Observation of Photon Polarization in the b → s Transition

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Observation of Photon Polarization in the $b \to s\gamma$ Transition

R. Aaij et al. (LHCb Collaboration)

(Received 27 February 2014; published 22 April 2014)

This Letter presents a study of the flavor-changing neutral current radiative $B^\pm \to K^\mp \pi^\mp \pi^\pm \gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at 7 and 8 TeV center-of-mass energies. In this sample, corresponding to an integrated luminosity of 3 fb$^{-1}$, nearly 14 000 signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^\mp \pi^\mp \pi^\pm$ final state in the [1.1, 1.9] GeV/$c^2$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^\mp \pi^\pm \pi^\mp$ mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \to s\gamma$ transition is reported with a significance of 5.2σ.

DOI: 10.1103/PhysRevLett.112.161801

PACS numbers: 13.20.He, 12.15.Mm, 14.40.Nd

The standard model (SM) predicts that the photon emitted from the electroweak penguin loop in $b \to s\gamma$ transitions is predominantly left-handed, since the recoiling $s$ quark that couples to a $W$ boson is left-handed. This implies maximal parity violation up to small corrections of the order $m_s/m_b$. While the measured inclusive $b \to s\gamma$ rate [1] agrees with the SM calculations, no direct evidence exists for a nonzero photon polarization in this type of decay. Several extensions of the SM [2], compatible with all current measurements, predict that the photon acquires a significant right-handed component, in particular, due to the exchange of a heavy fermion in the penguin loop [3].

This Letter presents a study of the radiative decay $B^+ \to K^+ \pi^- \pi^\pm \gamma$, previously observed at the $B$ factories with a measured branching fraction of $(27.6 \pm 2.2) \times 10^{-6}$ [1,4,5]. The inclusion of charge-conjugate processes is implied throughout. Information about the photon polarization is obtained from the angular distribution of the photon direction with respect to the normal to the plane defined by the momenta of the three final-state hadrons in their center-of-mass frame. The shape of this distribution, including the up-down asymmetry between the number of events with the photon on either side of the plane, is determined. This investigation is conceptually similar to the historical experiment that discovered parity violation by measuring the up-down asymmetry of the direction of a particle emitted in a weak decay with respect to an axial vector [6]. In $B^+ \to K^+ \pi^- \pi^\pm \gamma$ decays, the up-down asymmetry is proportional to the photon polarization $\lambda_\gamma$ [7,8] and therefore measuring a value different from zero corresponds to demonstrating that the photon is polarized. The currently limited knowledge of the structure of the $K^\mp \pi^\mp \pi^\pm$ mass spectrum, which includes interfering kaon resonances, prevents the translation of a measured asymmetry into an actual value for $\lambda_\gamma$.

The differential $B^+ \to K^+ \pi^- \pi^\pm \gamma$ decay rate can be described in terms of $\theta$, defined in the rest frame of the final state hadrons as the angle between the direction opposite to the photon momentum $\vec{p}_\gamma$ and the normal $\vec{p}_{\pi,\text{slow}} \times \vec{p}_{\pi,\text{fast}}$ to the $K^+ \pi^- \pi^\pm$ plane, where $\vec{p}_{\pi,\text{slow}}$ and $\vec{p}_{\pi,\text{fast}}$ correspond to the momenta of the lower and higher momentum pions, respectively. Following the notation and developments of Ref. [7], the differential decay rate of $B^+ \to K^+ \pi^- \pi^\pm \gamma$ can be written as a fourth-order polynomial in $\cos \theta$

$$\frac{d\Gamma}{dsds_{13}ds_{23}d\cos \theta} \propto \sum_{i=0,2,4} a_i(s,s_{13},s_{23}) \cos^i \theta + \lambda_\gamma \sum_{j=1,3} a_j(s,s_{13},s_{23}) \cos^j \theta, \quad (1)$$

where $s_{ij} = (p_i + p_j)^2$ and $s = (p_1 + p_2 + p_3)^2$, and $p_1$, $p_2$, and $p_3$ are the four-momenta of the $\pi^-$, $\pi^+$, and $K^+$ mesons, respectively. The functions $a_i$ depend on the resonances present in the $K^+K^-\pi^\mp$ mass range of interest and their interferences. The up-down asymmetry is defined as

$$A_{ud} = \frac{\int_{-1}^0 d\cos \theta \frac{d\Gamma}{d\cos \theta} - \int_{-1}^0 d\cos \theta \frac{d\Gamma}{d\cos \theta}}{\int_{-1}^1 d\cos \theta \frac{d\Gamma}{d\cos \theta}}, \quad (2)$$

which is proportional to $\lambda_\gamma$.

The LHCb detector [9] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing $b$ or $c$ quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the

---

The authors of the article extend their gratitude to the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system provides a momentum measurement with relative uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20 μm for tracks with a few GeV/c of transverse momentum (p_T). Different types of charged hadrons are distinguished by information from two ring-imaging Cherenkov detectors. Photon, electron, and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter, and a hadronic calorimeter. The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Samples of simulated events are used to understand signal and backgrounds. In the simulation, pp collisions are generated using PYTHIA [10] with a specific LHCb configuration [11]. Decays of hadronic particles are described by EVTGEN [12], in which final state radiation from other tracks in the event is ensured by requiring that the cosine of the angle between the reconstructed B+ momentum and the vector pointing from the PV to the B+ decay vertex; the flight distance of the B+ meson, and the K+π−π+ vertex χ^2.

The mass distribution of the selected B+ → K+π−π+γ signal is modeled with a double-tailed Crystal Ball [18] probability density function (PDF), with power-law tails above and below the B mass. The four tail parameters are fixed from simulation; the width of the signal peak is fit separately for the 2011 and 2012 data to account for differences in calorimeter calibration. Combinatorial and partially reconstructed backgrounds are considered in the fit, the former modeled with an exponential PDF, the latter described using an ARGUS PDF [19] convolved with a Gaussian function with the same width as the signal to account for the photon energy resolution. The contribution to the partially reconstructed background from events with only one missing pion is considered separately.

The fit of the mass distribution of the selected B+ → K+π−π+γ candidates (Fig. 1) returns a total signal yield of 13876 ± 153 events, the largest sample recorded for this channel to date. Figure 2 shows the background-subtracted K+π−π+ mass spectrum determined using the technique of Ref. [20], after constraining the B to its nominal value. No peak other than that of the K_1(1270)^+ resonance can be clearly identified. Many kaon resonances, with various masses, spins, and angular momenta, are expected to contribute and interfere in the considered mass range [1].

The contributions from single resonances cannot be isolated because of the complicated structure of the

![mass distribution](image-url) FIG. 1 (color online). Mass distribution of the selected B+ → K+π−π+γ candidates. The blue solid curve shows the fit result as the sum of the following components: signal (red solid), combinatorial background (green dotted), missing pion background (black dashed), and other partially reconstructed backgrounds (purple dash-dotted).
with a fourth-order polynomial function normalized to

\[ \hat{\cos} \theta = \frac{1}{2} \left( \frac{\cos \theta}{1 + \cos^2 \theta} \right) \]

the corresponding coefficient. Using Eqs. (1) and (3) the up-down asymmetry defined in Eq. (2) can be expressed as

\[ A_{ud} = c_1 - \frac{c_3}{4} \]  

As a cross-check, the up-down asymmetry in each mass interval is also determined with a counting method, rather than an angular fit, as well as considering separately the \( B^+ \) and \( B^- \) candidates. All these checks yield compatible results.

The results obtained from a \( \chi^2 \) fit of the normalized binned angular distribution, performed taking into account the full covariance matrix of the bin contents and all of the systematic uncertainties, are summarized in Table I. These systematic uncertainties account for the effect of choosing a different fit model, the impact of the limited size of the simulated samples on the fixed parameters, and the possibility of some events migrating from a bin to its neighbor because of the detector resolution, which gives the dominant contribution. The systematic uncertainty associated with the fit model is determined by performing the mass fit using several alternative PDFs, while the other two are estimated with simulated pseudoexperiments. Such uncertainties, despite being of the same size as the statistical uncertainty, do not substantially affect the fit results since they are strongly correlated across all angular bins.

The fitted distributions in the four \( K^+\pi^+\pi^- \) mass intervals of interest are shown in Fig. 3. In order to illustrate the effect of the up-down asymmetry, the results of another fit imposing \( c_1 = c_3 = 0 \), hence forbidding the terms that carry the \( \lambda_\gamma \) dependence, are overlaid for comparison.

The combined significance of the observed up-down asymmetries is determined from a \( \chi^2 \) test where the null hypothesis is defined as \( \lambda_\gamma = 0 \), implying that the up-down asymmetry is expected to be zero in each mass interval. The corresponding \( \chi^2 \) distribution has 4 degrees of freedom, and the observed value corresponds to a \( p \) value of \( 1.7 \times 10^{-7} \). This translates into a 5.2\( \sigma \) significance for nonzero up-down asymmetry. Up-down asymmetries can be computed also for an alternative definition of the photon

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\hline
\( c_1 \) & 6.3 \pm 1.7 & 5.4 \pm 2.0 & 4.3 \pm 1.9 & -4.6 \pm 1.8 \\
\( c_2 \) & 31.6 \pm 2.2 & 27.0 \pm 2.6 & 43.1 \pm 2.3 & 28.0 \pm 2.3 \\
\( c_3 \) & -2.1 \pm 2.6 & 2.0 \pm 3.1 & -5.2 \pm 2.8 & -0.6 \pm 2.7 \\
\( c_4 \) & 3.0 \pm 3.0 & 6.8 \pm 3.6 & 8.1 \pm 3.1 & -6.2 \pm 3.2 \\
\hline
\end{tabular}
\caption{Legendre coefficients obtained from fits to the normalized background-subtracted \( \cos \theta \) distribution in the four \( K^+\pi^+\pi^- \) mass intervals of interest. The up-down asymmetries are obtained from Eq. (4). The quoted uncertainties contain statistical and systematic contributions. The \( K^+\pi^+\pi^- \) mass ranges are indicated in GeV/c\(^2\) and all the parameters are expressed in units of \( 10^{-2} \). The covariance matrices are given in Ref. [22].}
\end{table}
angle, obtained using the normal $\vec{p}_x \times$ $\vec{p}_y$, instead of $\vec{p}_{x,\text{slow}} \times$ $\vec{p}_{x,\text{fast}}$. The obtained values, along with the relative fit coefficients, are listed in Table II.

To summarize, a study of the inclusive flavor-changing neutral current radiative $B^+ \rightarrow K^+\pi^-\pi^+\gamma$ decay, with the $K^+\pi^-\pi^+$ mass in the [1.1, 1.9] GeV/c² range, is performed on a data sample corresponding to an integrated luminosity of 3 fb⁻¹ collected in $pp$ collisions at 7 and 8 TeV center-of-mass energies by the LHCb detector. A total of 13876 ± 153 signal events is observed. The shape of the angular distribution of the photon with respect to the plane defined by the three final-state hadrons in their rest frame is determined in four intervals of interest in the $K^+\pi^-\pi^+$ mass spectrum. The up-down asymmetry, which is proportional to the photon polarization, is measured for the first time for each of these $K^+\pi^-\pi^+$ mass intervals. The first observation of a parity-violating photon polarization different from zero at the 5.2σ significance level in $b \rightarrow s\gamma$ transitions is reported. The shape of the photon angular distribution in each bin, as well as the values for the up-down asymmetry, may be used, if theoretical predictions become available, to determine for the first time a value for the photon polarization, and thus constrain the effects of physics beyond the SM in the $b \rightarrow s\gamma$ sector.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF, and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MENES, Rosatom, RFBR, and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal, and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted towards the communities behind the multiple open source software packages we depend on. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia).


1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3 Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Plácnc-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Milano, Milano, Italy
22 Sezione INFN di Padova, Padova, Italy
23 Sezione INFN di Pisa, Pisa, Italy
24 Sezione INFN di Roma Tor Vergata, Roma, Italy
25 Sezione INFN di Roma Sapienza, Roma, Italy
26 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
27 Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Kraków, Poland
28 National Center for Nuclear Research (NCBJ), Warsaw, Poland
29 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35 Institute for High Energy Physics (IHEP), Protvino, Russia
36 Universitat de Barcelona, Barcelona, Spain
37 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
39 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40 Physik-Institut, Universität Zürich, Zürich, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
Also at Università di Firenze, Firenze, Italy.

Also at Università di Ferrara, Ferrara, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università di Modena e Reggio Emilia, Modena, Italy.

Also at Università di Padova, Padova, Italy.

Also at Università di Milano Bicocca, Milano, Italy.

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Genova, Genova, Italy.

Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at Università di Cagliari, Cagliari, Italy.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at Università di Bari, Bari, Italy.

Also at Università degli Studi di Milano, Milano, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Corresponding author. giovanni.veneziano@cern.ch