Synthesis and Properties of the 5,10,15-Trimesityltruxen-5-yl Radical

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Frantz, Derik K., Joseph J. Walish, and Timothy M. Swager. “Synthesis and Properties of the 5,10,15-Trimesityltruxen-5-yl Radical.” Org. Lett. 15, no. 18 (September 20, 2013): 4782–4785.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ol402153w</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Mar 31 14:15:18 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/88525</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Synthesis and Properties of the 5,10,15-Trimesityltruxen-5-yl Radical
Synthesis and Properties of the 5,10,15-Trimesityltruxen-5-yl Radical

Derik K. Frantz, Joseph J. Walish, and Timothy M. Swager*

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
tswager@mit.edu

Received Date (will be automatically inserted after manuscript is accepted)

ABSTRACT

The synthesis of a long-lived, truxene-based radical that is highly delocalized and exhibits a narrow EPR absorption is reported. The radical is stable for multiple hours in a solution exposed to air and remains for months in the solid state under inert gas. Characterization and properties are discussed.

Dynamic nuclear polarization (DNP) is a promising technique to dramatically increase sensitivity in NMR experiments. In a contemporary DNP experiment, the large polarization of a stable radical’s unpaired electron is transferred to proximal nuclei via µ-wave electron–nuclear transitions. Enhancements in nuclear polarization could theoretically reach values approaching the quotient of the gyromagnetic ratios of an electron and the nucleus of interest ($\gamma_e/\gamma_{1H} \approx 660$; $\gamma_e/\gamma_{13C} \approx 2600$). Radicals with narrow EPR absorptions efficiently participate in the solid effect (SE)-DNP mechanism. At present, derivatives of triphenylmethyl (trityl) and 1,3-bisdiphenylene-2-phenylallyl (BDPA) are the only readily available radicals whose EPR absorptions are sufficiently narrow to support SE-DNP. Mixtures of narrow-line radicals whose EPR signals are separated by the Larmor frequency of a nucleus are expected to induce remarkable polarization of that nucleus via the cross effect (CE)-DNP mechanism. CE is a two electron–one nucleus spin-flip process that tends to affect DNP more efficiently than SE at high magnetic fields.

recently demonstrated DNP with a mixture of these radicals achieved 13C-NMR signal enhancements of over 600.8 The success of C-centered, delocalized radicals in promoting DNP through both SE and CE mechanisms served as motivation for investigating new structures for the generation of novel, narrow-line radicals.

We targeted 5,10,15-triaryltribenzo[a,f,k]trindene-5-yl (1) as a potentially stable radical system. This structure could feature highly delocalized spin density shared primarily by quaternary C-atoms, a condition that could offer narrow EPR linewidths. Structure 1 contains an indeno[1,2-a]fluorene (2) unit, fully π-delocalized derivatives of which have yet to be realized synthetically.9 A flurry of recent work by Haley, Tobe, and coworkers has yielded stable derivatives of the [2,1-b],10 [1,2-b],10 [2,1-a],11 and [2,1-c]12 isomers, each of which have fascinating electronic and optical properties.

Truxene-5,10,15-trione (3), envisioned as a synthetic intermediate to 1, was prepared by aldol trimerization13 of 1,3-indanedione following a literature procedure14 (Scheme 1). Addition of mesityllithium to trione 3 afforded triol 4, which was isolated entirely as the syn, C$_3$-symmetric stereoisomer. Though it is unclear if the anti diastereomer is formed and removed in purification, it is noteworthy that Eschevarren and coworkers also observe the C$_3$ tris-adduct exclusively after addition of 9-fluorenlylithium to 3.15 In an attempt to form either radical 1 or a tribenzoindene derivative that could be synthetically transformed to 1, triol 4 was treated with SnCl$_2$ and HCl in CH$_3$Cl$_2$, conditions for reductive aromatization reactions.16 The result was the formation of a bright green material that could be purified by silica column chromatography.

Solution-phase EPR revealed that the green material is a radical with a narrow absorbance and no clear hyperfine couplings.17 High resolution ESI-MS (positive mode) spectra of the radical showed a cation with the formula C$_{54}$H$_{74}$+, corresponding to the ionized form of 5,10,15-trimesityltruxen-5-yl (5). The radical’s IR spectrum shows no discernable O–H vibrations, which are clearly observable in the IR spectrum of triol 4, suggesting that no alcohol groups remain in the radical. This conclusion is corroborated by the radical’s high Rf value (0.83) on a silica TLC plate with 1:1 CH$_3$Cl$_2$–hexane as the eluent. Triol 4, like many organic alcohols, remains on the baseline of a TLC plate eluted with this solvent system.

13 For an overview of aldol cyclic trimerizations to triannulated benzene derivatives, see Amick, A. W.; Scott, L. T. J. Org. Chem. 2007, 72, 3412.

14 Broglioli, F.; Fabris, F.; De Lucchi, O. Synlett, 1994, 761.

17 See Figure S6 in Supporting Information file for solution-phase EPR spectrum of 5.
The acidic reduction of 4 must introduce two C–H bonds at the 10- and 15-positions for 5 to be the correct structure of the radical. Accordingly, substituting DCl/D$_2$O for HCl/H$_2$O should yield doubly deuterated radical 5-D-D. This reaction was carried out and ESI-MS (positive mode) analysis of the products showed peaks corresponding to doubly and singly deuterated derivatives of 5 in a 74:26 (D,D to H,D) ratio, indicating 87% total deuteration of the 10- and 15-positions (Figure 1). The prevalence of 5-D,D and the absence of species with more than two deuteriums confirms that two C–H/D bonds are formed in the reaction and strongly suggests that 5 is the structure of the non-deuterated radical. The compound may exist as syn and anti diastereomers, depending on the relative configurations of the newly introduced H-atoms.

We propose that the mechanism of the reaction from 4 to 5 may involve a series of cation formation/reduction steps through short-lived indeno[1,2-a]fluorene-containing intermediates, including radical 1 (Scheme 2). These quinoidal species are likely basic and may be protonated by HCl to form cations that are stabilized by conjugation to localized benzene rings. The cations then undergo single-electron reduction to radical species and the process repeats until 5 is formed. This mechanistic proposal accounts for yields above 50% for radical 5, whereas a sequence of cation formation–reduction–protonation steps at each methanetriyl group would be expected to afford the diamagnetic trihydride as the major product.

DFT calculations (6-31G*) of radical 5 reveal that spin density is delocalized throughout the truxene core (Figure 2). A large proportion of the radical’s spin density (31%) is located at C(5) and significant spin is shared by alternating sp3-hybridized C atoms extending from C(5). The aromatic ring of the mesityl group lies roughly perpendicular to the truxene system and bears only a small amount of spin density (0.9%). The structure shown is the anti diastereomer, which was found to be less than 0.3 kcal/mol lower in energy than the syn diastereomer. Spin density distribution is almost identical in both configurations (see SI for additional information).

The high-field (140 GHz) EPR spectrum of radical 5 exhibits a narrow absorbance at roughly the same frequency as SA-BDPA (Figure 3). The linewidth at half-height of the radical’s maximum 140 GHz EPR absorption is 1.368 mT, broader than that of SA-BDPA (1.028 mT) and narrower than that of trityl OX063 (1.770 mT). The electron T$_1$ relaxation time of 5, measured through a saturation recovery experiment at 4994.75 mT, was determined to be 7.3 ms (see Figure S7 in SI), an intermediate value compared to BDPA (55.9 ms) and Trityl OX063 (1.28 ms).
Cyclic voltammetry (CV, all values reported vs. Ag/AgNO₃) reveals that 5 undergoes one reversible oxidation (E₁/₂ = 0.27 V) and one reversible reduction (E₁/₂ = −1.01 V) (Figure 4A). Using the Fc/Fc⁺ couple (E₁/₂ = 0.21 V) as a standard, the SOMO energy was found to lie at −4.81 eV compared to the vacuum level. Filling the SOMO requires 1.00 eV based on the difference in onset potentials of the oxidation and reduction peaks. The absorption spectrum of 5 is complicated and exhibits nonzero absorbance at all visible wavelengths, with the weakest visible absorbance appearing in the green region, spanning 515–550 nm (Figure 4B). No absorbance is observed in the range 900–1100 nm. The large number of peaks in the spectrum may be attributable to increased vibronic structure as a result of structural rigidity and/or the presence of two diastereomers. The broad absorption band over the range 550–880 nm likely corresponds to the D₀→D₁ transition. If this is the case, the D₀→D₁ transition in 5 (λₘₐₓ = 626 nm, ε = 2,720) is blue-shifted and more strongly absorbing than the same transition in BDPA (λₘₐₓ = 859 nm, ε = 1,580).³¹

A kinetic experiment provided insight into the stability of radical 5 in a solution exposed to ambient oxygen. A solution of 5 in CH₂Cl₂ (4 × 10⁻⁵ mol/L) was exposed to air and absorption spectra were measured every several hours until only a negligible amount of 5 remained (Figure 5A). Before each measurement, CH₂Cl₂ was added to a mark on the cuvette to replace the solvent lost by evaporation and to keep the total concentration of the solute roughly consistent. The value for absorbance (Abs) at the peak at 403 nm was used to monitor the disappearance of 5 over time; however, the value does not reach zero, as the oxidized product(s) continue to absorb at this wavelength. The value Abs*, which is equal to Abs – 0.080 (0.080 being the extrapolated value for Abs after complete oxidation of 5), clearly follows pseudo-first-order exponential decay kinetics. It is assumed that the rate of diffusion of oxygen into the solution is much faster than the rate of reaction between oxygen and the radical. From the kinetic plots, we determine kₐ₀ of the reaction to be roughly ~0.12 h⁻¹ and the half-life (t₁/₂) of the radical under these conditions to be roughly ~5.8 h. The ESI-TOF-MS spectrum of the oxidized material after 26.5 h showed a major peak at 711 m/z, which corresponds to [5²⁺O]⁺ and confirms that oxygen is incorporated into the structure. It is noteworthy that 5 remains for months when properly stored under inert conditions in the solid state.

²⁰ The peak of the Fc/Fc⁺ couple, which overlaps with the oxidation peak of 5, was used as an internal standard vs. the reduction peak of 5. See Supplementary Information for details.

In conclusion, we have synthesized a long-lived, truxene-based radical that exhibits an EPR resonance that should be sufficiently narrow to enable DNP by the SE mechanism. Current work is focused on developing derivatives that are both stable in the presence of oxygen and soluble in water/glycerol mixtures amenable to DNP experiments.

Acknowledgement. We thank Prof. Robert G. Griffin and Dr. Jennifer Mathies (Francis Bitter Magnet Laboratory, MIT) for assistance with the high-field EPR measurement. D.K.F. expresses deep gratitude to the Swiss National Science Foundation for a postdoctoral fellowship. Financial support for this research was provided by the National Institutes of Health GM095843.

Supporting Information Available. Experimental procedures, full characterization and spectral data for new compounds, Cartesian coordinates for calculated structures. This material is available free of charge via the Internet at http://pubs.acs.org.