Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.112.171801

Publisher
American Physical Society

Version
Final published version

Accessed
Sat Dec 08 18:44:08 EST 2018

Citable Link
http://hdl.handle.net/1721.1/88726

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 9 December 2013; published 30 April 2014)

A search for the production of heavy partners of the top quark with charge 5/3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of 19.5 fb$^{-1}$ and was collected at $\sqrt{s} = 8$ TeV by the CMS experiment. No significant excess is observed in the data above the expected background, and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively to tW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.

DOI: 10.1103/PhysRevLett.112.171801
PACS numbers: 14.65.Jk, 12.60.-i, 13.85.Qk

Various extensions of the standard model (SM) address the hierarchy problem, caused by the quadratic divergences in the quantum-loop corrections to the Higgs boson mass, by proposing new heavy particles. Since the largest correction arises from the top-quark loop, a class of these models, based on composite Higgs scenarios [1–4], predicts the existence of heavy partners of the top quark to explain the cancellation of this correction. These “top-quark partners” are expected to have masses close to the electroweak symmetry breaking scale and thus would be accessible at the CERN Large Hadron Collider (LHC), located near Geneva, Switzerland. They may also have exotic charge (5e/3, where e is the charge of the electron) and in this case would not contribute to the coupling of the Higgs boson to gluons [5]. Searches for such top-quark partners explore parameter space that is not excluded by the recent observation of a Higgs boson with properties consistent with those of the SM Higgs particle [6–14]. Theoretical predictions suggest that searches in the mass region from 500 GeV to 1.5 TeV present the greatest potential for discovery at the LHC [2,15].

This Letter presents a search for exotic top-quark partners using LHC pp collision data collected by the Compact Muon Solenoid (CMS) experiment at a center-of-mass energy $\sqrt{s} = 8$ TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 19.5 fb$^{-1}$. We look for the $T_{5/3}$, an exotic top-quark partner with charge 5e/3. We assume that the $T_{5/3}$ is pair produced via either gluon fusion or quark annihilation and decays via $T_{5/3} \rightarrow tW^+$ followed by $t \rightarrow W^+b$ (charge conjugate modes are implied throughout this Letter). Single $T_{5/3}$ production is not considered because it is more model dependent and presents a different event topology [2].

We focus on the dilepton final state wherein, for one or both of the $T_{5/3}$, its two W bosons both decay into leptons, which will have the same charge. Because of the presence of the two bottom quarks and the possibility of hadronic decays for one of the top-quark partners, this final state also includes significant jet activity. The leptons considered in this analysis are electrons and muons. The presence of leptons with the same electric charge (same-sign leptons) distinguishes this process from $t\bar{t}$, making the contribution of the latter comparable to backgrounds with much smaller cross sections: $t\bar{t}W$, $t\bar{t}WW$, $t\bar{t}Z$, WW, and same-sign WW. Because of its large cross section, $t\bar{t}$ still contributes to the overall background through instrumental effects such as charge misidentification in dilepton decays, as well as through $t\bar{t}$ events where the W boson from one top quark decays leptonically and the second lepton arises from a b-quark decay. Additional processes that contribute to the expected background include QCD multijets, $W/Z+jets$, and dibosons (WZ and ZZ). A previous search using a signature of same-sign leptons, multiple jets, and missing transverse energy was performed by the CDF experiment and excludes $T_{5/3}$ masses below 365 GeV at the 95% confidence level (C.L.) [16]. The CDF Collaboration also set a limit on the production of exotic quarks with charge $−4e/3$ [17].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. In addition, the CMS detector has extensive forward calorimetry. A more detailed description of the CMS detector can be found elsewhere [18].

Simulation of the pair production of top-quark partners was performed with the MADGRAPH 5.1.1 [19] event generator, and 12 samples corresponding to values of the
Additional low-rate SM processes were also considered: superimposing minimum bias interactions (obtained using interactions in each beam crossing (pileup) were modeled by

The charge extrapolated track. Additional requirements are imposed to electron, and the shower must be well matched to the of the shower in the ECAL must be consistent with that of an in the ECAL and a track from the silicon detectors. The shape also have at least one good reconstructed primary vertex

CA8 Additional requirements are imposed to

For the range of \(T_{5/3} \) masses accessible at \(\sqrt{s} = 8 \text{ TeV} \), the analysis exploits advanced techniques in jet reconstruction for identifying highly boosted top quarks and W bosons that decay hadronically. In particular, if the top quarks are highly boosted (\(p_T > 400 \text{ GeV} \)), their decay products are collimated and merged into one jet. We use a “top-quark tagging” algorithm based on identifying jet substructure [32] to reconstruct such merged top-quark jets. Jets are clustered using the Cambridge-Aachen algorithm [33,34], as implemented in FastJet version 3 [35], with a distance parameter of \(R = 0.8 \) in \(\eta-\phi \) space (CA8 jets). The CA8 top-quark jets are required to have \(p_T > 400 \text{ GeV} \), and more than two subjets found by the top-quark tagging algorithm. The jet mass must be consistent with the mass of the top quark, and the minimum pairwise mass of the three highest \(p_T \) subjects is required to be greater than 50 GeV.

The decay products of W bosons from the \(T_{5/3} \) decay or from a highly boosted top quark, for which the \(b \) quark is reconstructed independently, may also merge into a single jet. We use a “jet pruning” algorithm [36] to identify the hadronic decay of such W bosons. This algorithm also uses CA8 jets as inputs with the pruning parameters taken from the original theoretical papers [37,38]. CA8 W-boson jets are required to have \(p_T > 200 \text{ GeV} \), exactly two subjets, and their mass must be consistent with that of the W boson [39].

To account for W bosons and top quarks that are not highly boosted, jets are also reconstructed using the anti-\(k_T \) algorithm [40] with a distance parameter of 0.5 (AK5). These jets are required to have \(p_T > 30 \text{ GeV} \). If an AK5 jet overlaps with a top-quark jet or a W-boson jet (\(\Delta R < 0.8 \)), the AK5 jet is discarded.

All of the above categories of jets are required to have \(|\eta| < 2.4 \) and particle-flow jet identification [41]. Jet energy
corrections are applied to account for residual nonuniformity and nonlinearity of the detector response. Jet energies are also corrected by subtracting the average contribution of particles from pileup [42,43]. For the simulated samples, additional smearing is applied to the jet p_T (7%–19% depending on η) in order to reproduce the jet energy resolution observed in data. All jets must be $\Delta R \geq 0.3$ away from the selected leptons and, as mentioned above, $\Delta R \geq 0.8$ away from any other jet. A correction to account for differences in the identification efficiency of W-boson and top-quark jets between data and simulation is applied [44].

The signal selection, optimized to yield the best signal sensitivity, requires the following. (i) At least two isolated same-sign leptons as defined above with $p_T > 30$ GeV. Between each lepton and every top-quark jet, we require $\Delta R > 0.8$. (ii) Dilepton Z-boson veto: $M(\ell\ell) < 76$ GeV or $M(\ell\ell) > 106$ GeV. This selection applies only to the dielectron channel. If the muon charge is mismeasured, its momentum will also be mismeasured, so a selected muon pair from a Z boson will not fall within this invariant mass range. (iii) Trilepton Z-boson veto: $M(\ell\ell\ell) < 76$ GeV or $M(\ell\ell\ell) > 106$ GeV, where $M(\ell\ell\ell)$ is the invariant mass of either one of the selected leptons and any other same-flavor opposite-sign lepton in the event with $p_T > 15$ GeV that satisfies the loose lepton criteria. (iv) $N_{\ell} \geq 7$, where N_{ℓ} is the number of constituents identified in the event. For the purpose of this selection, each AK5 jet and each lepton count as one constituent. Since a W-boson jet is assumed to correspond to a W boson, each such jet counts as two constituents, corresponding to the W-boson decay products. Likewise, each top-quark jet represents a top quark and counts as three constituents. (v) $H_T > 900$ GeV, where H_T is the scalar sum of the p_T of all selected jets and leptons in the event. With these criteria, the signal efficiency is 10%–13% for $T_{S/3}$ masses between 750 and 1000 GeV.

The backgrounds associated with this analysis fall into three main categories. First, they may originate from SM processes leading to prompt, same-sign dilepton signatures, including diboson production (WZ and ZZ), $t\bar{t}W$, $t\bar{t}WW$, $t\bar{t}Z$, $W^\pm W^\mp$, and WWW. The contribution of these backgrounds is obtained from simulation.

The second category consists of events from processes with prompt, opposite-sign leptons, such as $t\bar{t}$ and Drell-Yan production, in which one of the leptons is misreconstructed with the wrong charge, leading to a same-sign dilepton final state. For muons in the p_T range typical of the dominant backgrounds, the charge misidentification rate is extremely small (of order 10^{-4}) and its contribution to the background is negligible [45]. For electrons, the charge misidentification probability ($\sim 10^{-3}$) is derived from a data sample dominated by Drell-Yan events obtained by selecting dileptons with an invariant mass consistent with originating from the Z boson, using the ratio of same-sign Z-boson candidates to the total number of candidates. The number of expected same-sign events due to charge misidentification is then estimated by considering the total number of events passing the full selection but having oppositely charged leptons. These events are weighted by the charge misidentification probability parametrized as a function of the electron p_T and η to obtain the contribution of this background type.

The third category consists of events with one or more “nonprompt leptons.” This is the primary instrumental background arising from jets being misidentified as leptons and nonprompt leptons passing tight isolation selection criteria. This contribution is estimated using the “tight-loose” method described in Ref. [46]. “ Tight” leptons have the same definition as those used in the analysis, whereas “loose” leptons are defined earlier. The background is estimated by using events with one or more loose leptons weighted by the ratios of the numbers of tight leptons to the numbers of loose leptons expected for prompt and nonprompt leptons. The ratio for prompt leptons is determined from Drell-Yan events where the invariant mass of the leptons is within 10 GeV of the Z-boson mass. The nonprompt ratio is determined from a sample enriched in background by requiring exactly one lepton, low missing transverse energy ($E_T^{\text{miss}} < 25$ GeV), low transverse mass ($M_T < 25$ GeV), and at least one jet (the “away jet”) with $p_T > 40$ GeV and $\Delta R > 1.0$ with respect to the lepton. The transverse mass is defined as $M_T \equiv \sqrt{2p_T^\ell E_T^{\text{miss}}(1 - \cos \Delta \phi)}$, where $\Delta \phi$ is the angle between the lepton transverse momentum (p_T^ℓ) and the direction associated with E_T^{miss}.

The systematic uncertainties that affect the signal and background acceptance include uncertainties in the efficiency of the trigger (1%), lepton reconstruction and identification efficiency (1% per lepton), pileup, and the jet energy scale (JES). The uncertainties due to the JES and pileup are obtained by varying the respective quantities in simulation. For the signal, the JES and pileup uncertainties in the acceptance correspond to 2% and 3%, respectively. For the simulated backgrounds, they range from 3% to 6%, depending on the sample. In addition, we assign a constant 3% uncertainty due to the JES of CA8 jets for all simulated samples [44]. The dominant uncertainty in the expected event yields due to backgrounds derived from simulation is the overall normalization uncertainty. The ZZ (5.1%), WZ (17%), and $t\bar{t}W$ (32%) normalization uncertainties are taken from Refs. [26,47,48], respectively. For the other rare backgrounds, we assume a conservative normalization uncertainty of 50% [49]. An uncertainty of 20% is assigned to the background contribution from charge misidentification, based on the difference in the charge misidentification rate between Drell-Yan data and $t\bar{t}$ simulation. Following Ref. [45], we also assign a conservative additional systematic uncertainty of 50% in the estimation of backgrounds due to nonprompt leptons. This uncertainty is
TABLE I. Summary table of expected and observed numbers of events for all channels. The background is composed of the same-sign component, the contribution due to charge misidentification, and that due to misreconstructed leptons. All systematic uncertainties are included. Also shown is the expected contribution from a $T_{5/3}$ with mass of 800 GeV.

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee</th>
<th>$e\mu$</th>
<th>$\mu\mu$</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same sign</td>
<td>0.8 ± 0.2</td>
<td>1.9 ± 0.4</td>
<td>1.3 ± 0.3</td>
<td>4.0 ± 0.8</td>
</tr>
<tr>
<td>Charge misidentification</td>
<td>0.06 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>...</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>Nonprompt</td>
<td>1.9 ± 1.2</td>
<td>0.6 ± 0.9</td>
<td>0.3 ± 0.6</td>
<td>2.8 ± 1.9</td>
</tr>
<tr>
<td>Total background</td>
<td>2.7 ± 1.3</td>
<td>2.5 ± 1.0</td>
<td>1.6 ± 0.7</td>
<td>6.8 ± 2.1</td>
</tr>
<tr>
<td>Observed events</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>$T_{5/3}$</td>
<td>2.1 ± 0.1</td>
<td>4.7 ± 0.3</td>
<td>2.8 ± 0.2</td>
<td>9.7 ± 0.5</td>
</tr>
</tbody>
</table>

based on closure tests using $t\bar{t}$ and $W +$ jets simulated samples and takes into account variations due to the away jet p_T and the flavor composition of the background, thus also accounting for any potential dependence on kinematic parameters that alter the background composition (such as H_T). We also include a 2.6% uncertainty due to the luminosity [50] for all event yields that are derived from simulation.

The final numbers of observed and expected events are reported in Table I for each of the three lepton channels (ee, $e\mu$, and $\mu\mu$) and their combination. Figure 1 shows the H_T distribution for all channels combined.

No significant excess is observed. Exclusion limits are computed at 95% C.L. by using the ROOSTATS implementation [51] of the Bayesian approach. We use a cut-and-count method and compare the numbers of observed events with the numbers of expected signal and background events. A flat prior is used for the signal production cross section. The event yields from all lepton channels are combined when setting the limits. Upper bounds are set on the production cross section of heavy top-quark partners, assuming a 100% branching fraction (BF) for the decay $T_{5/3} \to tW$. The resulting expected and observed limits are shown in Fig. 2. The expected lower limit on the mass of the $T_{5/3}$ is 830 GeV, and the observed limit is 800 GeV.

The use of recently developed jet substructure techniques in this analysis for identifying boosted top quarks and W bosons enables us to probe cross sections of $T_{5/3}$ pair production that are between 10%–20% lower than would otherwise be possible for $T_{5/3}$ masses in the range 800–1000 GeV. The reconstruction of the $T_{5/3}$ mass benefits as well, and this can, in the event of a discovery in the future, be exploited for a more precise determination.

FIG. 1 (color online). The distribution of H_T for all channels combined after the full selection except for the H_T requirement itself. The shaded band represents the total uncertainty in the predicted backgrounds. The final bin includes all overflow events. The pull is defined as the difference between the observed and expected values divided by the total uncertainty.

FIG. 2 (color online). Expected and observed 95% C.L. limits on the $T_{5/3}$ production cross section times the branching fraction for decay to same-sign dileptons. The 1σ and 2σ combined statistical and systematic expected variations are shown as yellow (light) and green (dark) bands, respectively.

171801-4
be used to distinguish a $T_{5/3}$ from other exotic particles which decay in a similar manner [52].

In summary, a search for an exotic top partner with charge $5/3$ in same-sign dileptonic events has been performed using 19.5 fb$^{-1}$ of data collected by the CMS experiment at $\sqrt{s} = 8$ TeV. No significant excess is observed in the data above the expected standard model background. An upper bound at the 95% confidence level is set on the production cross section of heavy top-quark partners, assuming a 100% branching fraction for the decay $T_{5/3} \to tW$, and masses below 800 GeV are excluded. This is the first limit on $T_{5/3}$ production from the LHC, and it is significantly more restrictive than the 365 GeV limit set by previous searches.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, NASU (Ukraine); STFC (United Kingdom); and DOE and NSF (U.S.A.).

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17University of Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institut Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32Université Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35RWTH Aachen University, II. Physikalisches Institut A, Aachen, Germany
36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37Deutsches Elektronen-Synchrotron, Hamburg, Germany
38University of Hamburg, Hamburg, Germany
39Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
41University of Athens, Athens, Greece
42University of Ioánnina, Ioánnina, Greece
43Wigner Research Centre for Physics, Budapest, Hungary
44Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45University of Debrecen, Debrecen, Hungary
46National Institute of Science Education and Research, Bhubaneswar, India
47Panjab University, Chandigarh, India
48University of Delhi, Delhi, India
49Saha Institute of Nuclear Physics, Kolkata, India
50Rhadha Atomic Research Centre, Mumbai, India
51Tata Institute of Fundamental Research - EHEP, Mumbai, India
P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

Universidad de Oviedo, Oviedo, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Istanbul Technical University, Istanbul, Turkey

Bogazici University, Istanbul, Turkey

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA

The University of Alabama, Tuscaloosa, USA

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

*Deceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

fAlso at Universidade Estadual de Campinas, Campinas, Brazil.

fAlso at California Institute of Technology, Pasadena, USA.

fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

fAlso at Zewail City of Science and Technology, Zewail, Egypt.

fAlso at Suez Canal University, Suez, Egypt.

fAlso at Cairo University, Cairo, Egypt.

fAlso at Fayoum University, El-Fayoum, Egypt.

fAlso at British University in Egypt, Cairo, Egypt.

fNow at Ain Shams University, Cairo, Egypt.

fAlso at Université de Haute Alsace, Mulhouse, France.

fAlso at Joint Institute for Nuclear Research, Dubna, Russia.

fAlso at Brandenburg University of Technology, Cottbus, Germany.

fAlso at The University of Kansas, Lawrence, USA.

fAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

fAlso at Eötvös Loránd University, Budapest, Hungary.

fAlso at Tata Institute of Fundamental Research - EHEP, Mumbai, India.

fAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India.

fNow at King Abdulaziz University, Jeddah, Saudi Arabia.

fAlso at University of Visva-Bharati, Santiniketan, India.

fAlso at University of Ruhuna, Matara, Sri Lanka.

fAlso at Isfahan University of Technology, Isfahan, Iran.

fAlso at Sharif University of Technology, Tehran, Iran.

fAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

fAlso at Università degli Studi di Siena, Siena, Italy.

fAlso at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

fAlso at Purdue University, West Lafayette, USA.

fAlso at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

fAlso at National Centre for Nuclear Research, Swierk, Poland.

fAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

fAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy.

fAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

fAlso at University of Athens, Athens, Greece.

fAlso at Paul Scherrer Institut, Villigen, Switzerland.

fAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.

fAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

fAlso at Gaziosmanpasa University, Tokat, Turkey.

fAlso at Adiyaman University, Adiyaman, Turkey.

fAlso at Cag University, Mersin, Turkey.