Role of temperature in the formation and growth of gold monoatomic chains: A molecular dynamics study

http://dx.doi.org/10.1103/PhysRevB.88.235438

American Physical Society

Final published version

Fri Feb 15 22:09:41 EST 2019

http://hdl.handle.net/1721.1/88959

Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Role of temperature in the formation and growth of gold monoatomic chains:
A molecular dynamics study

R. Cortes-Huerto,1,* T. Sondon,2 and A. Saüll1,3,4,1
1CINaM, UMR 7325 CNRS, Aix-Marseille University, Campus de Luminy, 13288 Marseille Cedex 9, France
2Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
3Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
4Multiscale Materials Science and Engineering, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

(Received 3 August 2012; revised manuscript received 10 October 2013; published 31 December 2013)

The effect of temperature on the formation and growth of monoatomic chains is investigated by extensive molecular dynamics simulations using a semiempirical potential based on the second-moment approximation to the tight-binding Hamiltonian. Gold nanowires, with an aspect ratio of ~13 and a cross section of ~1 nm², are stretched at a rate of 3 m/s in the range of temperatures 5–600 K with 50 initial configurations per temperature. A detailed study on the probability to form monoatomic chains (MACs) is presented. Two domains are apparent in our simulations: one at T < 100 K, where MACs develop from crystalline disorder at the constriction, and the other at T > 100 K, where MACs form as a consequence of plastic deformation of the nanowire. Our results show that the average length of the formed MACs maximizes at T = 150 K, which is supported by simple energy arguments.

DOI: 10.1103/PhysRevB.88.235438

PACS number(s): 62.23.Hj, 61.46.Km, 62.25.--g

I. INTRODUCTION

The potential use of nanowires as components of electronic circuits will probably shift a paradigm in the miniaturization and design of microchips.1 From a more fundamental perspective, gold nanowires have been investigated to understand their intriguing mechanical properties and also to shed light on the interplay between low dimensionality and quantum-mechanical effects (for a review see Refs. 2–4).

Formation and evolution of gold monoatomic chains (MACs) have been extensively investigated in experiments.5–10 These studies suggest a strong effect of temperature on the tensile deformation of nanometric structures. In particular, stretching at low temperature (T ≤ 150 K) is a process dominated by the formation of planar defects, whereas at room temperature the deformation seems plastic and defect free.10 Nevertheless, long, stable MACs form at low temperature8 and, perhaps more puzzling,11 at room temperature.9

From the computational point of view, the size of the system limits computational investigations aiming at describing stretching of nanometric wires. This is the case for ab initio methods that have been used to study stability and breaking conditions of idealized MACs, which consist of a few atoms suspended between model electrodes,11–16 and also tight-binding molecular dynamics methods17,18 intended to study the interplay of electronic and mechanical properties of stretched nanowires.

To overcome this difficulty, classical molecular dynamics (MD) relying on semiempirical potentials has been widely used to simulate stretched nanowires.19–26 The versatility of this method allows the study of structural properties of nanowires such as Young’s modulus,27 the stability27 and breaking of MACs,3,4,8 temperature-dependent breaking of thick nanowires,28 and, in combination with tight-binding calculations, the thermopower of metal nanocontacts.29 It is clear that MD is robust and versatile enough to study temperature-dependent formation of planar defects in stretched nanowires and simultaneously formation, evolution, and breaking of MACs.

In this paper we perform extensive MD simulations of stretched nanowires to investigate the effect of temperature on the formation and growth of MACs. Gold nanowires, with a cross section of ~1 nm², are simulated in the range of temperatures T = 5–600 K. Due to the fairly large amount of statistics included in this study, the probability to form MACs as a function of temperature is presented. More important, our results suggest that there is an optimal temperature for creation of long MACs.

This paper is organized as follows. The model and the computational method are defined in Sec. II. Section III starts with the description of some generalities of the stretching process (Sec. III A). The dependence of the probability of MAC formation on temperature is shown in Sec. III B, while the relationship between the average length of the formed MACs and temperature is described in Sec. III C. Finally, a summary is given in Sec. IV.

II. THE MODEL AND THE METHOD

Molecular dynamics simulations are performed using an interatomic potential given by the second-moment approximation (SMA) to the tight-binding Hamiltonian.30–34 In the SMA, the total energy of a system of N atoms can be written as

\[E = -\zeta \sum_{i}^{N} \sum_{j \neq i}^{N} e^{-2q(r_{ij}/r_{0} - 1)} + A \sum_{i}^{N} \sum_{j \neq i}^{N} e^{-p(r_{ij}/r_{0} - 1)}, \]

where \(r_{ij} \) is the interatomic distance between atoms \(i \) and \(j \), \(r_{0} \) is the equilibrium bulk distance, and the parameters \(A \), \(\zeta \), \(p \), and \(q \) are obtained from bulk properties such as cohesion
FIG. 1. (Color online) Snapshots of a stretching sequence for (1) $T = 10$ K, (2) $T = 150$ K, and (3) $T = 300$ K. The wire’s cross section is approximately 1 nm^2, which is comparable to the experimental setup of Ref. 10. The atoms that form the MAC are represented in red (dark gray). The low occurrence probability of these MACs (6%, 2%, and 2% at $T = 10$, 150, and 300 K, respectively) makes them more the exception than the rule.

One can expect a limitation of the second-moment approximation for the description of low-coordinated systems due to the fact that parameters for this semiempirical potential are obtained from bulk properties. However, as pointed out by Pu et al., SMA potentials give the best results when comparing to DFT energy calculations for the description of structural and mechanical properties of stretched gold nanowires. In addition, SMA potentials predict a breaking force for gold monoatomic chains in fairly good agreement with experiments.

The systems simulated each contained 1216 atoms arranged in a prismatic fcc structure (see Fig. 1 at 0 ps). This structure was stretched along the z direction ([100] direction) until breaking. Previous computational studies suggest that this direction of elongation favors the formation of long MACs. Periodic boundary conditions were imposed only along the stretching direction, i.e., the z axis.
A MD approach with additional degrees of freedom for the simulation cell was implemented to study systems where volume and shape transformations occur. The atomic positions \(\mathbf{r}_i \) are written in terms of a time-dependent matrix \(\mathbf{H}(t) \) and reduced coordinates \(\mathbf{s}_i \):

\[
\mathbf{r}_i = \mathbf{Hs}_i, \quad \mathbf{\dot{r}}_i = \mathbf{Hs}_i + \mathbf{H}_s \mathbf{s}_i,
\]

where the dot represents a time derivative. To introduce stretch, only one component of the matrix \(\mathbf{H} \), i.e., \(H_{33} \), evolves in time. In this study, \(H_{33} \equiv L_z(t) \), where \(L_z(t) = L_z(0) + v_{st} t \) is the total length of the wire at time \(t \) and \(v_{st} \) is the stretching velocity, which is set to \(3 \) m/s. This value is orders of magnitude larger than experimental ones because it is impossible to reach values of \(10^{-7} \) m/s using current state-of-the-art computing facilities. However, this discrepancy does not prevent this investigation from providing a qualitative picture of temperature effects.

Finally, the equations of motion were integrated using Verlet’s algorithm with a time step of \(1 \) fs, which afforded fairly long simulation times (~2000 ps). The temperature of our samples was controlled using the Berendsen thermostat. Moreover, 50 initial configurations per temperature were sampled, and each initial state was defined by a Maxwell velocity distribution. For the present study, a range of temperatures between 5 and 600 K was considered.

III. SIMULATION RESULTS

As mentioned in the Introduction, this section starts by presenting three stretching sequences selected to illustrate particular details of the simulation results (Sec. III A). Then, by using all the data for stretching and temperatures, the probability to form MACs is presented (Sec. III B). Finally, Sec. III C details the evidence suggesting that there is an optimal temperature for the formation of long MACs.

A. Generalities of the stretching process

In Fig. 1 three stretching sequences, from 0 to ~1300 ps, at (1) \(T = 10 \), (2) 150, and (3) 300 K are shown (see Supplemental Material, movies 1, 2, and 3). The cases were selected because they form long, stable MACs and illustrate particular details of the stretching process. Atoms forming the MAC are red (dark gray) at all times.

Planar defects can be identified at 10 K (165 ps) and 150 K (192 ps). These defects correspond to the well-known fcc slip system with [110]-type directions within (111) planes. The angle between (111) and (100) planes is 55.10° at \(T = 10 \) K and 51.70° at \(T = 150 \) K, which are close to the ideal 54.75° value expected from geometrical considerations. At room temperature, formation of planar defects is less evident [see Fig. 1, row (3) at 240 ps], and on the few occasions they appear, temperature destroys them rapidly.

These planar defects remain upon stretching at 10 and 150 K, as shown in animations of the system evolution (Fig. 1 at 330 and 315 ps, respectively). By contrast, at room temperature (Fig. 1 at 420 ps), plastic elongation is apparent. This formation of glide planes at low temperature and plastic, defect-free stretching at room temperature has been observed experimentally and also discussed in a more general context in Ref. 4.

Our simulations suggest that the growth of MACs also depends on temperature (Fig. 1 around 900 ps). At low temperatures, the contact reduces energy by arranging zigzag chains and dimer-like structures prior to the formation of bilinear chains. Moreover, statistical analysis shows that 80% of the atoms forming the MACs at \(T = 300 \) K come from the outmost external layers of the nanowire. By contrast, this percentage decreases to almost 50% at \(T = 10 \) K.

Figure 1 (~1300 ps) illustrates the formation of very long MACs (~10 suspended atoms), which have been obtained in the temperature range 10–300 K. Regardless of temperature, MACs grow by taking atoms from one electrode at a time. We observe that the axial symmetry of the electrode limits the size of the MACs. In fact, growth stops only if both contact tips become symmetric (Fig. 1 around 1300 ps) because in this situation to take one atom from the electrode and put it in the chain requires more energy than that liberated from breaking a bond within the chain. Interestingly, the MAC always breaks between the atom closest to one of the two tips and its first neighbor in the chain. This breaking mechanism can be explained by the fact that the atom closest to the contact tip has higher binding energy than that liberated from breaking a bond within the chain. The breaking point is symmetric (Fig. 2).

Figure 2 shows a plot of total energy in terms of the elongation of the nanowire at \(T = 10 \) K. The breaking force of the MAC \(F_b \) is evaluated as the slope between points (d) and (e). We find \(F_b = 1.0 \pm 0.2 \) nN, in good agreement with previous MD simulations and slightly lower than the experimental value of 1.5 ± 0.3 nN at 4.2 K. By evaluating the forces at the breaking point, we obtain a contact binding energy of 1.5 ± 0.3 nN at 4.2 K.
According to the results of Fig. 3, it is less probable to form MACs at $T = 100$ K. The reason is that in most of the cases considered at $T = 100$ K we observe a marked temperature-induced recrystallization of the disordered region, as shown in Fig. 4 at 150, 300, and 450 ps. Formation of highly symmetric contact tips precedes nanowire breaking, as mentioned in the previous section and discussed in detail in Refs. 17 and 14. Therefore, we conclude that temperature-induced recrystallization of the contact tips prevents the formation of MACs.

When temperature increases to $T = 200$ K, the wire reduces its cross section through a plastic deformation process, as can be seen between 150 and 450 ps in Fig. 4. The ductility of the wire has increased with temperature, and as a consequence, the contact tends to form nanorods and double chains (Fig. 4 at 600 ps) that eventually evolve into MACs.

The maximum recrystallization temperature ($T = 100$ K) is related to the interplay of stretching and the rms speed of the atoms. This implies that if the stretching velocity decreases, then the temperature of maximum recrystallization decreases as well, or, in other words, atoms have more time to accommodate if the stretching velocity decreases. This experiment has been performed by reducing the stretching velocity to 1 m/s using smaller nanowires and fewer repetitions of the stretching process, and we observed this dependence of recrystallization temperature and stretching velocity. Nevertheless, extrapolating to the experimental case (stretching velocity of $\sim 10^{-2} m/s$), we expect that temperature-induced recrystallization appears at very low temperatures. We therefore expect that further experiments exploring the probability to form MACs with temperature will observe a single-peaked probability distribution and the minimum observed at $T = 100$ K is nothing but an artifact of MD simulations.

C. MAC average length vs temperature

In this section, we focus our attention on the cases where MACs are formed. Energy models have been successfully tested in the past to describe stability and growth of MACs. Thieis et al. give a thorough account in Ref. 46. Let us consider a MAC of length L with N suspended atoms. The binding energy of a single atom in an infinite MAC can be written as $E_{MAC}(d) = E_{MAC}(d_0) + E(d)$. Here, $d = L/(N + 1)$, d_0 is the equilibrium distance for atoms within the MAC, and $E(d) > 0$ is defined as the binding energy of this atom relative to $E_{MAC}(d_0)$. Upon stretching, the energy of the MAC grows as $(N + 1)E(d)$, with $N + 1$ being the number of bonds in the chain. A MAC is stable if the relation $$N E(d_0) + \Delta E_b \geq (N + 1)E(d)$$ is satisfied. In other words, the MAC is stable if its energy is lower than or equal to the energy of the broken chain $N E(d_0)$ plus the energy necessary to break a bond in the chain ΔE_b. Likewise, a stretched MAC grows if its energy $(N + 1)E(d)$ is greater than the energy of a chain with $(N + 2)$ bonds and distance between atoms $d' = L/(N + 2) < d$ plus the energy, ΔE_f, necessary to break one bond in the contact tip and create it in the chain, i.e., $$E(d) \geq (N + 2)E(d') + \Delta E_f.$$
FIG. 4. (Color online) Detail of the formation of the atomic contact at (1) $T = 10$, (2) 100, and (3) 200 K. The central region has been oriented with the [110] direction perpendicular to the paper. The red (dark gray) spheres represent the atoms that form the contact.

Using these two inequalities simultaneously, it can be demonstrated that $\Delta E_b - \Delta E_g = \frac{1}{N} E(d') - E(d_0) + 2E(d') > 0$. $\Delta E_b = 1.5$ eV and $\Delta E_g = 0.5$ eV are estimated values obtained from curves of total energy vs elongation like the one in Fig. 2.

The fact that $\Delta E_b > \Delta E_g$ implies the MAC growth and breaking sequence described below. Upon stretching, the MAC energy $(N + 1)E(d)$ increases since the separation between atoms d increases. If the MAC is stable, eventually, the inequality $(N + 1)E(d) - (N + 2)E(d') \geq \Delta E_g$ is satisfied, and an extra atom is added to the chain. This growth mechanism continues until the energy difference between the stretched and the broken chain is greater than ΔE_b, and finally the MAC breaks. This description neglects temperature effects; however, they can be introduced qualitatively in a simple way. By increasing temperature, atoms in the system increase their kinetic energy and break bonds easily. This implies that the gain in kinetic energy first favors the growth of MACs since in this case atoms likely jump from the contact tip to the chain. However, if the temperature increases above a critical value, suspended atoms have more energy available to break bonds in the chain and reach the global energy minimum $N E(d_0)$. Thus
temperatures above the critical value prevent the formation of long MACs. To summarize, by increasing temperature, it is expected that the average number of suspended atoms in the MACs increases as well. Furthermore, if the temperature increases beyond a critical value, then the system prefers to reach the global energy minimum, thus breaking.

To investigate this conjecture, we evaluate the average length of the MACs formed (in terms of the number of suspended atoms in the chain) as a function of temperature (Fig. 5). At very low temperature, \(T = 5 \) K, the average number of suspended atoms is six. As expected, this number increases when temperature increases until it reaches a maximum of seven to eight suspended atoms at \(T = 150–200 \) K. Above this temperature, the average number of suspended atoms decreases, showing a tendency to break upon increasing temperature.

![Number of atoms in the MAC as a function of temperature.](image)

FIG. 5. (Color online) Number of atoms in the MAC as a function of temperature. There is a critical temperature at which the average number of atoms in the chain has a maximum (see text). The dotted blue line is a guide to the eye.

IV. CONCLUSIONS

We have performed extensive MD simulations of stretched gold nanowires to investigate formation, growth, and breaking of MACs. We have considered nanowires with a cross section of \(\sim 1 \) nm\(^2\) in a range of temperatures \((T = 5–600 \) K\) where it is possible to observe both formation of glide planes and plastic, defect-free stretching. Moreover, we computed the breaking force for MACs formed in the range \(T = 5–100 \) K and found that it is independent of both MAC length and temperature, in fair agreement with experiments.

We found that the probability to form MACs exhibits a double-peaked distribution with maxima at \(T = 10 \) K and around \(T = 200–300 \) K. The first maximum is related to crystalline disorder at the constriction induced by planar defects at low temperature that favors the formation of MACs. The second maximum is related to the formation of MACs from rodlike structures that appear as a result of plastic deformation. The minimum in the distribution, which has been interpreted as an artifact of MD simulations, has been related to temperature-induced recrystallization at the constriction.

Finally, we found that the average number of suspended atoms in the formed MACs exhibits a maximum at a critical temperature, which in our simulations is about \(T = 150 \) K. Using a simple energy model, we relate this maximum to the interplay of temperature and the energy necessary to break bonds in the contact tips and within the MAC. This result in particular highlights the importance of temperature in devising models that describe formation, growth, and breaking of MACs.

ACKNOWLEDGMENTS

We acknowledge financial support from the French program PNANO-2008 “SUD: Spintronique à Une Dimension” under Project No. ANR-08-NANO-P056-36. We thank Guy Tréglia, Christine Goyhenex, Remi Zoubkoff, Stephen Cromie, and Pietro Ballone for helpful discussions.

1. Present address: Université Paris 6, INSP, UMR7588, 75252 Paris Cedex 5, France; cortes@insp.jussieu.fr
37. We do not expect that the initial shape affects the results of our simulations because we always observe relaxation before stretching.
44. This is also true at $T = 10$ K but not apparent in the Fig. 1 since the kinetics of the atoms is very slow in this case.
45. In particular, we observe that the second maximum in the distribution probability shifts from 200 K at 3 m/s to 50 K at 1 m/s.