Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.physletb.2012.12.020</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier B.V.</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Mar 30 15:19:40 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/88414</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-4.0 Unported</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses

MiniBooNE Collaboration

A.A. Aguilar-Arevalo\(^{a}\), C.E. Anderson\(^{s}\), A.O. Bazarko\(^{p}\), S.J. Brice\(^{h}\), B.C. Brown\(^{l}\), L. Bugel\(^{m}\), J. Cao\(^{o}\), L. Coney\(^{i,j}\), J.M. Conrad\(^{m}\), D.C. Cox\(^{j}\), A. Curioni\(^{s}\), R. Dharmapalan\(^{d}\), Z. Djuric\(^{b}\), D.A. Finley\(^{h}\), B.T. Fleming\(^{a}\), R. Ford\(^{h}\), F.G. Garcia\(^{h}\), G.T. Garvey\(^{k}\), J. Grange\(^{i}\), C. Green\(^{h,k}\), J.A. Green\(^{j,k}\), T.L. Hart\(^{e}\), E. Hawker\(^{d,k}\), W. Huelnsnitz\(^{k}\), R. Imlay\(^{l}\), R.A. Johnson\(^{d}\), G. Karagiorgi\(^{m}\), P. Kasper\(^{h}\), T. Katori\(^{j,m,\ast,2}\), T. Kobilarcik\(^{h}\), I. Kourbanis\(^{s}\), S. Koutsoliouti\(^{s}\), E.M. Laird\(^{p}\), S.K. Linden\(^{s}\), J.M. Link\(^{f}\), Y. Liu\(^{o}\), Y. Liu\(^{o}\), W.C. Louis\(^{k}\), K.B.M. Mahn\(^{f}\), W. Marsh\(^{h}\), C. Mauger\(^{k}\), V.T. McGary\(^{m}\), G. McGregor\(^{k}\), W. Metcalf\(^{f}\), P.D. Meyers\(^{p}\), F. Mills\(^{h}\), G.B. Mills\(^{k}\), J. Monroe\(^{f}\), C.D. Moore\(^{h}\), J. Mousseau\(^{i}\), R.H. Nelson\(^{e}\), P. Nienaber\(^{q}\), J.A. Nowak\(^{1}\), B. Osmanov\(^{1}\), S. Ouedraogo\(^{1}\), R.B. Patterson\(^{p}\), Z. Pavlovic\(^{k}\), D. Perevalov\(^{s,h}\), C.C. Polly\(^{h}\), E. Prebys\(^{h}\), J.L. Raaf\(^{d}\), H. Ray\(^{i}\), B.P. Roe\(^{o}\), A.D. Russell\(^{h}\), V. Sandberg\(^{k}\), R. Schirako\(^{k}\), D. Schmitz\(^{h}\), M.H. Shaevitz\(^{f}\), F.C. Shoemaker\(^{h,3}\), D. Smith\(^{g}\), M. Soderberg\(^{s}\), M. Sorel\(^{f,4}\), P. Spentzouris\(^{h}\), J. Spitz\(^{s}\), I. Stancu\(^{d}\), R.J. Stefanski\(^{h}\), H. Sung\(^{l}\), H.A. Tanaka\(^{p}\), R. Tayloe\(^{j}\), M. Tzanov\(^{i}\), R.G. Van de Water\(^{k}\), M.O. Wascko\(^{1,5}\), D.H. White\(^{k}\), M.J. Wilking\(^{e}\), H.J. Yang\(^{o}\), G.P. Zeller\(^{h}\), E.D. Zimmerman\(^{e}\)

\(^{a}\) University of Alabama, Tuscaloosa, AL 35487, USA
\(^{b}\) Argonne National Laboratory, Argonne, IL 60439, USA
\(^{c}\) Bucknell University, Lewisburg, PA 17837, USA
\(^{d}\) University of Cincinnati, Cincinnati, OH 45221, USA
\(^{e}\) University of Colorado, Boulder, CO 80309, USA
\(^{f}\) Columbia University, New York, NY 10027, USA
\(^{g}\) Embry Riddle Aeronautical University, Prescott, AZ 86301, USA
\(^{h}\) Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
\(^{i}\) University of Florida, Gainesville, FL 32611, USA
\(^{j}\) Indiana University, Bloomington, IN 47405, USA
\(^{k}\) Los Alamos National Laboratory, Los Alamos, NM 87545, USA
\(^{l}\) Louisiana State University, Baton Rouge, LA 70803, USA
\(^{m}\) Massachusetts Institute of Technology, Cambridge, MA 02139, USA
\(^{n}\) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, D.F. 04510, Mexico
\(^{o}\) University of Michigan, Ann Arbor, MI 48109, USA
\(^{p}\) Princeton University, Princeton, NJ 08544, USA
\(^{q}\) Saint Mary’s University of Minnesota, Winona, MN 55987, USA
\(^{r}\) Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
\(^{s}\) Yale University, New Haven, CT 06520, USA

A R T I C L E I N F O

Article history:
Received 26 August 2012
Received in revised form 6 November 2012
Accepted 8 December 2012
Available online 10 December 2012
Editor: T. Yanagida

Keywords:
MiniBooNE

A B S T R A C T

The sidereal time dependence of MiniBooNE ν_e and $\bar{\nu}_e$ appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov–Smirnov (K–S) test shows both the ν_e and $\bar{\nu}_e$ appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the ν_e appearance data prefer a sidereal time-independent solution, and the $\bar{\nu}_e$ appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10^{-20} GeV are placed on combinations of SME coefficients. These

* Corresponding author at: Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Tel.: +1 630 840 4759; fax: +1 630 840 6520.
E-mail address: katori@fnal.gov (T. Katori).

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.12.030
1. Introduction to Lorentz violation

Violation of Lorentz invariance and CPT symmetry is a predicted phenomenon of Planck-scale physics, especially with a spontaneous violation [1], and it does not require any modifications in quantum field theory or general relativity. Since neutrino oscillation experiments are natural interferometers, they can serve as sensitive probes of spacetime structure. Thus, neutrino oscillations have the potential to provide the first experimental evidence for Lorentz and CPT violation through evidence of oscillations that deviate from the standard L/E dependence [2], or that show sidereal time-dependent oscillations as a consequence of a preferred direction in the universe [3].

In this Letter, we test the MiniBooNE νμ → νe and ν̅μ → ν̅e oscillation data [4, 5] for the presence of a Lorentz violation signal. Similar analyses have been performed in other oscillation experiments, including LSND [6], MINOS [7], and IceCube [8]. Naively, experiments with longer baselines and higher energy neutrinos would be expected to have better sensitivity to Lorentz violation because small Lorentz-violating terms are more prominent at high energy, where neutrino mass terms are negligible. However, some Lorentz-violating neutrino oscillation models mimic the standard massive neutrino oscillation energy dependence [9]. Then, in this case, the signal may only be seen in sidereal variations of oscillation experiments.

2. MiniBooNE experiment

MiniBooNE is a νμ (ν̅e) appearance short baseline neutrino oscillation experiment at Fermilab. Neutrinos are created by the Booster Neutrino Beamline (BNB), which produces a 93% (83%) pure νμ (ν̅μ) beam in neutrino (anti-neutrino) mode, determined by the polarity of the magnetic focusing horn. The MiniBooNE Cherenkov detector, a 12.2 m diameter sphere filled with mineral oil, is used to detect charged particles from neutrino interactions and is located 541 m from the neutrino production target. It is equipped with 1280 8 inch PMTs in an optically separated inner volume and 240 8 inch veto PMTs in an outer veto region. Details of the detector and the BNB can be found elsewhere [10, 11]. Charged leptons created by neutrino interactions in the detector produce Cherenkov photons, which are used to reconstruct charged particle tracks [12]. The measured angle and kinetic energy of the charged leptons are used to reconstruct the neutrino energy, E_{QE}^ν, for each event, under the assumption that the target nucleus is at rest inside the nucleus and the interaction type is charged current.

For this analysis, we use the background and error estimates from [14] (neutrino mode) and [15] (anti-neutrino mode). For neutrino mode, data from 6.46 × 10^{20} protons on target (POT) are used. An excess in the “low-energy” region (200 < E_{QE}^ν (MeV) < 475) was observed, with 544 events reported as compared to the prediction, 409.8 ± 23.3(stat.) ± 38.3(syst.). Interestingly, this excess does not show the expected L/E energy dependence of a simple two massive neutrino oscillation model. Additionally, it is not consistent with the energy region expected for the “LSND” signal [16]. For the anti-neutrino mode analysis (5.66 × 10^{20} POT), MiniBooNE observed a small excess in the low-energy region, and an excess in the region 475 < E_{QE}^ν (MeV) < 1300. The excess in this “high-energy” region is found to be consistent with the LSND signal, assuming a two massive neutrino hypothesis, but remains statistically marginal. In the “combined” region (200 < E_{QE}^ν (MeV) < 1300), MiniBooNE observed 241 νe candidate events as compared to the prediction, 200.7 ± 15.5(stat.) ± 14.3(syst.).

Although the conflict between MiniBooNE neutrino and anti-neutrino mode results can be resolved in models without CPT violation [17], CPT violation is a viable option. Since CPT violation necessarily implies violation of Lorentz invariance within interactive quantum field theory [18], we are in a well-motivated position to search for Lorentz and CPT violation using the MiniBooNE data. In fact, proposed models motivated by Lorentz violation [19, 20] can already accommodate world data including the MiniBooNE and LSND excesses with a small number of free parameters. Evidence for sidereal variation in the MiniBooNE excesses would provide a distinctive direct signal of Lorentz violation.

3. Analysis

We use the SME formalism for the general search for Lorentz violation [21]. The SME is an effective quantum field theory and the minimum extension of the Standard Model including particle Lorentz and CPT violation [21]. A variety of data have been analyzed under this formalism [22], including neutrino oscillations [6–8]. In the SME formalism for neutrinos, the evolution of a neutrino can be described by an effective Hamiltonian [3],

\[
\hat{h}_{\text{eff}}^{\nu} \sim \frac{1}{E} \left[(a_L)_{\mu}^\nu p_\mu - (c_L)_{\mu}^{\nu\mu} p_\mu p_\nu \right].
\]

Here, E and p_μ are the energy and the four-momentum of a neutrino, and (a_L)_{\mu}^\nu and (c_L)_{\mu}^{\nu\mu} are CPT-odd and CPT-even SME coefficients in the flavor basis. Under the assumption that the baseline is short compared to the oscillation length [23], the νμ → νe oscillation probability takes the form,

\[
P \sim \frac{L^2}{(hc)^2} \left| (C)_{\nu_\mu} + (A)_{\nu_\mu} \sin \omega_{\alpha\beta} T_\oplus + (A)_{\nu_\mu} \cos \omega_{\alpha\beta} T_\oplus \right|^2 + \left| (B)_{\nu_\mu} \sin 2\omega_{\alpha\beta} T_\oplus + (B)_{\nu_\mu} \cos 2\omega_{\alpha\beta} T_\oplus \right|^2.
\]

This probability function is a sidereal time, T_\oplus. Four parameters (A)_{\nu_\mu}, (A)_{\nu_\mu}, (B)_{\nu_\mu}, and (B)_{\nu_\mu} are sidereal time dependent, and (C)_{\nu_\mu} is a sidereal time-independent parameter. We use a baseline distance of L = 522.6 m, where the average pion decay length is subtracted from the distance between the neutrino production target and detector. And \omega_{\alpha\beta} is the sidereal time angular frequency described shortly. These parameters are expressed in terms of SME coefficients and directional factors [23]. The same formula describes the ν̅μ → ν̅e oscillation probability by switching the signs of the CPT-odd SME coefficients. We neglect the standard neutrino mass term, m_{\nu_\mu}^2/E ≪ 10^{-20} GeV, which is well below our sensitivity, discussed later.

For this analysis, we convert the standard GPS time stamp for each event to local solar time (period 86,400.0 s) and sidereal time (period 86,164.1 s). We then define the local solar time angular
The amplitude is negligible in both neutrino and anti-neutrino mode data taking periods. The CCQE data are from our high statistics CCQE samples (Fig. 1). These variation of detector and BNB systematics are important. To evaluate the impact of this variation on our measurement sample [24] composed of 146,070 events (5 × 10^{20} POT) and our anti-neutrino data. It turns out the correction only has a negligible effect.

For the analysis by correcting POT variation event by event in time distribution. We evaluate the impact of this variation on our analysis by correcting POT variation event by event in νe (νe) candidate data. It turns out the correction only has a negligible effect. Thus we decide to use unweighted events. This also simplifies the analysis. We follow the standard convention with a Sun-centered coordinate system [6]. We choose a time-zero of 58 min after the autumnal equinox of 2002 (September 23, 04:55 GMT), so that this serves not only as the sidereal time-zero, but also as the solar time-zero since Fermilab is on the midnight point at this time. The local coordinates of the BNB are specified by three angles [23], colatitude χ = 48.2°, polar angle θ = 89.8°, and azimuthal angle φ = 180.0°.

The same variation in local solar time is observed in the POT for both neutrino and anti-neutrino mode data taking periods. Therefore, the POT variation is the dominant time-dependent systematic error. The amplitude is negligible in νCCQE sidereal time distribution; however, it persists in ~3% variations in νCCQE sidereal time distribution. We evaluate the impact of this variation on our analysis by correcting POT variation event by event in ν (ν) candidate data. It turns out the correction only has a negligible effect. Thus we decide to use unweighted events. This also simplifies the analysis. We follow the standard convention with a Sun-centered coordinate system [6]. We choose a time-zero of 58 min after the autumnal equinox of 2002 (September 23, 04:55 GMT), so that this serves not only as the sidereal time-zero, but also as the solar time-zero since Fermilab is on the midnight point at this time. The local coordinates of the BNB are specified by three angles [23], colatitude χ = 48.2°, polar angle θ = 89.8°, and azimuthal angle φ = 180.0°.

Figs. 2 and 3 show the νe and νe oscillation candidates’ sidereal time distributions both with and without the POT correction. These plots verify that time-dependent systematics are negligible in this analysis.

To check for a general deviation from a flat distribution (null sidereal variation hypothesis), we perform an unbinned K–S test [26] as a statistical null hypothesis test for both the νCCQE and νCCQE samples. The K–S test is suitable in our case because it is sensitive to runs in distributions, which may be a characteristic feature of the sidereal time-dependent hypothesis. Table 1 gives the result. The K–S test is applied to the low-energy, high-energy, and combined regions, for both neutrino and anti-neutrino mode data. To investigate the time-dependent systematics, we also apply the K–S test to the local solar time distribution. The tests shows none of the twelve samples has less than 5% compatibility (∼2σ), which we chose as a benchmark prior to the analysis. Hence, all samples are compatible with the null sidereal variation hypothesis. Interestingly, the sidereal time distributions tend to show lower compatibility with a flat hypothesis, but not by a statistically significant amount. These results indicate that any sidereal variation extracted from our data, discussed below, is not expected to be statistically significant.

To fit the data with the sidereal time-dependent model, we use a generalized unbinned maximum likelihood method [27]. This method finds the best fit (BF) model parameters by fitting data with a log likelihood function, t. It is suitable for our analysis because this method has the highest statistical power for a low statistics sample. In this method, the log likelihood function t is...
constructed by adding ℓ_i from each event. After dropping all constants, ℓ_i has the following expression,

$$
\ell_i = -\frac{1}{N} (\mu_s + \mu_b) + \ln [\mu_s F_s + \mu_b F_b] - \frac{1}{2N} \left(\frac{\mu_b - \bar{\mu}_b}{\sigma_b} \right)^2.
$$

Here, N is the number of observed candidate events; μ_s is the predicted number of signal events, which is given by the time integral of Eq. (2) together with the estimated efficiency; μ_b is the predicted number of background events; F_s is the probability density function (PDF) for the signal and is a function of sidereal...
time and the fitting parameters (Eq. (2) with proper normalization); \mathcal{F}_b is the PDF for the background; σ_b is the 1σ error on the predicted background; and μ_b is the central value of the predicted total background events. Two sources contribute equally to the background: intrinsic beam background and mis-identification (mainly π^0s). Their total variation is assigned as the systematic error. Since the five-parameter fit is quantitatively inconsistent with the sensitivity of this experiment. We estimate our sensitivity to the limited case. First, a 2σ threshold is set from this $\Delta \chi^2$ distribution. Then, time-dependent amplitudes were incrementally increased in the model until the 2σ threshold was exceeded. When we assume $\langle C \rangle_{\nu e} \neq 0$ and $\langle A_{\nu e} \rangle_{\mu} = (\langle A \rangle_{\nu e})_{\mu} \neq 0$, the 2σ discovery threshold of sidereal time-dependent amplitudes from $\nu_e(\nu_e)$ candidate data statistics are 0.8(1.1)$\times 10^{-20}$ GeV.

Fig. 3 shows the analogous fit results for the anti-neutrino mode combined energy region. Due to lower statistics, the combined region is used rather than dividing the data into two subsets. Unlike the neutrino mode low-energy region, the $\langle C \rangle_{\nu e}$ parameter no longer significantly deviates from zero. The fit to anti-neutrino data favors a nonzero solution for the $\langle A \rangle_{\nu e}$ and $\langle A \rangle_{\mu}$ parameters at the nearly 2σ level. Performing the same $\Delta \chi^2$ test as is outlined above results in only 3.0% of the random distributions from the $\nu_e(\nu_e)$ candidate events having a $\Delta \chi^2$ value exceeding the value observed for the data. Note that this is consistent with the 8% compatibility with a flat hypothesis found with the K–S test (Table 1).

Table 2 shows fit parameters for the neutrino mode low-energy region and anti-neutrino mode combined region. All errors are estimated from 1σ contours of parameter space projections. Errors are asymmetric, but we choose the larger excursions as the symmetric errors for simplicity. The 2σ contours provide the limits. In principle, these fit parameters are complex numbers. Here, all parameters are assumed to be real.

A naive estimation from Table 2 indicates possible SME coefficients to satisfy the MiniBooNE data are of order 10^{-20} GeV (CPT-odd) and 10^{-28} to 10^{-13} (CPT-even). However, these SME coefficients are too small to produce a visible effect for LSND [6]. On the other hand, any SME coefficients extracted from LSND [6] predict too large of a signal for MiniBooNE. Therefore, a simple picture using Lorentz violation to explain both data sets leaves some tension, and a mechanism to cancel the Lorentz-violating effect at high energy [3,19,20] is needed.

The limit on each SME coefficient can be extracted from Table 2 by assuming all SME coefficients to be zero, except one. This process ignores correlations and somewhat ambiguous but is widely accepted in the community. In this way, our limits on
sidereal time-dependent SME coefficients \((a_L)^{X}_{\nu e}, (a_L)^{Y}_{\nu e}, (c_L)^{X}_{\nu e}, (c_L)^{Y}_{\nu e}, (c_L)^{XZ}_{\nu e}, (c_L)^{YZ}_{\nu e}\) are weaker than the MINOS near detector analysis [28]; however, we can set the first limits on sidereal time-independent coefficients \((a_L)^{T}_{\nu e} < 4 \times 10^{-20} \text{ GeV}, (a_L)^{Z}_{\nu e} < 6 \times 10^{-20} \text{ GeV}, (c_L)^{TT}_{\nu e} < 1 \times 10^{-19}, (c_L)^{TZ}_{\nu e} < 8 \times 10^{-20}, (c_L)^{ZZ}_{\nu e} < 3 \times 10^{-19}\).

5. Summary

In summary, we performed a sidereal time variation analysis for MiniBooNE \(\nu_e\) and \(\bar{\nu}_e\) appearance candidate data. For the neutrino mode low-energy region, K-S test statistics indicate the null hypothesis is compatible at the 13% level, and the relative improvement in the likelihood between the null hypothesis and the three-parameter fit occurs 6.9% of the time in random distributions from a null hypothesis. Analysis of the combined energy region in anti-neutrino mode results in a K–S test that indicates 8% compatibility with the null hypothesis; however, the relative improvement in the likelihood between the null hypothesis and the three-parameter fit only occurs 3.0% of the time in random distributions from a null hypothesis. The limits of fit parameters, \(10^{-20} \text{ GeV}\), are consistent with Planck-scale suppressed physics. This is the first sidereal variation test for an anti-neutrino beam of \(\sim 1 \text{ GeV}\) energy and \(\sim 500 \text{ m}\) base line. These limits are currently the best limits on the sidereal time-independent \((a_L)^{X}_{\nu e}\) and \((c_L)^{T}_{\nu e}\) SME coefficients. These limits can be significantly improved by long baseline \(\nu_e (\bar{\nu}_e\) appearance experiments, such as T2K [29] and NOvA [30].

Acknowledgements

This work was conducted with support from Fermilab, the US Department of Energy, the National Science Foundation, and the Indiana University Center for Spacetime Symmetries.

References