Evidence for the decay $B^0 \to \omega\omega$ and search for $B^0 \to \omega\phi$

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Université de Nice-Sophia Antipolis, Université de Provence, CNRS/IN2P3, Laboratoire de Physique des Particules de Nice (LPP), 06108 Nice Cedex 2, France
3INFN Sezione di Bari, I-70126 Bari, Italy
4INFN Sezione di Bari, Università di Bari, I-70126 Bari, Italy
5University of Bergen, Institute of Physics, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
EVIDENCE FOR THE DECAY $B^- \to \omega\omega$

We describe searches for B meson decays to the charmless vector-vector final states $\omega\omega$ and $\omega\phi$ with $471 \times 10^6 B\bar{B}$ pairs produced in e^+e^- annihilation at $\sqrt{s} = 10.58$ GeV using the BABAR detector at the PEP-II collider at the SLAC National Accelerator Laboratory. We measure the branching fraction $B(B^0 \to \omega\omega) = (1.2 \pm 0.3^{+0.1}_{-0.2}) \times 10^{-6}$, where the first uncertainty is statistical and the second is systematic, corresponding to a significance of 4.4 standard deviations. We also determine the upper limit $B(B^0 \to \omega\phi) < 0.7 \times 10^{-6}$ at 90% confidence level. These measurements provide the first evidence for the decay $B^0 \to \omega\omega$, and an improvement of the upper limit for the decay $B^0 \to \omega\phi$.

DOI: 10.1103/PhysRevD.89.051101 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

Charmless decays of B mesons to two vector mesons have been of significant recent interest, in part because of the unexpectedly small value of the longitudinal polarization component observed in $B \to \phi K^*$ decays [1,2]. The resulting large transverse spin component could be due either to unanticipated large Standard Model (SM) contributions [3] or to non-SM effects [4]. Further information and SM constraints on these decays can be obtained from measurements of, or limits on, the branching fractions of related decays, such as $B^0 \to \omega\omega$ and $B^0 \to \omega\phi$ [5]. These latter decays are also important because they contain relatively unstudied $b \to d$ quark transitions ($B^0 \to \omega\omega$ however is expected to be dominated by $b \to u$ transitions) and are sensitive to the phase angles α and γ of the Cabibbo-Kobayashi-Maskawa quark mixing matrix [6]. Deviations of the observed branching fractions from their SM expectations could provide evidence for physics beyond the SM.

Theoretical predictions for the SM branching fractions lie in the range $(0.5–3) \times 10^{-6}$ for $B^0 \to \omega\omega$ and
We apply the invariant mass requirements listed in Table I for the \(\eta^0 \), \(\omega \), and \(\phi \) mesons. After selection, the \(\eta^0 \) is constrained to its nominal mass [13], which improves the \(\omega \) mass resolution. The restrictions on the \(\omega \) and \(\phi \) meson masses are loose enough to incorporate sideband regions.

A \(B \) meson candidate is characterized kinematically by the energy-substituted mass \(m_{\text{ES}} = \sqrt{\left(\frac{1}{2} \mathbf{p}_B \cdot \mathbf{p}_B \right)^2 / E_B^2 - \mathbf{p}_B^2} \) and the energy difference \(\Delta E = E_{\bar{B}} - \frac{1}{2} \mathbf{p}_B \cdot \mathbf{p}_B \), where \((E_{\bar{B}}, \mathbf{p}_B)\) are the four-momenta of the \(Y(4S) \) and the \(B \) candidate, respectively, and the asterisk denotes the \(Y(4S) \) rest frame (quantities without asterisks are measured in the laboratory frame). For correctly reconstructed signal candidates, \(\Delta E \) and \(m_{\text{ES}} \) peak at values of zero and \(m_B \), respectively, with resolutions of about 30 and 3.0 MeV. Thus, signal events for this analysis mostly fall in the regions \(|\Delta E| \leq 0.1\) and \(5.27 \leq m_{\text{ES}} \leq 5.29 \) GeV. To incorporate sideband regions, we require \(|\Delta E| \leq 0.2\) and \(5.24 \leq m_{\text{ES}} \leq 5.29 \) GeV. The average number of candidates found per selected event is 1.3 for \(B^0 \to \omega \phi \) decays and 1.7 for \(B^0 \to \omega \omega \) decays. We choose the candidate with the smallest \(\chi^2 \) value constructed from the deviations of the \(\omega \) and \(\phi \) resonance masses from their nominal values [13].

Backgrounds arise primarily from random combinations of particles in continuum events \((e^+ e^- \rightarrow q\bar{q}) \) with \(q = u, d, s, c \). We reduce this background by using the angle \(\theta_T \) in the \(Y(4S) \) rest frame between the thrust axis [14] of the \(B \) candidate and the thrust axis of the other charged and neutral particles in the event. The distribution of \(|\cos \theta_T|\) is sharply peaked near 1.0 for \(q\bar{q} \) jet pairs, and nearly uniform for \(B \) meson decays. We require \(|\cos \theta_T| < 0.9\) for \(B^0 \to \omega \phi \) and \(|\cos \theta_T| < 0.8\) for \(B^0 \to \omega \omega \).

We employ a maximum-likelihood fit, described below, to determine the signal and background yields. For the purposes of this fit, we construct a Fisher discriminant [15] \(\mathcal{F} \) that combines four variables defined in the \(Y(4S) \) frame: the polar angles with respect to the beam axis of the \(B \) meson momentum and \(B \) thrust axis, and the zeroth and second angular moments \(L_0 \) and \(L_2 \) of the energy flow about the \(B \) thrust axis. The moments are defined by \(L_j = \sum_i p_i \times |\cos \theta_i|^j \), where \(\theta_i \) is the angle with respect to the \(B \) thrust axis of a charged or neutral particle \(i \), \(p_i \) is its momentum, and the sum excludes the \(B \) candidate daughters.

Table I. Selection requirements on the invariant mass of \(B \)-daughter intermediate states.

<table>
<thead>
<tr>
<th>State</th>
<th>Inv. mass (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta^0)</td>
<td>(120 < m_{\text{ES}} < 150)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(740 < m_{\text{ES}} < 820)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>(1009 < m_{\text{ES}} < 1029)</td>
</tr>
</tbody>
</table>
EVIDENCE FOR THE DECAY ...

From simulated event samples produced with Monte Carlo (MC) event generators [16], we identify the most important backgrounds that arise from other BB decay modes. Most of the BB background does not peak in m_{ES} or ΔE and is grouped with continuum events into a “combinatoric” background category. Other BB decay modes, such as $B^0 \rightarrow \omega \phi^0$, $B^0 \rightarrow \omega \phi^0$, $B^0 \rightarrow \omega \phi^0$, $B^0 \rightarrow \omega \phi^0$, etc., peak in m_{ES} and/or ΔE and are referred to as “peaking” background. All peaking modes are grouped together into a single background component, with a broad peak centered at negative values of ΔE, and which is fitted in data simultaneously with the signal and combinatoric background components.

We obtain signal and background yields from extended unbinned maximum-likelihood fits with input observables ΔE, m_{ES}, F, and, for the vector meson $V = \omega$ or ϕ, the mass m_V and the cosine of the helicity angle $\cos \theta_V$. For each ω meson, there is an additional helicity angle input observable, $\cos \phi$, provided by the polar angle, with respect to the ω flight direction, of the π^0 in the $\pi^+\pi^−$ rest frame. This angle is uncorrelated with the other input observables and has a distribution that is proportional to $\sin^2 \Phi_{\omega}$ for signal. For background, the angular distribution is nearly flat in $\cos \phi$, and its deviation from flatness is parameterized by separate third-order polynomials for combinatoric and for peaking BB backgrounds. For each event i and component j (signal, combinatoric background, peaking BB background) we define the probability density function (PDF)

$$P_j = P_j(m_{ES})P_j(\Delta E)P_j(F)$$

$$\times P_j(m_{V_1}, m_{V_2}, \cos \theta_{V_1}, \cos \theta_{V_2})$$

$$\times P_j(\cos \Phi_{\omega})P_j(\cos \phi),$$

where the last of the P_j terms is not present for $B^0 \rightarrow \omega \phi$. The likelihood function is

$$L = e^{-(\sum Y_j)} \prod_{j=1}^N Y_j P_j^N,$$

where Y_j is the event yield for component j and N is the number of events in the sample.

For signal events, the PDF factor

$$P_{\text{sig}}(m_{V_1}, m_{V_2}, \cos \theta_{V_1}, \cos \theta_{V_2})$$

takes the form

$$P_{1,\text{sig}}(m_{V_1})P_{2,\text{sig}}(m_{V_2})Q(\cos \theta_{V_1}, \cos \theta_{V_2}),$$

where Q corresponds to the right-hand side of Eq. (1) after modification to account for detector acceptance. For combinatoric background events, the PDF factor is given for each vector meson independently by

$$P_{\text{cont}}(m_{V_1}, \cos \theta_{V_1})$$

$$= P_{\text{peak}}(m_{V_1})P_{\text{peak}}(\cos \theta_{V_1}) + P_{\text{cont}}(m_{V_1})P_{\text{cont}}(\cos \theta_{V_1}),$$

(5)

distinguishing between genuine resonance (P_{peak}) and combinatoric (P_{cont}) components. The background PDFs $P_{\text{peak}}(\cos \theta_{V_1})$ and $P_{\text{cont}}(\cos \theta_{V_1})$ are given by separately fitted third-order polynomials. For the peaking BB background, we assume that all four mass and helicity angle observables are independent.

To describe the PDFs for signal, we use the sum of two Gaussians for $P_{\text{sig}}(m_{ES})$ and for $P_{\text{sig}}(\Delta E)$. An asymmetric Gaussian is used for $P_{\text{sig}}(F)$, i.e., two half-Gaussian distributions (one on the right side of the mean and one on the left side) with different values for the standard deviation, summed with a small additional Gaussian component to account for misreconstructed signal events. The m_{ES}, ΔE, and F PDFs for peaking BB background have the same functional form as for signal events, but their parameters are determined separately. The genuine resonance components of $P_j(m_{V})$ are both described by relativistic Breit-Wigner distributions, each convolved with the sum of two Gaussians to account for detector resolution, while the combinatoric components of $P_j(m_{V})$ are described by third-order polynomials. For the combinatoric background category, the m_{ES} distribution is described by an ARGUS function $A(m_{ES}) \propto x \sqrt{1 - x^2} \exp \left\{ -\xi (1 - x^2) \right\}$ (with $x = m_{ES}/E_B$) [17], the ΔE distribution by a second-order polynomial, and the F distribution by an asymmetric Gaussian summed with an additional Gaussian. The background PDF parameters that are allowed to vary in the fit are the ARGUS function parameter ξ for m_{ES}, the polynomial coefficients describing the combinatorial and the peaking BB components for ΔE and m_{V}, and the BB peak position and the two standard-deviation parameters of the asymmetric Gaussian for F.

For signal events, the PDF parameters are determined from simulation. We study large control samples of $B \rightarrow D^+X$ events with similar topology to the signal modes, such as $B^0 \rightarrow D^-\rho^+$, to verify the simulated resolutions in m_{ES} and ΔE. We make (small) adjustments to the signal PDFs to account for any differences that are found.

In the fit to data, 13 parameters (out of around 130) are allowed to vary for each mode including the yields Y_j of the signal, total peaking BB background, and total combinatoric background, and ten parameters of the continuum background PDFs. For both modes, we set f_L to 0.88, a value consistent with theoretical expectation [10]. The event yields with their statistical uncertainties are presented in Table II.

We evaluate possible biases in the signal yields, which might arise as a consequence of neglected correlations between the discriminating variables, by applying our fit to an ensemble of simulated experiments. The numbers of
signal and peaking $B\bar{B}$ background events in these samples are Poisson-distributed around the observed values and are extracted randomly from MC samples that include simulation of the detector. The largest of the correlations (approximately 15%) is between the analysis variables m_{ES} and ΔE. The signal yield bias Y_{bias} we find for each mode is provided in Table II.

The resulting branching fractions are calculated as

$$B = \frac{Y_{\text{sig}} - Y_{\text{bias}}}{e N_{B\bar{B}}},$$

where the signal efficiencies e are evaluated using MC and data control samples. The total number of $B\bar{B}$ pairs in data $N_{B\bar{B}}$ is evaluated using a dedicated analysis [18].

The systematic uncertainties on the branching fractions are summarized in Table III. The uncertainty attributed to the yield-bias correction is taken to be the quadrature sum of two terms: half of the bias correction and the statistical uncertainty on the bias itself. The uncertainties of PDF parameters that are fixed in the fit are evaluated by taking the difference between the respective parameter values determined in fits to simulated and observed $B \rightarrow D_{0}^{0}X$ events. Varying the signal PDF parameters within these uncertainties, we estimate yield uncertainties for each mode. Similarly, the uncertainty due to the modeling of the peaking $B\bar{B}$ background is estimated as the change in the signal yield when the number of peaking $B\bar{B}$ background events is fixed (to within one standard deviation) of the expectation from simulation. We evaluate an uncertainty related to the constraint that all charged particles in the B candidate emanate from a common vertex by the change in signal yield when this requirement is removed. The uncertainty associated with f_L is evaluated by the change relative to the standard result when f_L is varied between the extreme values of 0.58 (the value of f_L in $B \rightarrow \phi K^*$ decays) and 1.0.

Systematic uncertainties associated with the selection efficiency, evaluated with data control samples, are $0.8\% \times N_t$ and $3.0\% \times N_{\pi^0}$, where N_t is the number of tracks and N_{π^0} the number of π^0 mesons [19]. The uncertainty of $N_{B\bar{B}}$ is 0.6% [18]. World averages [13] provide the uncertainties in the B-daughter product branching fractions (1–2%). The uncertainty associated with the requirement on $\cos \theta_T$ is 1–2% depending on the decay mode.

Table II also presents the measured branching fractions, total associated uncertainties, and significances.

FIG. 1 (color online). Distribution of $-2 \ln \mathcal{L}(B)$ (normalized to the maximum likelihood \mathcal{L}_0) for $B^0 \rightarrow \omega\omega$ (left) and $B^0 \rightarrow \omega\phi$ (right) decays. The dashed curves include only statistical uncertainties; the solid curves include systematic uncertainties as well.

TABLE II. Fitted signal yield Y_{sig} and its statistical uncertainty, signal yield bias Y_{bias}, peaking $B\bar{B}$ and combinatoric background yields Y_{peak} and Y_{comb} and their statistical uncertainties, signal detection efficiency e and its statistical uncertainty, daughter branching fraction product $\prod B_i$ and its total uncertainty, significance S (with systematic uncertainties included), measured branching fraction B (bold if evidence for signal is seen), and 90% C.L. upper limit (UL, bold if no evidence) for the $B^0 \rightarrow \omega\omega$ and $B^0 \rightarrow \omega\phi$ decay modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Y_{sig} (events)</th>
<th>Y_{bias} (events)</th>
<th>Y_{peak} (events)</th>
<th>Y_{comb} (events)</th>
<th>ϵ (%)</th>
<th>$\prod B_i$ (%)</th>
<th>S</th>
<th>B (10^{-6})</th>
<th>B UL (10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega\omega$</td>
<td>69.0^{+16.4}_{-15.2}</td>
<td>7.3</td>
<td>3810 ± 260</td>
<td>53390 ± 340</td>
<td>14.0 ± 0.1</td>
<td>77.5 ± 1.2</td>
<td>4.4</td>
<td>1.2 ± 0.3</td>
<td>1.9</td>
</tr>
<tr>
<td>$\omega\phi$</td>
<td>$-2.8^{+5.7}_{-4.0}$</td>
<td>-2.9</td>
<td>473^{+84}_{-80}</td>
<td>17730^{+160}_{-150}</td>
<td>8.7 ± 0.1</td>
<td>43.2 ± 0.6</td>
<td>0.0</td>
<td>$0.0^{+0.3}_{-0.2} \pm 0.1$</td>
<td>0.7</td>
</tr>
</tbody>
</table>

TABLE III. Estimated systematic uncertainties on the branching fractions $B(B^0 \rightarrow \omega\omega)$ and $B(B^0 \rightarrow \omega\phi)$. Additive and multiplicative uncertainties are independent and are combined in quadrature. Note that only the additive uncertainties are consequential in the case of the $B^0 \rightarrow \omega\phi$ mode, as essentially zero signal is observed in that mode.

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>$B^0 \rightarrow \omega\omega$</th>
<th>$B^0 \rightarrow \omega\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive uncertainties (events):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit bias</td>
<td>5.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Fit parameters</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>$B\bar{B}$ backgrounds</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Total additive (events)</td>
<td>5.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Multiplicative uncertainties (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_L variation</td>
<td>$+25.3$ -8.3</td>
<td>$+18.3$ -48.0</td>
</tr>
<tr>
<td>Vertex finding efficiency</td>
<td>$+5.3$ -0.0</td>
<td>$+25.0$ -50.0</td>
</tr>
<tr>
<td>Track finding efficiency</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>π^0 efficiency</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Kaon identification</td>
<td>—</td>
<td>4.5</td>
</tr>
<tr>
<td>$\cos \theta_T$ cut efficiency</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Submode branching fractions</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>MC statistics</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Total number of $B\bar{B}$ in data</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Total multiplicative (%)</td>
<td>$+26.3$ -9.7</td>
<td>$+31.5$ -69.5</td>
</tr>
</tbody>
</table>
The significance, which we denote in terms of the analogous number of Gaussian standard deviations, is taken as the square root of the difference between the value of $-2 \ln \mathcal{L}$ (with systematic uncertainties included) for zero signal events and the value at its minimum. The behavior of $-2 \ln \mathcal{L}(\mathcal{B})$ for the two modes is shown in Fig. 1. We find evidence for $B^0 \to \omega \omega$ decays at the level of 4.4 standard deviations including systematic uncertainties. For each mode we also quote a 90% C.L. upper limit, taken to be the branching fraction below which lies 90% of the total of the likelihood integral in the positive branching fraction region. In calculating branching fractions we assume that the decay rates of the $Y(4S)$ to B^+B^- and $B^0\bar{B}^0$ are equal [13].

Figure 2 presents the data and PDFs projected onto m_{ES} and ΔE, for subsamples enriched with signal events via a set of selection criteria on the analysis variables. The selection criteria are $|m_e - m_{\omega\omega}| < 15$ MeV, $|m_\phi - m_{\omega\omega}| < 8$ MeV, $F < 0.1$, $|\cos \theta_\omega| < 0.95$, and $|\cos \theta_\omega| < 0.8$, with $|\Delta E| < 30$ MeV for the two m_{ES} plots and $m_{ES} > 5.274$ GeV for the two ΔE plots. These criteria retain 23% (40%) of $B^0 \to \omega \omega (B^0 \to \omega \phi)$ signal events, and in both modes reject over 99% of the background events.

In summary, we have performed searches for $B^0 \to \omega \omega$ and $\omega \phi$ decays. We establish the following branching fraction and upper limit:

$$\mathcal{B}(B^0 \to \omega \omega) = (1.2 \pm 0.3^{+0.3}_{-0.2}) \times 10^{-6} \quad \text{and}$$
$$\mathcal{B}(B^0 \to \omega \phi) < 0.7 \times 10^{-6} \quad \text{(90% C.L.)}.$$

For the branching fraction, the first uncertainty is statistical and the second is systematic. These results provide the first evidence for $B^0 \to \omega \omega$ decays and improve the constraint on the $B^0 \to \omega \phi$ branching fraction. Our results are in agreement with theoretical estimates [7,10].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom), BSF (USA-Israel). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).

