Observation of Photon Polarization in the $b \to s \gamma$ Transition

R. Aaij et al.*
(LHCb Collaboration)

(Received 27 February 2014; published 22 April 2014)

This Letter presents a study of the flavor-changing neutral current radiative $B^\pm \to K^\pm \pi^\mp \pi^\pm \gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at 7 and 8 TeV center-of-mass energies. In this sample, corresponding to an integrated luminosity of nearly 14 000 signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^\pm \pi^\mp \pi^\pm$ final state in the mass range of $[1.1, 1.9]$ GeV/c2 mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^\pm \pi^\mp \pi^\pm$ mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \to s \gamma$ transition is reported with a significance of 5.2σ.

DOI: 10.1103/PhysRevLett.112.161801
PACS numbers: 13.20.He, 12.15.Mm, 14.40.Nd

The standard model (SM) predicts that the photon emitted from the electroweak penguin loop in $b \to s \gamma$ transitions is predominantly left-handed, since the recoiling s quark that couples to a W boson is left-handed. This implies maximal parity violation up to small corrections of the order m_s/m_b. While the measured inclusive $b \to s \gamma$ rate agrees with the SM calculations, no direct evidence exists for a nonzero photon polarization in this type of decay. Several extensions of the SM [2], compatible with all current measurements, predict that the photon acquires a significant right-handed component, in particular, due to the exchange of a heavy fermion in the penguin loop [3].

This Letter presents a study of the radiative decay $B^\pm \to K^\mp \pi^\pm \gamma$, previously observed at the B factories with a measured branching fraction of $(27.6 \pm 2.2) \times 10^{-6}$ [1,4,5]. The inclusion of charge-conjugate processes is implied throughout. Information about the photon polarization is obtained from the angular distribution of the photon direction with respect to the normal to the plane defined by the momenta of the three final-state hadrons in their center-of-mass frame. The shape of this distribution, including the up-down asymmetry between the number of events with the photon on either side of the plane, is determined. This investigation is conceptually similar to the historical experiment that discovered parity violation by measuring the up-down asymmetry of the direction of a particle emitted in a weak decay with respect to an axial vector [6]. In $B^\pm \to K^\mp \pi^\pm \gamma$ decays, the up-down asymmetry is proportional to the photon polarization λ_γ [7,8] and therefore measuring a value different from zero corresponds to demonstrating that the photon is polarized. The currently limited knowledge of the structure of the $K^\pm \pi^\mp \pi^\pm$ mass spectrum, which includes interfering kaon resonances, prevents the translation of a measured asymmetry into an actual value for λ_γ.

The differential $B^\pm \to K^\mp \pi^\pm \gamma$ decay rate can be described in terms of θ, defined in the rest frame of the final state hadrons as the angle between the direction opposite to the photon momentum \vec{p}_γ and the normal $\vec{P}_{\pi,\text{slow}} \times \vec{P}_{\pi,\text{fast}}$ to the $K^\mp \pi^\pm \gamma$ plane, where $\vec{P}_{\pi,\text{slow}}$ and $\vec{P}_{\pi,\text{fast}}$ correspond to the momenta of the lower and higher momentum pions, respectively. Following the notation and developments of Ref. [7], the differential decay rate of $B^\pm \to K^\mp \pi^\pm \gamma$ can be written as a fourth-order polynomial in $\cos \theta$

$$
\frac{d\Gamma}{dsds_1ds_2ds_3 d \cos \theta} \propto \sum_{i=0,2,4} a_i(s,s_1,s_2,s_3) \cos^i \theta \
+ \lambda_\gamma \sum_{j=1,3} a_j(s,s_1,s_3,s_2) \cos^j \theta,
$$

(1)

where $s_{ij} = (p_i + p_j)^2$ and $s = (p_1 + p_2 + p_3)^2$, and p_1, p_2, and p_3 are the four-momenta of the π^-, π^+, and K^+ mesons, respectively. The functions a_i depend on the resonances present in the $K^+K^-\pi^0$ mass range of interest and their interferences. The up-down asymmetry is defined as

$$
A_{ud} \equiv \frac{\int_0^s d\cos \theta \frac{d\Gamma}{d \cos \theta} - \int_s^1 d\cos \theta \frac{d\Gamma}{d \cos \theta}}{\int_0^1 d\cos \theta \frac{d\Gamma}{d \cos \theta}},
$$

(2)

which is proportional to λ_γ.

The LHCb detector [9] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the...
A boosted decision tree [16,17] is used to further improve the separation between signal and background. Its training is based on the following variables: the impact parameter χ^2 of the $B^+\pi$ meson and of each of the final state hadrons, defined as the difference between the χ^2 of a primary vertex (PV) reconstructed with and without the considered particle; the cosine of the angle between the reconstructed B^+ momentum and the vector pointing from the PV to the B^+ decay vertex; the flight distance of the B^+ meson, and the $K^+\pi^-\pi^+$ vertex χ^2.

The mass distribution of the selected $B^+\rightarrow K^+\pi^-\pi^+\gamma$ signal is modeled with a double-tailed Crystal Ball [18] probability density function (PDF), with power-law tails above and below the B mass. The four tail parameters are fixed from simulation; the width of the signal peak is fit separately for the 2011 and 2012 data to account for differences in calorimeter calibration. Combinatorial and partially reconstructed backgrounds are considered in the fit, the former modeled with an exponential PDF, the latter described using an ARGUS PDF [19] convolved with a Gaussian function with the same width as the signal to account for the photon energy resolution. The contribution to the partially reconstructed background from events with only one missing pion is considered separately.

The fit of the mass distribution of the selected $B^+\rightarrow K^+\pi^-\pi^+\gamma$ candidates (Fig. 1) returns a total signal yield of 13876 ± 153 events, the largest sample recorded for this channel to date. Figure 2 shows the background-subtracted $K^+\pi^-\pi^+$ mass spectrum determined using the technique of Ref. [20], after constraining the B mass to its nominal value. No peak other than that of the $K_1(1270)^+$ resonance can be clearly identified. Many kaon resonances, with various masses, spins, and angular momenta, are expected to contribute and interfere in the considered mass range [1].

The contributions from single resonances cannot be isolated because of the complicated structure of the

FIG. 1 (color online). Mass distribution of the selected $B^+\rightarrow K^+\pi^-\pi^+\gamma$ candidates. The blue solid curve shows the fit results as the sum of the following components: signal (red solid), combinatorial background (green dotted), missing pion background (black dashed), and other partially reconstructed backgrounds (purple dash-dotted).
$K^+\pi^-\pi^+$ mass spectrum. The up-down asymmetry is thus studied inclusively in four intervals of $K^+\pi^-\pi^+$ mass. The [1.4,1.6] GeV/c^2 interval, studied in Ref. [7], includes the $K_1(1400)^+$, $K_2^*(1430)^+$ and $K^*(1410)^+$ resonances with small contributions from the upper tail of the $K_1(1270)^+$. At the time of the writing of Ref. [7], the $K_1(1400)^+$ was believed to be the dominant 1^+ resonance, so the $K_1(1270)^+$ was not considered. However, subsequent experimental results [21] demonstrated that the $K_1(1270)^+$ is more prominent than the $K_1(1400)^+$; hence, the [1.1,1.3] GeV/c^2 interval is also studied here. The [1.3,1.4] GeV/c^2 mass interval, which contains the overlap region between the two K_1 resonances, and the [1.6,1.9] GeV/c^2 high mass interval, which includes spin-2 and spin-3 resonances, are also considered.

In each of the four $K^+\pi^-\pi^+$ mass intervals, a simultaneous fit to the B-candidate mass spectra in bins of the photon angle is performed in order to determine the background-subtracted angular distribution; the previously described PDF is used to model the mass spectrum in each bin, with all of the fit parameters being shared except for the yields. Since the sign of the photon polarization depends on the sign of the electric charge of the B candidate, the angular variable $\cos \hat{\theta} \equiv \text{charge}(B) \cos \theta$ is used. The resulting background-subtracted $\cos \hat{\theta}$ distribution, corrected for the selection acceptance and normalized to the inverse of the bin width, is fit with a fourth-order polynomial function normalized to unit area,

$$f(\cos \hat{\theta}; c_0 = 0.5, c_1, c_2, c_3, c_4) = \sum_{i=0}^{4} c_i L_i(\cos \hat{\theta}),$$

where $L_i(x)$ is the Legendre polynomial of order i and c_i is the corresponding coefficient. Using Eqs. (1) and (3) the up-down asymmetry defined in Eq. (2) can be expressed as

$$A_{ud} = c_1 - \frac{c_3}{4}.$$

As a cross-check, the up-down asymmetry in each mass interval is also determined with a counting method, rather than an angular fit, as well as considering separately the B^+ and B^- candidates. All these checks yield compatible results.

The results obtained from a χ^2 fit of the normalized binned angular distribution, performed taking into account the full covariance matrix of the bin contents and all of the systematic uncertainties, are summarized in Table I. These systematic uncertainties account for the effect of choosing a different fit model, the impact of the limited size of the simulated samples on the fixed parameters, and the possibility of some events migrating from a bin to its neighbor because of the detector resolution, which gives the dominant contribution. The systematic uncertainty associated with the fit model is determined by performing the mass fit using several alternative PDFs, while the other two are estimated with simulated pseudoexperiments. Such uncertainties, despite being of the same size as the statistical uncertainty, do not substantially affect the fit results since they are strongly correlated across all angular bins.

The fitted distributions in the four $K^+\pi^-\pi^+$ mass intervals of interest are shown in Fig. 3. In order to illustrate the effect of the up-down asymmetry, the results of another fit imposing $c_1 = c_3 = 0$, hence forbidding the terms that carry the λ_π dependence, are overlaid for comparison.

The combined significance of the observed up-down asymmetries is determined from a χ^2 test where the null hypothesis is defined as $\lambda_\pi = 0$, implying that the up-down asymmetry is expected to be zero in each mass interval. The corresponding χ^2 distribution has 4 degrees of freedom, and the observed value corresponds to a p value of 1.7×10^{-7}. This translates into a 5.2σ significance for nonzero up-down asymmetry. Up-down asymmetries can be computed also for an alternative definition of the photon

<table>
<thead>
<tr>
<th>$[1.1,1.3]$</th>
<th>$[1.3,1.4]$</th>
<th>$[1.4,1.6]$</th>
<th>$[1.6,1.9]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>6.3 ± 1.7</td>
<td>5.4 ± 2.0</td>
<td>4.3 ± 1.9</td>
</tr>
<tr>
<td>c_2</td>
<td>31.6 ± 2.2</td>
<td>27.0 ± 2.6</td>
<td>43.1 ± 2.3</td>
</tr>
<tr>
<td>c_3</td>
<td>−2.1 ± 2.6</td>
<td>2.0 ± 3.1</td>
<td>−5.2 ± 2.8</td>
</tr>
<tr>
<td>c_4</td>
<td>3.0 ± 3.0</td>
<td>6.8 ± 3.6</td>
<td>8.1 ± 3.1</td>
</tr>
<tr>
<td>A_{ud}</td>
<td>6.9 ± 1.7</td>
<td>4.9 ± 2.0</td>
<td>5.6 ± 1.8</td>
</tr>
</tbody>
</table>

TABLE I. Legendre coefficients obtained from fits to the normalized background-subtracted $\cos \hat{\theta}$ distribution in the four $K^+\pi^-\pi^+$ mass intervals of interest. The up-down asymmetries are obtained from Eq. (4). The quoted uncertainties contain statistical and systematic contributions. The $K^+\pi^-\pi^+$ mass ranges are indicated in GeV/c^2 and all the parameters are expressed in units of 10^{-2}. The covariance matrices are given in Ref. [22].
angle, obtained using the normal $\bar{p}_x \times \bar{p}_x$, instead of $\bar{p}_{x,\text{slow}} \times \bar{p}_{x,\text{fast}}$. The obtained values, along with the relative fit coefficients, are listed in Table II.

To summarize, a study of the inclusive flavor-changing neutral current radiative $B^+ \rightarrow K^+\pi^-\pi^+\gamma$ decay, with the $K^+\pi^-\pi^+$ mass in the [1.1, 1.9] GeV/c^2 range, is performed on a data sample corresponding to an integrated luminosity of 3 fb$^{-1}$ collected in pp collisions at 7 and 8 TeV center-of-mass energies by the LHCb detector. A total of 13876 ± 153 signal events is observed. The shape of the angular distribution of the photon with respect to the plane defined by the three final-state hadrons in their rest frame is determined in four intervals of interest in the $K^+\pi^-\pi^+$ mass spectrum. The up-down asymmetry, which is proportional to the photon polarization, is measured for the first time for each of these $K^+\pi^-\pi^+$ mass intervals. The first observation of a parity-violating photon polarization different from zero at the 5.2σ significance level in $b \rightarrow s\gamma$ transitions is reported. The shape of the photon angular distribution in each bin, as well as the values for the up-down asymmetry, may be used, if theoretical predictions become available, to determine for the first time a value for the photon polarization, and thus constrain the effects of physics beyond the SM in the $b \rightarrow s\gamma$ sector.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF, and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR, and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal, and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted towards the communities behind the multiple open source software packages we depend on. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia).

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3 Paris, France
9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Milano, Milano, Italy
22Sezione INFN di Padova, Padova, Italy
23Sezione INFN di Pisa, Pisa, Italy
24Sezione INFN di Roma Tor Vergata, Roma, Italy
25Sezione INFN di Roma La Sapienza, Roma, Italy
26Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
27Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Kraków, Poland
28National Center for Nuclear Research (NCBJ), Warsaw, Poland
29Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35Institute of High Energy Physics (IHEP), Protvino, Russia
36Universitat de Barcelona, Barcelona, Spain
37Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38European Organization for Nuclear Research (CERN), Geneva, Switzerland
39Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40Physik-Institut, Universität Zürich, Zürich, Switzerland
41Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

PRL 112, 161801 (2014) PHYSICAL REVIEW LETTERS week ending 25 APRIL 2014

161801-7