Algorithm to determine the percolation largest component in interconnected networks

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Algorithm to determine the percolation largest component in interconnected networks

Christian M. Schneider,¹,2,* Nuno A. M. Araújo,²,† and Hans J. Herrmann²,3,‡

¹Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
²Computational Physics for Engineering Materials, IJB, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
³Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil

(Received 12 January 2013; published 5 April 2013)

Interconnected networks have been shown to be much more vulnerable to random and targeted failures than isolated ones, raising several interesting questions regarding the identification and mitigation of their risk. The paradigm to address these questions is the percolation model, where the resilience of the system is quantified by the dependence of the size of the largest cluster on the number of failures. Numerically, the major challenge is the identification of this cluster and the calculation of its size. Here, we propose an efficient algorithm to tackle this problem. We show that the algorithm scales as \(O(N \log N) \), where \(N \) is the number of nodes in the network, a significant improvement compared to \(O(N^2) \) for a greedy algorithm, which permits studying much larger networks. Our new strategy can be applied to any network topology and distribution of interdependencies, as well as any sequence of failures.

DOI: 10.1103/PhysRevE.87.043302

PACS number(s): 05.10.—a, 64.60.ah, 64.60.aq, 89.75.Hc

I. INTRODUCTION

Most real networks are strongly dependent on the functionality of other networks [1–5]. For example, the performance of a power grid is assured by a system of global monitoring and control, which depends on a communication network. In turn, the servers of the communication network rely on the power grid for power supply. This interdependence between networks strongly affects their resilience to failures. Buldyrev et al. [6] have developed the first strategy to analyze this coupling in the framework of percolation. To the conventional representation of complex networks, where nodes are the agents (e.g., power stations or servers) and edges are the interactions (either physical or virtual), they added a new type of edges, namely, dependency links, to represent the internetwork coupling. Such links couple two nodes from different networks in such a way that if one fails the other cannot function either. They have shown that this coupling promotes cascading failures and strongly affects the systemic risk, drawing the attention towards the dynamics of coupled systems. A different framework based on epidemic spreading has also been proposed leading to the same conclusions [7].

To quantify the resilience of interconnected networks, one typically simulates a sequence of node failures (by removing nodes) and measures the dependence of the size of the largest connected component on the number of failures [8,9]. The first studies have shown that, depending on the strength of the coupling (e.g., fraction of dependency links), at the percolation threshold, this function can change either smoothly (weak coupling) or abruptly (strong coupling) [10]. As reviewed in Refs. [10–12], several works have followed studying, for example, the dependence on the coupling strength [8,13], the role of network topology, and the phenomenon on geographically embedded networks [14,15]. A more general framework was also developed to consider a network of networks [16–18]. In all cases, astonishing properties have been revealed, which were never observed for isolated systems.

For many cases of interest, the size of the largest component needs to be computed numerically as the available analytic formalisms are limited to very simple networks, interdependencies, and sequence of failures [6,10,13]. However, the efficient determination of this largest component and its size is not straightforward. The state-of-the-art algorithm for this calculation relies on the fact that the removal sequence is independent of the size of the largest connected cluster [19,20]. In this case, the size of the largest connected cluster can be calculated efficiently in \(O(N \log N) \), where \(N \) is the number of nodes in the network. However, as soon as the sequence depends on the size of the largest connected component this algorithm is not applicable. While most of the failure sequences are independent of the largest component, the largest component is crucial in the case of interdependent networks. When a node is removed (fails) the triggering of cascading failures and multiple interdependencies need to be considered. Here we propose an efficient algorithm, where a special data structure is used for the fast identification of the largest fragment when the network breaks into pieces. We show that the algorithm scales as \(O(N \log N) \) while the one of a greedy algorithm is \(O(N^2) \). This strategy permits studying very large system sizes and many samples, which leads to much more accurate statistics. Since our description is generic, it is possible to consider any network and distribution of interdependencies, as well as sequences of failures [21–23].

The paper is organized in the following way. The algorithm is described in Sec. II and its efficiency discussed in Sec. III. In Sec. IV we make some final remarks and discuss possible future applications.

II. ALGORITHM

Figure 1 shows the dependence of the fraction of nodes in the largest connected cluster \(s \) on the fraction of removed nodes \(1 – p \), for two Erdős-Rényi networks with more than one
FIG. 1. (Color online) Comparison between numerical and analytic results for percolation on two coupled Erdős-Rényi networks. In the main plot, the numerical (data points) results for the size of the largest connected cluster are obtained from two coupled networks with $N = 512,000$ nodes, average degree $(k) = 4$ each, and coupling strengths of $q = 1, 0.9,$ and 0.7 (from left to right). The lines correspond to the analytic results computed as in Ref. [24]. The numerical results are averages over 50 different pairs of networks and 100 sequences of random failures. All numerical and corresponding analytic curves overlap. In the inset we see the number of iterations per failure, defined as the number of times a cascade triggered by a node failure propagates back and forth between the two networks. The lines tag the analytic results for the percolation threshold. Initially, a node removal does not trigger any cascade but, as one approaches the percolation threshold, very large cascades occur, resulting in the collapse of the entire system.

FIG. 2. Example of the level structure for a small network. An energy number is assigned to each node, which corresponds to the shortest distance to the root node (the most central node in this example). When a node in level L is removed, the ordering needs to be updated. All neighbors at a higher level $L + 1$ which are connected to another node in level L remain in the same level, as shown in Fig. 3. The nodes in level $L + 1$ which have no further neighbors in level L but only in level $L + 1$, need to be updated (moved one level up) as well as the entire branch connected to them. In those two cases, the size of the largest connected component in this iteration is just changed by unity (the initially removed node). If neither of those cases occurs, i.e., all neighbors have a higher level, we proceed iteratively through the branch of neighbors with a breadth first search (up in level) until we detect one node in level L' which has at least one neighbor in level L' or $L' - 1$ which is not detected by the breadth first search. In this case, the entire branch of detected nodes is updated, starting from the last node in level L'. On the other hand, if no node in the branch establishes a connection with the other branches, it implies that the largest component was split into subnetworks and one has to decide which one is the largest. Then the size of the largest connected component is adjusted and all nodes reorganized (see example in Fig. 4).

III. NUMBER OF COMMANDS AND COMPUTATIONAL TIME

To assess the efficiency of the algorithm, we study the dependence of the number of commands C_N on the network size N. We count as a command every time a node in one of the networks is removed, its level changed, or just checked and any other node in the network. For random networks, this depth approximately scales with $\log N$ [25,26] and it scales even slower for many scale-free networks [27]. Note that, in the case of n coupled networks, we will have n different hierarchical structures, i.e., one per network, representing its largest component.

FIG. 3. (Color online) Example of a node removal. In this case, the red (light) node with $L = 1$ is removed. Since the only neighbor of this node with higher level has another neighbor with $L = 1$, the size of the largest connected cluster is only reduced by one.
FIG. 4. (Color online) Example of a reorganization due to a node removal. In the example, the root node is removed; thus the level structure has to be reorganized. First, the largest subnetwork is identified and all the other subnetworks are removed. One of the surviving first neighbors of the old root is randomly selected to become the new root. Then the levels of its neighbors are updated as well as their branches. Note that the update of a branch is complete when the level of a node remains the same. In the worst case scenario, the complexity of the entire update process is \(O(N) \), where \(M \) is the size of the entire branch.

during the reorganization of the level structure. Figure 5 (main plot) shows the size dependence of the average \(C_N \) for two coupled Erdős-Rényi networks with average degree \(k = 4 \). The line fitting the data points is \(C_0 \log(N)N^{-C_1} \), where \(C_1 = 1.02 \pm 0.03 \). In a greedy algorithm where the largest connected cluster is recalculated by counting all remaining nodes in this component after each node removal, the number of commands is expected to scale as \(O(N^2) \). With our data structure, this limit where all nodes are checked would correspond to the worst case scenario, where the removed nodes would systematically be the root. Therefore, our algorithm represents a significant improvement over the traditional greedy algorithm. In Fig. 5, we plot the number of commands \(C_N \) for two coupled scale-free networks, with degree exponent \(\gamma = 2.5 \). The same scaling with the network size was found, with \(C_1 = 0.97 \pm 0.04 \). We finally study the scaling for a two-dimensional lattice and observe a significantly different scaling. The data follows a polynomial scaling \(f(N) = C_0 N^{C_1} \) with \(C_1 = 1.31 \pm 0.01 \). This can be explained by the scaling of the average shortest path with network size. While the shortest path for the first two networks scales with \(O(\log N) \), in the case of the two-dimensional lattice it scales with \(O(\sqrt{N}) \). In general, the scaling of our algorithm is related to the scaling of the average shortest path.

Figure 6 shows the size dependency of the average computational time \(t(N) \) required to compute an entire sequence of node removals. We show the ratio \(t(N)/t(N/2) \) obtained from two computers with 6 MB and 12 MB CPU cache for Erdős-Rényi networks (main plot) and scale-free networks (inset). In both cases, we observe a crossover between two different scaling regimes at a certain system size \(N^* \). This crossover at \(N^* = 4000 \) and \(N^* = 8000 \) for 6 MB cache and 12 MB cache, respectively, depends on the size of the CPU cache memory (L2). For network sizes \(N < N^* \), the size of the system is such that all information can be kept inside the CPU cache, which is more efficient. For \(N > N^* \), not all information fits in the CPU cache and the efficiency decreases, since the access to the random access memory (RAM) is slower.

In the first regime \(N < N^* \) the increase of the CPU time is consistent with an algorithm scaling as \(O(N \log N) \). In the

FIG. 5. (Color online) Number of used commands in the program \(C_N \) versus the system size \(N \). The function \(f(N) = C_0 \log(N)N^{-C_1} \) is fitted to the observed values. The fitting parameter \(C_1 \) is \(1.02 \pm 0.03 \) for Erdős-Rényi networks and \(0.97 \pm 0.04 \) for scale-free networks, respectively. In contrast, for two-dimensional lattices the number of commands follows \(f(N) = C_0 N^{-C_1} \) with \(C_1 = 1.31 \pm 0.01 \).

FIG. 6. System-size dependence of the average CPU time \(t(N) \), in seconds, necessary to calculate one sequence of node removals. We see the ratio between two times \(t(N)/t(N/2) \) for two different machines (different capacity of the CPU cache memory) for two coupled Erdős-Rényi (ER, main plot) and scale-free networks (SF, inset). Results are averages over 100 sequences of random removals and 50 different networks.
second regime $N \gg N^*$ the CPU time seems to converge to the same logarithmic scaling.

IV. FINAL REMARKS

We have proposed an efficient algorithm to monitor the size of the largest connected component during a sequence of node failures, in a system of interdependent networks. Although, in general, the algorithm can be considered to study percolation in both isolated and coupled networks, it is tailored for general, the algorithm can be considered to study percolation failures, in a system of interdependent networks. Although, in the network into pieces occurs in a discontinuous way [6].

The possibility of accurate measurements, with reduced finite-size effects, permits one to determine with high precision the critical coupling above which the percolation transition is discontinuous [13]. Our algorithm can now be applied to any network topology, sequence of failures (e.g., random, high degree, or high betweenness), distribution of dependency links (e.g., random or systematic) [30], and number of interconnected networks [10], helping clarify how to mitigate the systemic risk stemming from interdependencies [8]. As an example, we show in Fig. 7 the response of two interconnected Erdős-Rényi networks to four different types of node failure, namely, random failure, random failure of nodes in the largest connected component, failure of high degree nodes, and failure of high degree nodes in the largest connected component.

ACKNOWLEDGMENTS

We acknowledge financial support from the ETH Risk Center, from the Swiss National Science Foundation under Contract No. 200021 126853 and by New England UTC Year 23 grant, awards from NEC Corporation Fund, and the Solomon Buchsbaum Research Fund.
