 1$)</th>
<th>(d) L^4-X_3 T-dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>0.4820</td>
</tr>
<tr>
<td>8</td>
<td>0.4820</td>
</tr>
<tr>
<td>16</td>
<td>0.4820</td>
</tr>
</tbody>
</table>

and temporal discretizations for the final time $T = 1.0$. The result suggests that the embedding constant is only weakly dependent on both the spatial and temporal discretizations. Table 3.1(b) shows that the embedding constant is also only weakly dependent on the final time T; the constant exhibits less than 3% variation as T varies from 0.5 to 2.0. In particular, the L^2-X_3 embedding constant appears to be bounded by approximately 0.3, which is in good agreement with the (continuous) L^2-X embedding bound of approximately 0.2996 for this space-time domain, $\Omega \times I \equiv ((0, 4) \times (0, 1)) \times (0, 1)$.

In contrast, the Sobolev embedding constant for a space-time norm associated with the Crank–Nicolson scheme is (provably) weakly dependent on the final time T, and the supremizer of the embedding constant is also dependent on the number of time steps K.

We finally (computationally) demonstrate that the L^4-X_3 embedding constant is only weakly dependent on the final time T and the discretization resolution. We employ the fixed-point algorithm of Deparis [8] to estimate the embedding constant; here we briefly outline the algorithm. We first define an operator $z : X_3 \to L^4(I; L^4(\Omega))$ given by $z(w) = \|w\|_{L^4(I;L^4(\Omega))}^{-2}w^2$. We then introduce an eigenproblem: for a given $\xi \in X_3$, find $(w, \lambda) \in X_3 \times \mathbb{R}$ such that $\|w\|_{X_3} = 1$ and

\[
(3.32) \quad \int \int_{\Omega} z(\xi)w_iv_idxdt = \lambda_{\text{max}}(w, v)_{X_3} \quad \forall v \in X_3;
\]

we denote the maximum eigenvalue and the associated eigenfunction, parametrized by $z(\xi)$, by $\lambda_{\text{max}}(z(\xi))$ and $w_{\text{max}}(z(\xi))$, respectively. The L^4-X_3 supremizer, ξ^*, is the fixed point $\xi^* = w_{\text{max}}(z(\xi^*))$ and the embedding constant is $\rho = \sqrt{\lambda_{\text{max}}(z(\xi^*))}$. We thus have a fixed-point algorithm [8]: initialize $\xi^0 = 1$ and set $k = 0$; for $k \geq 1$, set $\xi^{k} = w_{\text{max}}(z(\xi^{k-1}))$ and $\lambda^{k} = \lambda_{\text{max}}(z(\xi^{k-1}))$. The computational results in Tables 3.1(c) and 3.1(d) show that the L^2-X_3 embedding constant is only weakly dependent on the discretization resolution and the final time, exhibiting less than 5% variation. The behavior implies that the embedding constant needs to be evaluated for a single final time. (We use $\rho = 0.51$ for all our later numerical results.)

We make a few comments as regards the computation of the embedding constant. The computation of the L^4-X_3 embedding constant by the fixed-point algorithm of Deparis [8] is computationally prohibitive.
Deparis [8] requires solution of a multiple eigenproblem of the form (3.32). An effective solution of the eigenproblem via a Krylov method requires the action of the inverse of the \(\mathcal{X}_\delta \) operator. (This requirement also applies to the \(L^2 \)-\(\mathcal{X}_\delta \) eigenproblem, (3.31).) Although the matrix \(\mathbf{X} \in \mathbb{R}^{N \times N} \) with \(\mathbf{X}_{ij} = (\phi_j, \phi_i)_{\mathcal{X}_\delta} \) (where \(\{\phi_i\}_{i=1}^N \) is a space-time finite element basis) is a block tridiagonal matrix, we can form a block bidiagonal decomposition and parameter sampling strategy employed in the offline stage. The algorithm is motivated by the following observations. First, we note that the (modified) natural norm SCM algorithm, which uses a fixed supremizing operator computed about the anchor point, provides positive inf-sup lower bounds only in the neighborhood of the anchor point; the bound becomes negative (and hence meaningless) if the linearized form evaluated at the anchor point is significantly different—due to the change either directly in the parameter \(\mu \) or indirectly in the linearization point \(u_N(\mu) \)—and the supremizing operator becomes ineffective. Second, the number of terms in the expansion of the linearized form considered in the SCM formulation depends on the dimension of the reduced basis space \(N \); in order to control the number of space-time eigenvalue problems in the offline stage and the size of the linear pro-

\[
\mathbf{X} = \mathbf{G}^T_{\text{heat}} \mathbf{Y}^{-1} \mathbf{G}_{\text{heat}} \quad \text{and} \quad \mathbf{X}^{-1} = \mathbf{G}^{-1}_{\text{heat}} \mathbf{Y} \mathbf{G}^T_{\text{heat}},
\]

where \(\mathbf{G}_{\text{heat},ij} = \mathcal{N}_\delta(\phi_j, \phi_i) + \mathcal{A}_0(\phi_j, \phi_i) + (\phi_j(\ell^0_n), \phi_i(\ell^0_n)) \). With the decomposition, the action of \(\mathbf{X}^{-1} \) can be computed in a time-marching manner without requiring a fully coupled space-time solve. Namely, we first perform the backward (adjoint) solve from the final time \((\mathbf{G}^{-T}_{\text{heat}}) \), apply \(\mathbf{Y} \), and then perform the linearized forward solve \((\mathbf{G}^{-1}_{\text{heat}}) \).

3.6. Output approximation and certification. Let \(\ell \in \mathcal{X}'_\delta \) be an output functional of interest. For simplicity we consider a linear output functional in this work; we refer to Deparis [8] for a treatment of quadratic functional outputs within a (space-only, not space-time) BRR framework.

For approximation, we appeal to the linearity of the functional and \(u_N(\mu) = \xi_k \alpha_{Nk}(\mu) \) to express the reduced basis output as

\[
\ell(u_N(\mu)) = \ell_N(\xi_k) \alpha_{Nk}(\mu). \]

In the offline stage, we compute \(\ell_N(\xi_k), k = 1, \ldots, N \); in the online stage, we evaluate the above expression.

For certification, we employ a simple error bound that does not require the solution of the dual problem. Namely, we construct our output error bound according to

\[
|\ell(u_\delta(\mu); \mu) - \ell(u_N(\mu); \mu)| = |\ell(e; \mu)| \leq \| \ell(\cdot; \mu) \|_{\mathcal{X}'_\delta} \| e(\mu) \|_{\mathcal{X}_\delta} \\
\leq \| \ell(\cdot; \mu) \|_{\mathcal{X}'_\delta} \Delta_N(\mu) \equiv \Delta_N^\ell(\mu),
\]

where we recall \(\| \ell(\cdot; \mu) \|_{\mathcal{X}'_\delta} = \sup_{w \in \mathcal{X}_\delta} \ell(w; \mu)/\| w \|_{\mathcal{X}_\delta} \) and \(\| \Delta_N(\mu) \| \) is the \(\mathcal{X}_\delta \)-norm BRR error bound defined in (3.9).

Remark 3.9. A primal-dual formulation would yield a sharper error bound; for its application within the BRR formulation, see, e.g., Veroy and Patera [26] and Deparis [8].

4. hp-adaptive sampling algorithm. We now describe an hp parameter-domain decomposition and parameter sampling strategy employed in the offline stage. The algorithm is motivated by the following observations. First, we note that the (modified) natural norm SCM algorithm, which uses a fixed supremizing operator computed about the anchor point, provides positive inf-sup lower bounds only in the neighborhood of the anchor point; the bound becomes negative (and hence meaningless) if the linearized form evaluated at the anchor point is significantly different—due to the change either directly in the parameter \(\mu \) or indirectly in the linearization point \(u_N(\mu) \)—and the supremizing operator becomes ineffective. Second, the number of terms in the expansion of the linearized form considered in the SCM formulation depends on the dimension of the reduced basis space \(N \); in order to control the number of space-time eigenvalue problems in the offline stage and the size of the linear pro-
gram in the online stage, it is advantageous to reduce the size of each reduced basis space. Third, the inability of the supremizer operator at an anchor point to produce a positive inf-sup constant at another parameter point indicates that the dynamics is in fact sufficiently different at the two parameter points; we thus conjecture that two different reduced basis spaces are required to efficiently approximate the two different dynamics. The above observations suggest an application of an \(hp \) parameter-domain decomposition.

We first present our algorithm for the construction of a certified reduced basis model over a single parameter domain in the neighborhood of the parameter sampling point \(\bar{\mu} \) that serves as the SCM anchor point. The inputs to the algorithm are

- \(\Xi \in [D]^{N_{\text{train}}} \), a set of \(N_{\text{train}} \) training points that sufficiently covers \(D \);
- \(\bar{\mu} \): parameter “anchor” point;
- \(\Delta^{\text{tol}} \in \mathbb{R}^+ \): error bound tolerance;
- \(\beta_{N,LB}^{\text{tol}} \in (0,1) \), \(\beta_{N,UB}^{\text{tol}} \in \mathbb{R}^+ \): threshold parameters.

The role of the threshold parameters will become clear shortly. The outputs of the algorithm are the following.

- \(\Xi_{\text{certified}}(\bar{\mu}) \subset \Xi \): a training set representation of the certified parameter region such that \(\Delta(\mu) \leq \Delta^{\text{tol}} \forall \mu \in \Xi_{\text{certified}}(\bar{\mu}) \).
- The (inner products of the) Riesz pieces for the Petrov–Galerkin reduced basis approximation by (3.4).
- The quantities required for the EIM-based residual dual norm evaluation by (3.14).
- The SCM pieces: inf-sup constant at the anchor point \(\beta_{N}(\bar{\mu}) \) defined by (3.15); the SCM bounding boxes \(B_{Q^a,N+q}^\bar{\mu}, q = 1, \ldots, Q^a \), defined by (3.20) and \(B_{(q-1)N+k}^\bar{\mu}, \mu, k = 1, \ldots, N, q = 1, \ldots, Q^c \), defined by (3.19); SCM control points \(M^{SCM} \subset \Xi \); and the inf-sup correction factors evaluated at the SCM control points \(\beta_{N}(\mu), \mu \in M^{SCM} \), defined by (3.16).

The algorithm for constructing a certified reduced basis model over a single \(hp \)-partition, from here on denoted as Algorithm 1, is summarized as follows.

1. Set \(\mu_1 = \bar{\mu} \), which serves as the SCM “anchor point”; set \(N = 1 \).
2. Obtain the finite element solution \(u_\mu(\bar{\mu}) \) by solving (2.10); normalize the solution and set \(\xi_1 = u_\mu(\bar{\mu})/\|u_\mu(\bar{\mu})\|_X \).
3. Compute the Riesz pieces and their inner products required for the Petrov–Galerkin reduced basis approximation.
4. Compute the quantities required for the EIM-based residual dual norm evaluation.
5. Compute the inf-sup constant at the anchor point, \(\beta_{N}(\bar{\mu}) \).
6. Construct SCM bounding boxes for the bilinear forms \(A_q(\xi_1,\cdot) \), \(B_{Q^c+q}^\beta, q = 1, \ldots, Q^a \), and that for the linearized quadratic form \(C_q(\cdot,\xi_1,\cdot), B_q^\beta \), \(q = 1, \ldots, Q^c \).
7. Obtain a reduced basis approximation and BRR certification for each \(\mu \in \Xi \): record the BRR normalized residual \(\tau_N(\mu) \), the error bound \(\Delta_N(\mu) \), the lower bound of the inf-sup correction factor \(\beta_{N,LB}^{\mu} \), and the upper bound of the inf-sup correction factor \(\beta_{N,UB}^{\mu} \) for each \(\mu \in \Xi \).
8. If \(\max_{\mu \in \Xi} \beta_{N,LB}^{\mu} > \beta_{N,LB}^{\text{tol}} \), \(\Delta_N(\mu < \Delta^{\text{tol}}) \), we are done with this subdomain; set \(\Xi_{\text{certified}}(\bar{\mu}) = \{ \mu \in \Xi : \beta_{N,LB}^{\mu} > \beta_{N,LB}^{\text{tol}} \} \) and terminate.
9. Within a set of points having the inf-sup lower bound above the tolerance (\(\beta_{N,LB}^{\mu} \geq \beta_{N,LB}^{\text{tol}} \)), choose the point with the maximum BRR nor-
malized residual, i.e., \(\mu_{N+1} = \arg \max_{\beta_N^{LB}(\mu) \geq \beta_N^{LB, tol}} \tau_N(\mu) \) (or \(\Delta_N^N(\mu) \)) if
\[\max_{\mu \in \Xi}(\tau_N(\mu)) < 1 \forall \mu \in \Xi; \text{ increment the size of the reduced basis set,} \]
\[N \leftarrow N + 1. \]
10. Compute the finite element solution \(u_\delta(\mu_N) \) and \(\mathcal{X}_\delta \) orthonormalize it with respect to \(\xi_1, \ldots, \xi_{N-1} \) to generate \(\xi_N \).
11. Update the Riesz pieces required for the Petrov–Galerkin projection and the variables required for residual dual norm evaluation.
12. Construct the SCM bounding box for \(C_q(\cdot, \xi_N, \cdot) \). \(B_{(q)}^{(N+1)} \), \(q = 1, \ldots, Q^c \).
13. If the SCM gap is sufficiently large in the sense that
\[
(\beta_{N-1}^{UB}(\mu_N) - \beta_{N-1}^{LB}(\mu_N))/\beta_{N-1}^{LB}(\mu_N) > \beta_{N}^{app, tol},
\]
then add \(\mu_N \) to the set of SCM control points \((M_{SCM}^{SCM} \leftarrow \{M_{SCM}^{SCM}, \mu_N\}) \) and compute the associated correction factor \(\beta_N^{UB}(\mu_N) \).
14. Update \(Z_{N+1}^{UB} \) to account for \(C \) linearized about \(\xi_N \).
15. Go to Step 7.

This algorithm constructs a certified reduced basis model in the neighborhood of the anchor point \(\bar{\mu} \). Note that we do not partition the parameter domain a priori: we initially apply the algorithm to the (full) training set \(\Xi \) associated with the (full) domain \(D \); we then, at the termination of the algorithm, obtain an implicitly defined subdomain based on the positivity (more precisely, threshold) constraint on the inf-sup lower bound. As the linearized form (and hence the inf-sup bound) changes with the number of reduced basis functions, the certified subdomain changes accordingly. The reduced basis snapshots are chosen in a greedy manner based on the subdomain definition at each iteration; due to the change in the subdomain with \(N \), a snapshot computed in the earlier stage could fall outside of the final subdomain.

To construct a set of certified reduced basis models that enable reduced basis approximation and certification over the entire parameter domain \(D \), we recursively use Algorithm 1. Namely, the algorithm, referred to as Algorithm 2, is summarized as follows.

1. Set \(\bar{\mu}_1 = \text{centroid}(D) \); set \(k = 1 \).
2. Execute Algorithm 1; Set the new working region \(\Xi \leftarrow \Xi \setminus \Xi_{\text{certified}}(\bar{\mu}_k) \).
3. If \(\Xi = \emptyset \), terminate.
4. Pick \(\bar{\mu}_{k+1} = \arg \min_{\mu \in \Xi} \beta_N^{LB}(\mu) \) with the lowest \(\beta_N^{LB}(\mu) \) prediction based on the SCM approximation over region \(k \); set \(k \leftarrow k + 1 \).
5. Go to Step 2.

In words, we first pick the centroid of the domain as the SCM anchor point and construct a reduced basis model which certifies the solution in the neighborhood of the point, \(\Xi_{\text{certified}}(\bar{\mu}_1) \); we then choose the next SCM anchor point to be the point with the smallest inf-sup lower bound and construct another reduced basis model about the point. Note that the size of each domain is implicitly defined by the positivity (more precisely, threshold) constraint on the inf-sup lower bound approximated by the SCM that uses a fixed supremizing operator; however, as noted in the beginning of the section, we conjecture that the \('hp\)-partitioning also facilitates construction of a more efficient reduced basis approximation for each parameter region.

In the online stage, given a parameter value \(\mu \), we evaluate the reduced basis approximation as follows.

1. Create an ordered set \((j_1, \ldots, j_J) \) such that \(\| \mu - \bar{\mu}_{j_1} \|_{L^2} , \ldots , \| \mu - \bar{\mu}_{j_J} \|_{L^2} \) is a nondecreasing sequence. Set \(k = 1 \).
2. Use the reduced basis model associated with the subdomain \(j_k \) (i.e., the subdomain with the \(k \)th nearest anchor point) to obtain \(u_N(\mu) \).
3. Compute the BRR error bound $\Delta_N(\mu)$:
- if $\Delta_N(\mu) \leq \Delta_t$, terminate;
- if $\Delta_N(\mu) > \Delta_t$ or $\beta_N^{\text{LB}}(\mu) \leq 0$ then set $k \leftarrow k + 1$ and go to 2.

In words, we first choose the reduced basis model associated with the nearest anchor point (in the Euclidean norm\(^7\)) to compute $u_N(\mu)$ and $\Delta_N(\mu)$. If the error bound evaluation fails due to a negative inf-sup lower bound or the error bound is greater than the desired tolerance, then we choose the reduced basis model associated with the next nearest anchor point. We repeat the process until the error bound evaluation succeeds; assuming the offline training set is sufficiently rich, the algorithm identifies the appropriate subdomain and terminates after a few iterations (typically one).

5. Numerical results.

5.1. Model problem: Laterally heated cavities. We assess the effectiveness of our space-time certified reduced formulation using a laterally heated cavity flow governed by the Boussinesq equations. The spatial domain of interest is $\Omega = [0, 4] \times [0, 1]$; the domain is normalized by its height h, and is characterized by the aspect ratio $a = 4$. The (normalized) Boussinesq equations in \mathbb{R}^2 are given by

\[
\frac{\partial w_1}{\partial t} + \sum_{j=1}^{2} \sqrt{\text{Gr}} \frac{\partial w_j w_1}{\partial x_j} + \sqrt{\text{Gr}} \frac{\partial p}{\partial x_1} - \sum_{j=1}^{2} \frac{\partial^2 w_1}{\partial x_j \partial x_j} = 0,
\]

\[
\frac{\partial w_2}{\partial t} + \sum_{j=1}^{2} \sqrt{\text{Gr}} \frac{\partial w_j w_2}{\partial x_j} + \sqrt{\text{Gr}} \frac{\partial p}{\partial x_2} - \sum_{j=1}^{2} \frac{\partial^2 w_2}{\partial x_j \partial x_j} - \sqrt{\text{Gr}} w_3 = 0,
\]

\[
\frac{\partial w_3}{\partial t} + \sum_{j=1}^{2} \sqrt{\text{Gr}} \frac{\partial w_j w_3}{\partial x_j} - \sum_{j=1}^{2} \frac{1}{\text{Pr}} \frac{\partial^2 w_3}{\partial x_j \partial x_j} = 0,
\]

where w_1 and w_2 are the velocities in the x_1 and x_2 directions, respectively, w_3 is the temperature, p is the pressure, $\text{Gr} \equiv qah^3g/\beta(k\nu^2)$ is the Grashof number, and $\text{Pr} \equiv \nu/\kappa$ is the Prandtl number. The scales used for time, length, velocity, pressure, and temperature are $t^* = \nu h^2/\nu$, $x^* = \sqrt{\text{Gr} \nu/\kappa}$, $w^* = h^2/\nu$, and qah/k, respectively.\(^8\) The fluid properties are viscosity ν, density ρ, conductivity k, thermal diffusivity κ, and thermal expansion coefficient β. The heat flux along Γ_2 is denoted by q, and the gravitational acceleration is g. The boundary conditions are given by

\[
w_1 = w_2 = 0 \quad \text{on } \partial \Omega,
\]

\[
w_3 = 0 \quad \text{on } \Gamma_1,
\]

\[
\frac{\partial w_3}{\partial n} = 0 \quad \text{on } \Gamma_3 \text{ and } \Gamma_4,
\]

\[
\frac{\partial w_3}{\partial n} = \frac{1}{a} \quad \text{on } \Gamma_2,
\]

where the boundaries are identified in Figure 5.1. The unsteady Boussinesq equations

\(^{7}\)A different norm may be employed if a better metric for defining the “closeness” of two parameters is known a priori.

\(^{8}\)This particular temperature scaling ensures that, for a given Grashof number, the flow behavior for the fixed-heat-flux case considered in this work is understood loosely in terms of the fixed-temperature-difference case that has been extensively studied by, for example, Gelfgat, Bar-Yoseph, and Yarin [11].
are integrated from $t = 0$ to $t = T = 0.5$. Because we employ the viscous time scale, $T = 0.5$ corresponds to many convective time units in a high Grashof number case.

We take the Grashof number as the parameter of interest and fix the Prandtl number at $Pr = 0.015$. In particular, we wish to estimate the change in the velocity and thermal field as a function of the Grashof number; the pressure is not of interest in this work. Finally, we choose the space-time average temperature on the right boundary as our output, i.e.,

\begin{equation}
\ell(w) = \frac{1}{T|\Gamma_2|} \int_I \int_{\Gamma_2} w_3 dx \, dt.
\end{equation}

We will shortly verify that this is a bounded functional in our space-time setting.

5.2. Variational formulation. To recast the Boussinesq equations in a weak form, we identify the function space V of the abstract formulation in section 2.1 with the space of temperature and divergence-free velocity, i.e.,

\[V \equiv \left\{ (w_1, w_2, w_3) \in [H^1_0(\Omega)]^2 \times H^1(\Omega) : \frac{\partial w_1}{\partial x_1} + \frac{\partial w_2}{\partial x_2} = 0, \, w_3|_{r_\omega} = 0 \right\}. \]

In particular, as our interest is in the approximation of the velocity field and the temperature field—and not the pressure field—we consider formulation in explicitly divergence-free space. We recast the parametrized Boussinesq equations in a general form of (2.2) by identifying the spatial forms as follows:

\begin{align*}
a_0(w, v) &= \int_{\Omega} \sum_{j=1}^{2} \left[\frac{\partial v_1}{\partial x_j} \frac{\partial w_1}{\partial x_j} + \frac{\partial v_2}{\partial x_j} \frac{\partial w_2}{\partial x_j} + \frac{1}{Pr} \frac{\partial v_3}{\partial x_j} \frac{\partial w_3}{\partial x_j} \right] dx, \quad \Theta^0_1(\mu) = 1, \\
a_1(w, v) &= \int_{\Omega} v_2 w_3 dx, \quad \Theta^1_1(\mu) = -\sqrt{\mu_1}, \\
c_1(w, z, v) &= -\frac{1}{2} \int_{\Omega} \sum_{i=1}^{3} \sum_{j=1}^{2} \frac{\partial v_i}{\partial x_j} (w_i z_j + z_i w_j) dx, \quad \Theta^2_1(\mu) = \sqrt{\mu_1},
\end{align*}

where $\mu_1 = Gr$ is the Grashof number. Note that $\Theta^i_1 : \mathcal{D} \to \mathbb{R}$ enters the continuity condition of the BRR error bound. The trilinear form is symmetric in the first two arguments and satisfies the boundedness assumption (2.3) with $C_c^1 = 1$, i.e.,

\[|c_1(w, z, v)| = \left| \frac{1}{2} \int_{\Omega} \sum_{i=1}^{3} \sum_{j=1}^{2} \frac{\partial v_i}{\partial x_j} (w_i z_j + z_i w_j) dx \right| \leq \|w\|_{L^4(\Omega)} \|z\|_{L^4(\Omega)} \|v\|_V, \]
where the $L^4(\Omega)$ norm for the vector field is as specified in section 2.1. Thus, the above weak formulation of the Boussinesq equations conforms to the abstract formulation of section 2.1.

The dual norm of the output functional (5.1) is bounded by

$$
\|\ell\|_{X'}^2 = \sup_{w \in X} \frac{\left(\frac{1}{T|\Gamma_2|} \int_{\Gamma_2} w_3 dx \right)^2}{\|w\|^2_{X_3}} \leq \sup_{w \in X} \frac{1}{T|\Gamma_2|} \frac{1}{T|\Gamma_2|} \int_{\Omega} \int_{\Gamma_2} \nabla w_3 \cdot \nabla w_3 dx \, dt = \frac{4\text{Pr}}{T|\Gamma_2|},
$$

where the inequality follows from $\|w\|^2_{X_3} \geq \|w\|^2_{L^2(T;V)} \geq \frac{1}{T^2} \|w_3\|^2_{L^2(1;H^1(\Omega))}$ and the last equality follows from recognizing the supremizer is $w_1 = w_2 = 0$, $w_3 = x$ (and its scalar multiples). For the particular laterally heated flows of interest, the upper bound of the dual norm evaluates to $\|\ell\|_{X'} \approx 0.3464$.

5.3. Finite element discretization.

We use \mathbb{P}^2-\mathbb{P}^1 Taylor–Hood elements for our finite element approximation. Namely, our discrete spatial approximation space is

$$
V_h = \left\{ w \in V : w|_\kappa \in [\mathbb{P}^2(\kappa)]^3, \kappa \in T_h, \int_{\Omega} \nabla \cdot wq dx, \forall q \in Q_N \right\},
$$

where $Q_N = \{ q \in Q : q|_\kappa \in [\mathbb{P}^1(\kappa)], \kappa \in T_h, \int_{\Omega} q dx = 0 \}$. Conceptually, it is straightforward to consider the divergence-free space for the evaluation of the finite element solution and the associated reduced basis pieces: the dual norm of the residual, the inf-sup constant, and the Sobolev embedding constant. Of course, in practice, we impose the divergence-free condition using Lagrange multipliers; the computational detail is summarized in Appendix A. The finite element discretization contains approximately 8,300 spatial degrees of freedom. We employ the \mathbb{P}^2 discontinuous Galerkin discretization for temporal integration with $K = 32$ time steps. Thus, the total number of space-time degrees of freedom for our finite element discretization is $N \approx 800,000$.

5.4. Results.

We assess the ability of our space-time certified reduced basis formulation to approximate and certify the solution of the laterally heated cavity flow as the Grashof number is varied from 1 to 150,000. The flow behaviors for the Grashof numbers of 6,000, 100,000, and 150,000 are depicted in Figure 5.2. For each case, the figure shows streamlines and isotherms at the final time ($t = T$) as well as the velocity history at $(x, y) = (1.25, 0.73)$. At the Grashof number of 6,000, the flow exhibits little nonlinear behavior, as is evident from straight and equispaced isotherms in Figure 5.2(a). At the Grashof number of 100,000, convection plays an important role in characterizing the flow, as shown in Figure 5.2(b); this is evident from the characteristic “S” shape in the isotherms. However, the flow reaches steady state after the initial transient. At the Grashof number of 150,000, the flow exhibits steady-periodic behavior, as shown in Figure 5.2(c).

For purposes of comparison, we note that the classical time-marching $L^2(\Omega)$ error bound [19, 16] is inadequate for the certification of the flow considered in this work. The parameter that dictates the growth of the time-marching $L^2(\Omega)$ error bound is the stability constant

$$
\omega(t) = \inf_{v \in V_h} \frac{a_0(v, v) + 2 \sum_{q=1}^{Q^u} a_q(v, v; \mu) + 4 \sum_{q=1}^{Q^c} c_q(v, u_\delta(t), v; \mu)}{\|v\|^2_{L^2(\Omega)}},
$$

it can be shown that, in the limit of $\Delta t \to 0$ by considering the continuous evolu-

\footnote{The constant slightly differs from that in [16] due to the difference in the trilinear forms.}
Fig. 5.2. Streamlines at \(t = T \) (top left), isotherms at \(t = T \) (bottom left), and velocity history at \((x, y) = (1.25, 0.73)\) (right) for three different values of the Grashof number. The streamlines correspond to evenly divided stream function values within each figure, and the isotherms are in increments of 0.05.

The stability constant \(\omega \) associated with the steady-state solutions is invariant in time; however, the analysis readily extends to a nonstationary \(\omega \).

To simplify the expression for the bound, we consider a case in which the stability factor \(\omega \) is invariant in time; however, the analysis readily extends to a nonstationary \(\omega \).
of the $\text{Gr} = 20,000$, $30,000$, and $40,000$ flows are, respectively, $\omega \approx -48$, -380, and -1300; the associated amplification factors for $T = 0.5$ are $\omega^{-1}(-\exp(-\omega T) + 1) \approx 5 \times 10^8$, 10^7, and 10^{284}. We observe that even if the residual is small, the classical time-marching $L^2(\Omega)$ error bounds would be too pessimistic to be meaningful for $\text{Gr} \geq 30,000$; thus, we will not consider the classical time-marching formulation in this work.

We now study the behavior of the space-time reduced basis approximation and the associated space-time error bounds. We apply the hp-adaptive sampling algorithm to the flow of interest. The algorithm parameters are set as follows: the training set Ξ is a set of 1,000 points equidistributed over $D \equiv [1, 150,000]$; SCM sampling parameters are $\beta^\text{LB, tol}_N = 0.25$ and $\beta^\text{exp, tol}_N = 0.25$; and the target error tolerance is $\Delta^\text{tol} = 0.01$.

Figure 5.3 shows the result of applying the space-time certified reduced basis method to the laterally heated cavity flow. The hp-adaptive reduced basis yields 25 partitions; the reduced basis dimension for each partition varies from three to six, as shown in Figure 5.3(a), and the total of 125 reduced basis functions span the entire parameter space. The reduced basis sample points are marked by circles. Note that our space-time formulation requires a large number of finite element offline solves to cover the parameter domain, as the formulation only generates one reduced basis snapshot from each offline solve. This is unlike in the POD-Greedy approximation, in which a large number of spatial snapshots (and hence a large reduced basis space) may be generated from a single offline solve of the evolution equation.

Figure 5.3(b) shows the behavior of the inf-sup lower bound over the parameter domain. We observe a rapid decay of the inf-sup lower bound away from each anchor point, especially in the high Grashof number regime; the decay suggests significant variations in the space-time dynamics induced by a small change in the parameter. For this reason, a relatively large number of SCM anchor points (and hence small partitions) are used to maintain positive inf-sup lower bounds over the entire parameter domain.

Figure 5.3(c) shows the variation in the X_3 error bound with the parameter. Note that while the target X_3 error for the reduced-order model is 0.01, the actual error bound is driven to a much lower value. This is precisely due to the limitation noted in Remark 3.6: the BRR error bound cannot certify a low-fidelity reduced basis approximation that does not meet the residual criterion (3.8). For example, for the worst case of $\text{Gr} = 150,000$, the constants in (3.11) of Remark 3.6 evaluate to $\beta^\text{LB}_N \approx 0.0121$, $\Theta^*_C \approx 387$, $C^*_C = 1$, and $\rho = 0.5$. This yields the maximum certifiable error of approximately 6.25×10^{-5}, which is significantly smaller than the target error of 0.01. Nevertheless, the space-time formulation provides a certified reduced basis approximation of a high Grashof number ($\text{Gr} = 150,000$) flow that exhibits limited stability, a marked contrast to the classical time-marching $L^2(\Omega)$ error bound that becomes meaningless for a Grashof number over 30,000.

Figure 5.3(d) shows the variation in the time-integrated average temperature on the right boundary and associated error bound with the Grashof number. As the convection effect becomes more dominant, the temperature decreases for the constant heat-flux configuration considered. Note that the output error bound is very tight; recall that the output error bound is approximately 0.3464 times the X_3 error bound shown in Figure 5.3(c).

\[\text{As noted in section 4, a reduced basis sampling point sometimes falls outside of the final subdomain with which it is associated; this is due the change in the subdomain, which is implicitly defined by the positive (more precisely, threshold) inf-sup constraint, with } N.\]
Last, let us make a few comments regarding the offline and online computational performance of the certified reduced basis method.12 For the $\text{Gr} = 150,000$ case, the solution of the finite element discretization with $N \approx 800,000$ degrees of freedom requires about 520 seconds. The certified reduced basis method requires, in the online stage, about 0.016 seconds to generate a reduced basis approximation and an associated error bound of less than 10^{-5} in the X_δ-norm; the rapid computation in the online stage is due to the space-time formulation whose online cost is independent of the number of time steps. On the other hand, the space-time formulation requires a significant computational effort in the offline stage, as the method requires not only a large number (in this particular case 125) truth solves but also computation of various space-time eigenproblems that, even with the time-marching procedures described in section 3.4.2, are still computationally intensive.

\textbf{6. Conclusions.} We considered a certified reduced basis method for long-time integration of parametrized PDEs with quadratic nonlinearity that exhibit limited

12The research code developed in this work is a hybrid of MATLAB and C (via mex) and is not optimized for computational performance. However, we believe the relative speedup achieved by the certified reduced basis method here is indicative of the relative speedup that would be observed in comparing optimized finite element and reduced basis codes.
stability (noncoercive). We incorporated several new components into the previous work on space-time certification [25, 28]: a DG-in-time discretization and the associated norms that provide favorable stability properties; an hp Petrov–Galerkin reduced basis approximation that offers guaranteed stability; a variant of the natural norm SCM with considerations for the nonlinear equation and an associated efficient space-time computational strategy; and an hp sampling strategy for the nonlinear equation with limited stability. We applied the method to the unsteady Boussinesq equations that exhibit qualitatively different responses as the Grashof number increases: from a Stokes-like smooth transition to a steady-periodic response. We demonstrated that rigorous long-time a posteriori error bounds are possible for unstable hydrodynamic systems—systems that could not be certified with the classical time-marching $L^2(\Omega)$ error bounds; the method is able to rigorously confirm that changes in flow regime are not the result of an overly truncated low-order model, which is a demonstrated danger in a reduced-order approximation of unsteady flows [7].

We have however observed a number of limitations of the space-time formulation; we now reiterate these points and propose future work. First, the space-time approach requires a large offline computational effort due to the small dimension of the reduced basis space constructed from a single truth solve compared to, say, the POD-Greedy approach; future work will consider incorporation of a POD-Greedy approximation within the space-time certification framework, in particular, as regards the inf-sup (lower bound) calculation. Second, the BRR formulation, while providing rigorous bounds for nonlinear equations, places a very stringent requirement on the size of the normalized residual; while this limitation might be difficult to mitigate from a purely computational perspective, we will consider if in particular target applications—for example an estimation or controls—this effect can be mitigated through the incorporation of data. Lastly, we note that the substantial offline cost prohibits the treatment of significant variations in many parameters; however, an interpretation of the space-time variational formulation [27] provides a framework to demonstrate stability with respect to (very) small disturbances of potentially high dimensionality (for example, in initial conditions): the interpretation relies on BRR and the space-time inf-sup (and the associated computational strategy) introduced in this work.

Appendix A. Computation in divergence-free space. In this appendix, we present details regarding computation in the divergence-free space approximated by P^2-P^1 Taylor–Hood elements (5.2). As our objective is to illustrate the divergence-free aspect of the computational procedure, we consider the Stokes equations: find $u \in \mathcal{X}$ such that

$$
\partial \mathcal{G}(u, v) = \mathcal{M}_s(u, v) + \mathcal{A}(u, v) = \mathcal{F}(v) \quad \forall v \in \mathcal{Y};
$$

the extension to the multiparameter Boussinesq equations is straightforward.

Let $\{\chi_j\}_{j=1}^{n_v}$ be a (vector valued) P^2 spatial basis for the velocity field and $\{v_j\}_{j=1}^{n_p}$ be a P^1 spatial basis for the pressure field. The spatial velocity mass matrix $m_s \in \mathbb{R}^{n_v \times n_v}$, the velocity Laplacian matrix $a \in \mathbb{R}^{n_v \times n_v}$, the divergence-free constraint matrix $b \in \mathbb{R}^{n_v \times n_p}$, and the load vector $f \in \mathbb{R}^{n_v}$ are given by

$$
m_{s,ij} \equiv (\chi_j, \chi_i)_{L^2(\Omega)}, \quad a_{ij} \equiv a(\chi_j, \chi_i) = \int_{\Omega} \frac{\partial \chi_j}{\partial x_k} \frac{\partial \chi_i}{\partial x_k} dx,
$$

$$
b_{ij} \equiv b(v_j, \chi_i) = -\int_{\Omega} \frac{\partial \chi_i}{\partial x_i} v_j dx, \quad f_i \equiv f(\chi_i).
$$
We then introduce \((n_u + n_p) \times (n_u + n_p)\) expanded spatial matrices and a \((n_u + n_p)\) expanded vector

\[
\tilde{m}_s \equiv \begin{bmatrix} m & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{a} \equiv \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{b} \equiv \begin{bmatrix} 0 & b \\ b^T & 0 \end{bmatrix}, \quad \text{and} \quad \tilde{f} = \begin{bmatrix} f \\ 0 \end{bmatrix}.
\]

Note that \(\tilde{a} + \tilde{b}\) is the standard saddle-point matrix associated with the steady-state discretization of the Stokes equations by the Taylor–Hood elements.

Let \(\{\sigma_j\}_{j=1}^{n_t}\), \(n_t \equiv (p + 1)K\), be a temporal DG basis. The temporal mass matrix \(m_t \in \mathbb{R}^{n_t \times n_t}\), the evolution matrix \(\dot{m}_t \in \mathbb{R}^{n_t \times n_t}\), and the initial condition matrix \(m_{t_0} \in \mathbb{R}^{n_t \times n_t}\) are given by

\[
m_{t,ij} = \int_I \sigma^i(t)\sigma^j(t)dt, \\
\dot{m}_{t,ij} = \sum_{k=1}^{K} \int_{I_k} \sigma^i(t)\frac{\partial\sigma^j(t)}{\partial t}dt + \sum_{k=1}^{K-1} \sigma^i(t_k^+)(\sigma^j(t_k^+) - \sigma^j(t_k^-)), \\
m_{t_0,ij} = \sigma^i(t_0^+)\sigma^j(t_0^-).
\]

These matrices may be tensorized to emphasize their block structures; for instance, by introducing reference elemental basis \(\{\xi_j\}_{j=1}^{p+1}\), by forming a \((p + 1) \times (p + 1)\) reference elemental matrix \(m_{e,ij} \equiv \int_0^1 \xi_i(t)\xi_j(t)dt\), and by introducing a diagonal scaling matrix \(d_t = \text{diag}(\Delta t^1, \ldots, \Delta t^K) \in \mathbb{R}^K\), we have \(m_t = d_t \otimes m_e\). While we take advantage of this tensorization in our implementation, for notational simplicity, we will not use the tensorized form for the presentation here.

We now introduce the “forward” space-time operator associated with the bilinear form \(\tilde{G}\) that acts on the velocity-pressure space

\[
\tilde{G} = m_t \otimes \dot{m}_s + m_t \otimes \tilde{a} + m_{t_0} \otimes \tilde{m}_s.
\]

The corresponding “inverse” operator that appropriately enforces the divergence-free constraint is

\[
\tilde{G}_c^{-1} = (\tilde{G} + m_t \otimes \tilde{b})^{-1}.
\]

Then, the space-time finite element coefficient vector \(\tilde{u} \in \mathbb{R}^{K(p+1)(n_u+n_p)}\) such that \(u(t,x) = \tilde{u}_i^k(t)\chi_i(x)\) and \(p(t,x) = \tilde{u}_{i(n_u+n_p)}^k(t)\chi_i(x)\) is the solution of

\[
\tilde{G}_c\tilde{u} = \tilde{F},
\]

where the load vector is given by \(\tilde{F} = m_t \otimes \tilde{f}\). Note that \(\tilde{f}\) (and hence \(\tilde{F}\)) has zeros for the entries corresponding to the continuity equation and \(\tilde{b}\) (and hence \(m_t \otimes \tilde{b}\)) has the divergence operator for the entries corresponding to the continuity equation; together, they enforce the divergence-free constraint. We emphasize that \(\tilde{G}_c\) operates on the velocity-pressure space (i.e., the velocity-Lagrange-multiplier space) of the dimension \(\mathbb{R}^{K(p+1)(n_u+n_p)}\) and is different from the operator \(G\) in sections 3.4.2 and 3.5 that operates on the divergence-free space; however, the application of \(\tilde{G}_c^{-1}\) onto a vector with zeros for the continuity equation produces the result of applying \(G^{-1}\) in the divergence-free space.
Similarly, all the action of the Y, Y^{-1}, X, and X^{-1} operators that appear in sections 3.4.2 and 3.5 are accomplished by using the following expanded velocity-pressure matrices:

$$
\begin{align*}
\tilde{Y} &= m_t \otimes \bar{a} + m_t \otimes \bar{m}_s, \quad \tilde{Y}^{-1} = (\tilde{Y} + m_t \otimes \bar{b})^{-1}, \\
\tilde{X} &= \tilde{G}_{\text{heat}}^T \tilde{Y}_{\text{heat}}^{-1} \tilde{G}_{\text{heat}}, \quad \tilde{X}_{\text{e}}^{-1} = (\tilde{G}_{\text{heat}} + m_t \otimes \bar{b})^{-1} \tilde{Y} (\tilde{G}_{\text{heat}} + m_t \otimes \bar{b})^{-T}.
\end{align*}
$$

For instance, we may express the inf-sup eigenproblem (3.28) using the space-time expanded matrices: Find $(\tilde{w}, \lambda) \in \mathbb{R}^{n_e+n_p} \times \mathbb{R}$ such that

$$
\tilde{G}_{\text{e}} \tilde{Y}_{\text{e}}^{-1} \tilde{G}_{\text{e}} \tilde{w} = \lambda \tilde{X} \tilde{w}.
$$

The generation of an effective Krylov space for the minimum eigenvalue is accomplished by $\tilde{v} \leftarrow G_{\text{e}}^{-1} \tilde{Y} G_{\text{e}}^{-T} \tilde{X} \tilde{v}$; the resulting Krylov space is clearly divergence free. (Alternatively, $\tilde{v} \leftarrow G_{\text{e}}^{-1} \tilde{Y} G_{\text{e}}^{-T} \tilde{X} \tilde{v}$ can be used. Up to rounding errors, the two velocity spaces are identical; however, the pressure approximations are different (which does not affect the inf-sup constant in our context).)

Appendix B. List of variables. Table B.1 provides a list of select variables used in this work and their short descriptions. Not all variables are listed; the list is limited to those variables that appear across multiple subsections and in particular those used in the description of the hp-adaptive sampling algorithm in section 4.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{e}</td>
<td>reduced basis training points</td>
</tr>
<tr>
<td>N</td>
<td>dimension of the space-time reduced basis space</td>
</tr>
<tr>
<td>$u_\delta(\mu)$</td>
<td>finite element approximation</td>
</tr>
<tr>
<td>$u_\delta(\mu)$</td>
<td>reduced basis approximation</td>
</tr>
<tr>
<td>$\beta_N(\mu)$</td>
<td>inf-sup constant for $\partial G(\cdot, u_N(\cdot), \cdot, \cdot)$</td>
</tr>
<tr>
<td>$\beta_{LB}(\mu)$</td>
<td>a lower bound of $\beta_N(\mu)$</td>
</tr>
<tr>
<td>$\beta_m^{\mu}(\mu)$</td>
<td>inf-sup constant correction factor about μ</td>
</tr>
<tr>
<td>$\beta_{LB}^{\mu}(\mu)$, $\beta_{UB}^{\mu}(\mu)$</td>
<td>a lower/upper bound of $\beta_{LB}^{\mu}(\mu)$</td>
</tr>
<tr>
<td>μ</td>
<td>SCM anchor point</td>
</tr>
<tr>
<td>μ_{SCM}</td>
<td>SCM bounding box</td>
</tr>
<tr>
<td>μ_{SCM}</td>
<td>SCM control points</td>
</tr>
<tr>
<td>Z_{LB}^{μ}, Z_{UB}^{μ}</td>
<td>SCM set for evaluation of $\beta_{LB}^{\mu}(\mu)$, $\beta_{UB}^{\mu}(\mu)$</td>
</tr>
<tr>
<td>$\beta_{LB}^{\mu, \text{c}}$, $\beta_{UB}^{\mu, \text{c}}$</td>
<td>SCM threshold parameters</td>
</tr>
<tr>
<td>$\epsilon(\mu)$</td>
<td>residual dual norm</td>
</tr>
<tr>
<td>$\gamma_N(\mu)$</td>
<td>continuity constant for the trilinear form \mathcal{C}</td>
</tr>
<tr>
<td>ρ</td>
<td>$L^1(I; L^1(\Omega))$-Sobolev embedding constant</td>
</tr>
<tr>
<td>$\tau_N(\mu)$</td>
<td>BRR normalized residual</td>
</tr>
<tr>
<td>$\Delta_N(\mu)$</td>
<td>error bound</td>
</tr>
<tr>
<td>Δ_{tol}</td>
<td>error bound tolerance</td>
</tr>
</tbody>
</table>
Acknowledgments. I would like to thank Prof. Anthony Patera for the insightful discussions and many contributions throughout the development of this work. I would also like to thank Prof. Karsten Urban for initiating this research project in space-time approximation and error estimation. I would also like to thank Prof. Yvon Maday for his helpful comments on L^2-\mathcal{X} and L^∞-\mathcal{X} embedding.

REFERENCES

