ChAT-ChR2-EYFP Mice Have Enhanced Motor Endurance But Show Deficits in Attention and Several Additional Cognitive Domains

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1523/JNEUROSCI.0395-13.2013</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Neuroscience</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Nov 04 17:33:12 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/89127</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in many forms of cognitive and motor processing. Recent studies have used bacterial artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT–ChR2–EYFP) to dissect cholinergic circuit connectivity and function using optogenetic approaches. We report that a mouse line used for this purpose also carries several copies of the vesicular acetylcholine transporter gene (VAChT), which leads to overexpression of functional VAChT and consequently increased cholinergic tone. We demonstrate that these mice have marked improvement in motor endurance. However, they also present severe cognitive deficits, including attention deficits and dysfunction in working memory and spatial memory. These results suggest that increased VAChT expression may disrupt critical steps in information processing. Our studies demonstrate that ChAT–ChR2–EYFP mice show altered cholinergic tone that fundamentally differentiates them from wild-type mice.

Introduction

Acetylcholine (ACh) has multiple functions in the CNS, including modulation of attention and memory encoding, consolidation, and retrieval (Prado et al., 2013). Understanding the precise roles of ACh in distinct brain regions has remained a challenge because of the myriad of cholinergic receptors that can modulate postsynaptic and presynaptic cholinergic activities (Hasselmo and Sarter, 2011). Genetic approaches have been used to determine the specific roles of ACh in different brain regions (Guzman et al., 2011; Martyn et al., 2012; Patel et al., 2012), as well as to pinpoint precise functions of ACh receptors (for review, see Wess et al., 2007; Changeux, 2010). More recently, optogenetics has also been used to further dissect and understand cholinergic signaling in the CNS (Witten et al., 2010; Nagode et al., 2011; Ren et al., 2011; Zhao et al., 2011; Gu et al., 2012). One of the approaches to specifically activate cholinergic neurons using optogenetics is in vivo injection of Cre-inducible viral vectors carrying the channelrhodopsin-2 (ChR2) gene. Cholinergic specificity is ensured by using bacterial artificial chromosome (BAC) transgenic mice expressing Cre recombinase under the control of the choline acetyltransferase (ChAT) promoter (Gradinaru et al., 2007). Alternatively, BAC transgenic mice expressing ChR2 protein under the control of the ChAT promoter (ChAT–ChR2–EYFP) have also been used, for example, to examine ACh/glutamate cotransmission in neurons thought to be strictly cholinergic (Ren et al., 2011; Zhao et al., 2011). However, a unique characteristic of the ChAT locus, also called cholinergic gene locus (Eiden, 1998), is that the entire open reading frame for the vesicular acetylcholine transporter (VACHT) lies within the intron between the first and second exons of the ChAT gene (Bejanin et al., 1994; Erickson et al., 1994; Roghani et al., 1994; Cervini et al., 1995; Naciff et al., 1997). Thus, the BAC containing the ChAT gene used to generate these mouse lines carries also the VACHT gene.

Importantly, increased expression of VACHT can alter ACh release. For example, in vitro overexpression of the VACHT in Xenopus neurons results in increased amplitude of miniature currents and in more synaptic vesicles containing ACh (Song et al., 1997). Moreover, a recent report indicates that a mouse line containing four copies of the ChAT–BAC driving the expression of GFP presents increased ACh release (Nagy and Aubert, 2012). However, the consequences of VACHT overexpression for cognitive functions are not yet understood. Because ChAT–ChR2–EYFP mice have the potential to become widely used by the neuroscience community as a tool to determine the conse-
quences of cholinergic activation for behavior manifestations, we
determined the extent by which VACHT is overexpressed in this
mouse line and whether overexpression of VACHT affects mouse
behavior.

We report that ChAT–ChR2–EYFP mice have several extra
copies of the VACHT gene and express increased VACHT mRNA
and protein levels. ACh release is increased threefold in these
mice. Importantly, we find that ChAT–ChR2–EYFP have in-
creased physical endurance, consistent with increased cholinergic
tone. In contrast with the improved motor function, cognitive
tests demonstrated that increased expression of VACHT inter-
feres with multiple domains of cognitive function.

Materials and Methods

Animals
All experiments were performed in compliance with the Canadian Council
of Animal Care guidelines for the care and use of animals. The protocol was
approved by the University of Western Ontario Institutional Animal Care
and Use Committee (2008-127). All efforts were made to minimize the
suffering of animals. ChAT–ChR2–EYFP mice [B6.Cg-Tg(Chat-
COP4*H134R/EYFP)6Gfng/J; The Jackson Laboratory] and VGAT–ChR2–
EYFP mice [B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J; The Jackson
Laboratory] were described previously (Zhao et al., 2011) and were main-
thained as hemizygous. Control mice consisted of ChAT–ChR2–EYFP or
VGAT–ChR2–EYFP negative littermates. Only male mice were used in these
studies. Animals were housed in groups of two to four per cage in a
temperature-controlled room with a 14/10 light/dark cycle. Food and water
were provided ad libitum. Behavioral assessment started with less dem-
ding (locomotor activity) to more demanding (depression and anxiety-like
behavior, spatial memory in the Barnes maze, water maze, and then atten-
tion) tasks. Treadmill experiments were done after the water maze and be-
fore attention measurements. There was an interval of 3–5 d between distinct
behavioral tasks. The experimenter was blind to the genotypes, and, in most
behavioral tasks, software-based analysis was used to score mouse perfor-
mance. All behavioral experiments were performed from 9:00 A.M. to 4:00
P.M. in the light cycle, except for the light/dark transition (always performed
after 7:00 P.M.) and locomotor activity tests (performed from 5:00 P.M. to
9:00 P.M.; lights off at 7:00 P.M.).

Immunofluorescence microscopy
Mice were anesthetized using a ketamine (100 mg/kg)-xylene (20 mg/kg)
solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
dehyde (v/v) in 1

 solution and then killed by transcardial perfusion with 4% paraformal-
 adequate way.
Rotarod
The rotarod task was conducted as described previously to assess motor learning and acrobatic motor skill (Prado et al., 2006; de Castro et al., 2009a).

Locomotor activity
Spontaneous locomotor activity in a new environment to determine exploratory behavior was recorded using automated locomotor boxes essentially as described previously (Guzman et al., 2013).

Spontaneous alternations Y-maze
The spontaneous alternations Y-maze task to investigate working memory was performed using a symmetrical, three-armed Y-maze as described previously (de Castro et al., 2009a). All sessions were recorded. Both the order and the number of arm entries were recorded. A spontaneous alternation was counted when the mouse visited all three arms in a row without revisiting a previous arm.

Barnes maze
Barnes maze testing to determine spatial memory was performed as described previously (Patil et al., 2009; Martyn et al., 2012) using a white circular platform (92 cm in diameter) with 20 equally spaced holes (5 cm in diameter; 7.5 cm between holes), elevated 105 cm above the floor (San Diego Instruments), and spatial cues (posters, streamers, and plastic props) were distributed around the pool. Sessions were recorded and analyzed using the ANY-Maze Software.

Morris water maze
The spatial version of the Morris water maze (MWM) was conducted as described previously to investigate spatial memory (Vorhees and Williams, 2006; Martyn et al., 2012). Briefly, animals were given four training trials a day (90 s each) for 4 d, with a 15 min intertrial interval (ITI). On the fifth day, memory was assessed via a probe trial (60 s), during which the platform is removed and time spent in the target quadrant is measured. The task was performed in a 1.5-m-diameter pool with 25°C water. The platform was submerged 1 cm below the surface of the water, and spatial cues (posters, streamers, and plastic props) were distributed around the pool. Sessions were recorded and analyzed using the ANY-Maze Software.

Table 1. Rescue of lethality in VACHT^{del/del} mice

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number of mice born</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACHT<sup>wt/wt</sup></td>
<td>2</td>
</tr>
<tr>
<td>VACHT<sup>del/del</sup></td>
<td>7</td>
</tr>
<tr>
<td>ChAT–ChR2–EYFP VACHT<sup>wt/del</sup></td>
<td>10</td>
</tr>
<tr>
<td>ChAT–ChR2–EYFP VACHT<sup>del/del</sup></td>
<td>4</td>
</tr>
<tr>
<td>ChAT–ChR2–EYFP VACHT<sup>del/wt</sup></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
</tr>
</tbody>
</table>

ChAT–ChR2–EYFP mice were crossed to VACHT^{del/del} mice and offspring were then intercrossed. Genomic qPCR using primers that amplify the VACHT^{del} allele was used to identify live VACHT^{del/del} mice containing the ChAT BAC.

Figure 1. Overexpression of VACHT in ChAT–ChR2–EYFP mice. A, YFP expression in the CNS of ChAT–ChR2–EYFP mice (n = 3). B, VACHT and YFP gene copy numbers determined by genomic qPCR (n = 5). C, VACHT and ChAT mRNA expression in the striatum of wild-type and transgenic mice (n = 6 for both genotypes). D, VACHT protein expression in the hippocampus and brainstem with representative immunoblots (n = 3 for both genotypes). E, ChAT protein expression in the hippocampus and brainstem with representative immunoblots (n = 3 for both genotypes). F, Release of newly synthesized ACh in hippocampal slices (n = 4 for both genotypes). *p < 0.05, **p < 0.01, ***p < 0.001.
mouse was given a second trial with identical platform location and starting point. This was repeated with four unique starting location/platform location combinations a day. As for the cued variation, using a device to assess goal-directed behavior, mice were tested for 2 d using novel platform and starting location combinations. For this variation, the platform was at water level and a cue was placed on it (a plastic block). Sessions were recorded for both tests and were analyzed using the ANY-Maze Software.

Five-choice serial reaction time task

Pretraining. The five-choice serial reaction time (5-CSRT) task is used to determine attention in mice (Robbins, 2002; Romberg et al., 2011). Mice were trained in the 5-CSRT in automated Bussey-Saksida Mouse Touch Screen Systems model 81426 (Campden Instruments Limited). Schedules were designed and data were collected using the ABET II Touch software v.2.15 (Lafayette Instruments). Before being trained on the 5-CSRT task, mice were first put through a pretraining program. This consisted of first habituating the mouse to the testing chamber with the lights off for 15 min. The next day, the mouse was left in the chamber with the lights off for 20 min. At this time, the reward tray was primed with strawberry milkshake (Saputo Dairy Products), and a tone was played when the mouse entered the reward tray. Whenever the mouse returned to the reward tray, it received a reward paired with the tone. This was repeated the next 2 d for 40 min sessions (phase 1).

The next training phase (phase 2) involved pairing the reward with presentation of the stimulus (flash of light in one of the five windows) on the touchscreen. The stimulus appeared randomly, and, after 30 s, it was removed and a reward was given paired with a tone. If the mouse touched the screen while stimulus was displayed, it immediately received a reward. Once the mouse collected the reward, a new trial was initiated. This phase was repeated until the mouse completed 30 trials within 60 min (phase 2).

To further shape behavior, phase 3 involved displaying the stimulus randomly in one of the windows. The mouse had to touch the stimulus on the screen to receive a reward paired with a tone. There was no response to the mouse touching anything but the stimulus. Once again, this was repeated until the mouse completed 30 trials within 60 min. The next phase (phase 4) was identical to phase 3 except that the mouse had to initiate each trial by nose poking the reward tray. Criterion was 30 correct trials within 60 min.

Finally, in the last pretraining phase (phase 5), the previous procedure was repeated, but if the mouse touched an incorrect screen, it received a 5 s timeout, during which the chamber light was turned on. The final phase had a stricter criterion, requiring the mice to perform 30 trials in 60 min with 23 correct responses in 2 consecutive days.

For the 5-CSRT training phase, mice were trained to respond to brief flashes of light pseudorandomly displayed in one of the five spatial locations on the touchscreen. Each trial was initiated after the mouse poked the magazine. In this phase, the stimulus was delivered after a variable 5–10 s delay (delay period), during which the animal was required to attend to the screen. In case the mouse prematurely touched the screen during this delay, the response was recorded as premature and the mouse was punished with a 10 s timeout. The stimulus duration was initially set to 4 s, followed by a limited holding period of 5 s, during which the stimulus was absent but the mouse could still respond to the location (holding period). Each session lasted 50 trials or 1 h. Responses to the stimulus window during stimulus presence or the holding period were recorded as correct, whereas responses to any other window were recorded as incorrect. A correct choice was rewarded with a tone and food delivery. An incorrect response was punished with a 10 s timeout. A failure to respond to any window either during stimulus display or the holding period was recorded as an omission, and the mouse was punished with a 10 s timeout. Perseverative responses to the screen after premature, correct, and incorrect choices were also recorded. Our initial
goal was to have the performance of a mouse reaching criterion at 4 s stimulus duration (80% accuracy, 20% omissions for 3 consecutive days) and reduce the stimulus duration to 2 s. However, ChAT–ChR2–EYFP BAC mice were not able to reach criterion at 4 s stimulus duration. Therefore, we used another training procedure, that is, the same cohort of mice was trained in a 16 s stimulus duration, and when they reached criterion, the stimulus duration was reduced to 8 s. After reaching criterion with the 8 s stimulus, the mice were tested 2 more days, and the mean measures of those additional 2 d were used to assess baseline performance.

Probe trial. After finishing training at 8 s stimulus duration, mice were probed for attentional deficits in the following probe trial schedule: each mouse was tested over two sessions at a given stimulus duration (4 and 2 s). Between each different stimulus duration, the mouse was returned to an 8 s stimulus duration for two baseline sessions. The order of the probe trial sessions was semirandomized using a Latin square method.

5-CSRT task measurements. On all 5-CSRT task sessions, accuracy was defined as the total number of correct responses divided by the number of correct and incorrect responses (touches to a wrong window while the correct stimulus was still displayed). Rate of omissions were the proportion of omitted responses to total trials. Response latency was the time for the mouse to touch the correct stimulus from its onset. Reward collection latency was the time for the mouse to return to the reward tray once it had touched the correct stimulus. A premature response was counted when the mouse touched one of the windows before stimulus onset. Finally, a perseverative response was any identical response that occurred after a correct, incorrect, or premature response.

Figure 4. Assessment of anxiety and depressive-like behavior in ChAT–ChR2–EYFP mice. A, Number of arm entries in the elevated plus maze. B, Time spent in the open and closed arms. C, Immobility time in the forced swimming test. D, Immobility time in the tail suspension test (n = 8 for both genotypes).

Figure 5. ChAT–ChR2–EYFP mice have normal locomotor activity but impaired motor learning. A, Locomotor activity of wild-type or ChAT–ChR2–EYFP mice during the light (2 h) and dark (2 h) activity periods in an open arm. The test was done from 5:00 P.M. to 9:00 P.M. B, Habituation in the open field. C, Acrobatic motor performance and motor learning in the rotarod. Time spent on the rod. D, Distance traveled in the rotarod (*p < 0.05, significant difference between genotypes; †p < 0.05, ‡p < 0.01, ‡‡p < 0.001, significant difference within genotype; n = 8 for both genotypes).

Results
Increased levels of VAChT in the ChAT–ChR2–EYFP BAC mice
Immunofluorescence analysis confirmed previous findings that ChR2–EYFP is highly expressed in different areas of the brain (Zhao et al., 2011), including the striatum and basal forebrain (Fig. 1A), as well as interpeduncular nucleus and brainstem motor nuclei (data not shown). qPCR assays showed that ChAT–ChR2–EYFP mice contain ~56 copies of the VAChT gene and 54 copies of the YFP gene (Fig. 1B), suggesting that close to 50 copies of the ChAT–BAC were inserted in the mouse genome. RT-qPCR data indicate that these additional copies of the VAChT gene are functional because VAChT mRNA was increased almost 20-fold in the striatum of ChAT–ChR2–EYFP mice when compared with controls; importantly, expression of ChAT, as expected, was not changed (Fig. 1C). This increased VAChT mRNA level is consistent with the elevated copy number of ChAT–ChR2–EYFP BAC. Expression of the VAChT protein is also increased (Fig. 1D) in this mouse line. In the hippocampus, there is a 550% increase in VAChT protein levels, whereas in the brainstem, VAChT levels are augmented by 350% when compared with control littermates (Fig. 1D). Expression of the ChAT protein was unaltered in both brain regions (Fig. 1E). Importantly, increased expression of VAChT protein had functional consequences, because ChAT–ChR2–EYFP BAC mice presented threefold to fourfold increase in the release of newly synthesized [3H]Ach from hippocampal slices (Fig. 1F). Moreover, BAC transgenic expression of VAChT was able to rescue postnatal lethality.
attributable to VAChT elimination. We crossed ChAT–ChR2–EYFP with VAChTdel/wt [heterozygous VAChT knock-out (de Castro et al., 2009b)] mice and then intercrossed heterozygous littermates to obtain ChAT–ChR2–EYFP VAChTdel/del. Screening of the offspring was done by qPCR of the VAChT del allele (de Castro et al., 2009b). Our data show that ChAT–ChR2–EYFP VAChTdel/del mice are viable and survive to adulthood (Table 1).

ChAT–ChR2–EYFP mice have improved motor endurance

To assess neuromuscular function in ChAT–ChR2–EYFP mice, both forelimb and hindlimb grip strength were measured, but there was no statistical difference between ChAT–ChR2–EYFP mice and control littermates (Fig. 2A). In contrast, ChAT–ChR2–EYFP mice performed much better than wild-type controls in the treadmill. By using a protocol designed to determine physical fitness, we observed that ChAT–ChR2–EYFP mice were able to run almost twice as much compared with control mice ($t_{(14)} = 2.497, p = 0.0256$; Fig. 2B).

ChAT–ChR2–EYFP mice do not present gross alterations in metabolism

To investigate whether increased copy numbers of VAChT affects homeostasis, transgenic ChAT–ChR2–EYFP mice were assessed in metabolic cages. Transgenic mice had body weight statistically similar to controls ($t_{(14)} = 0.6920, p = 0.500$; Fig. 3). These mice presented similar metabolic profiles as controls, with no statistical differences in RER, in the light ($t_{(14)} = 0.9898, p = 0.831$) or the dark ($t_{(14)} = 0.5414, p = 0.702$) cycles (Fig. 3A). They did not consume more O2 during the light cycle ($t_{(14)} = 1.8979, p = 0.8523$) or dark cycle ($t_{(14)} = 1.402, p = 0.1828$; Fig. 3B). Similar results were obtained for CO2 release during the light ($t_{(14)} = 0.09952, p = 0.9221$) or dark ($t_{(14)} = 1.462, p = 0.1658$) cycle (Fig. 3C). Likewise, locomotor activity, sleep time, or blood glucose levels were not significantly altered in this transgenic mouse line (Fig. 3).

Interestingly, ChAT–ChR2–EYFP mice consumed both more food and water during the dark cycle than control mice (food consumption, $t_{(14)} = 2.212, p = 0.0441$; water consumption, $t_{(14)} = 2.878, p = 0.0122$; Fig. 3 D, E).

ChAT–ChR2–EYFP mice do not present anxiety or depression-like behavior

We tested ChAT–ChR2–EYFP mice for anxiety using the elevated plus maze paradigm. These mice visited the open ($t_{(14)} = 0.2304, p = 0.8211$) or closed ($t_{(14)} = 0.1365, p = 0.8934$) arms at rates statistically comparable with those observed in controls (Fig. 4A). In addition, they did not spend more time than controls in the open ($t_{(14)} = 0.2304, p = 0.8211$) or closed ($t_{(14)} = 0.1314, p = 0.8973$) arms (Fig. 4B). ChAT–ChR2–EYFP mice were also tested for depressive-like behavior using both the tail suspension and forced swim tests and presented no statistical difference from wild-type controls (swim test, $t_{(14)} = 0.4016, p = 0.6941$; tail suspension, $t_{(14)} = 0.04468, p = 0.9650$; Fig. 3C,D, respectively).

ChAT–ChR2–EYFP mice show normal locomotion but have impaired motor learning

We assessed locomotor activity in ChAT–ChR2–EYFP mice using an automated novel open-field environment for 4 h: 2 h in the light and 2 h in the dark. No statistical differences in locomotor activity were observed between genotypes ($F_{(1,658)} = 0.2468, p = 0.6271$; Fig. 5A). There was no interaction between time × genotype ($F_{(47,658)} = 0.4313, p = 0.9997$), with both genotypes significantly reducing their locomotor activity during the course of the test in the light phase ($F_{(47,658)} = 9.725, p < 0.0001$). Moreover, habituation in the open field was not affected in ChAT–ChR2–EYFP mice (Fig. 5B; two-way RM-ANOVA shows a significant effect of day ($F_{(2,42)} = 15.07, p < 0.0001$), no effect of genotype ($F_{(1,42)} = 2.653, p = 0.1108$), and no interaction ($F_{(2,42)} = 0.880, p = 0.4225$).

Figure 6. ChAT–ChR2–EYFP mice have spatial memory deficits in the Barnes maze. Mice were subject to the Barnes maze paradigm, and the average values of four 3-min trials per day are plotted. A, Number of errors before finding the target hole. B, Visits to the target hole during the day 5, 90 s probe trial. C, Preference for the target hole over other holes during the probe trial (target hole visits/average non-target visits). D, Hole poke per hole were measured on day 5 in a 90 s probe trial for control mice. T, Target hole. Numbers refer to the location of holes adjacent to the target hole. Op, Opposite hole. E, ChAT–ChR2–EYFP mice. F, Representative path trajectories for two control mice during the probe trial (target quadrant highlighted; T). G, Same as in F but for ChAT–ChR2–EYFP mice. *p < 0.05, **p < 0.01, ***p < 0.001, n = 8 for both genotypes.
A

B

C

D

E

F

Control

ChAT-ChR2-EYFP

Figure 7. ChAT–ChR2–EYFP mice have spatial memory deficits in the MWM. Mice were subject to the MWM paradigm, and the average values of four 90-s trials per day are plotted. A, Latency to find the platform. B, Distance traveled to the platform. C, Mouse speed. D, Percentage time spent per quadrant was measured on day 5 in a 60-s probe trial with the platform removed. E, Representative occupancy plots for two control mice. F, Representative occupancy plots for two ChAT–ChR2–EYFP mice during the probe trial (T indicates the location of the target quadrant).***p < 0.001, significant difference within genotype, n = 8 for both genotypes. L, Left; O, opposite; R, right; T, target.

Knowing that transgenic mice have increased endurance and no overt deficits in locomotor behavior, the accelerating rotarod task was used to assess motor learning. Surprisingly, the ChAT–ChR2–EYFP mice failed to improve their performance in the rotorod, whereas wild-type control mice improved the time spent on the rotorod as well as distance traveled [Fig. 5C,D]. Two-way RM-ANOVA revealed main effect of genotype ($F_{(1,142)} = 6.015, p = 0.0279$) and trial ($F_{(13,182)} = 2.796, p = 0.0012$). Post hoc analysis confirmed that the ChAT–ChR2–EYFP mice did not significantly improve their performance from their first trial.

ChAT–ChR2–EYFP mice have impaired spatial memory

To assess other forms of learning, we tested spatial learning and memory in the ChAT–ChR2–EYFP mice using the Barnes maze and MWM. During the acquisition phase of the Barnes maze, there were no statistical differences for the performance between the two genotypes. The two groups made a similar number of errors before reaching the target hole ($F_{(1,142)} = 0.2685, p = 0.6124$; Fig. 6A). In contrast, during the probe trial, on day 5, ChAT–ChR2–EYFP mice visited the target hole location significantly less than controls ($t_{(14)} = 3.360, p = 0.0047$; Fig. 6B) and showed a significantly decreased preference for the target hole, as defined by the target hole preference index [target hole visits/mean visits per hole (Holmes et al., 2002), $t_{(14)} = 2.712, p = 0.0168$; Fig. 6C]. Although both genotypes showed a significant effect of the hole location during the probe trial ($F_{(1,154)} = 26.66, p = 0.0001$), there was a significant effect of genotype ($F_{(1,154)} = 11.29, p = 0.047$) and a significant genotype \times hole location effect ($F_{(1,154)} = 2.819, p = 0.022$). Post hoc analysis revealed that wild-type mice preferred the target hole, whereas ChAT–ChR2–EYFP mice did not (Fig. 6D,E). Representative traces of two controls (Fig. 6F) and two ChAT–ChR2–EYFP mice (Fig. 6G) show the performance of the two genotypes in this task.

To further determine the mechanisms involved with potential spatial memory deficits, the MWM was used. Once again during the course of acquisition, the performance of ChAT–ChR2–EYFP mice was indistinguishable from that of controls in terms of latency to find the target ($F_{(1,142)} = 0.8933, p = 0.3606$) and the distance traveled to the target ($F_{(1,142)} = 2.783, p = 0.1175$; Fig. 7A–C). Mutants learned the location of the platform similar to control mice, confirming the observations using the Barnes maze. These results indicate that the ChAT–ChR2–EYFP mice do not have any gross sensorimotor deficits and were able to use the cues to learn the task. However, on the probe trial day, ChAT–ChR2–EYFP mice showed no preference for the target quadrant of the pool (Fig. 7D). The occupancy plots in the MWM on the probe trial show that the controls clearly remembered where the platform should be (Fig. 7E). In contrast, ChAT–ChR2–EYFP mice did not seem to retrieve this information during the probe trial (Fig. 7F).

ChAT–ChR2–EYFP mice have deficiencies in cue-directed memory

To assess cue-driven learning in these mice, the cued version of the MWM was used (Vorhees and Williams, 2006). There was a significant difference between genotypes ($F_{(1,14)} = 5.262, p = 0.0378$) and a significant effect of day ($F_{(1,14)} = 7.834, p = 0.0142$) in terms of latency to find the target (Fig. 8A). Post hoc analysis confirmed that control mice improved their performance from day 1 to day 2, whereas ChAT–ChR2–EYFP mice did not (Fig. 8A). There was a trend for ChAT–ChR2–EYFP mice to swim a greater distance to the target (Fig. 8B), but this failed to reach significance ($F_{(1,14)} = 7.834, p = 0.0861$). A closer examination of the path traces revealed that ChAT–ChR2–EYFP mice do not seem to use the cue to find the target on the second day (Fig. 8C,D).

ChAT–ChR2–EYFP have impaired working memory

The above experiments suggest that ChAT–ChR2–EYFP mice can learn the spatial version of the MWM, but they have difficulty retrieving that memory trace. Moreover, these transgenic mice show impaired motor learning and cued-driven learning. These results suggest the possibility that chronically increased cholinergic tone disturbs distinct forms of information processing. To
evaluate working memory, we first used spontaneous alternations in the Y-maze (de Castro et al., 2009a). In contrast to results obtained with littermate control mice, ChAT–ChR2–EYFP mice revisited the arms of the Y-maze more often, showing significantly less spontaneous alternations (t(14) = 2.448, p = 0.0293; Fig. 9A). The number of arm entries was not affected (t(14) = 0.6031, p = 0.5568; Fig. 9B), nor was distance traveled (t(14) = 0.5620, p = 0.5837; data not shown). However, performance of ChAT–ChR2–EYFP mice was above chance (>50%) regarding alternations, suggesting that these mice had a partial dysfunction on their working memory. To exclude the possibility that the cognitive deficits observed could be related to the introduction of ChR2 or EYFP, we also tested VGAT–ChR2–EYFP and their littermate controls in the Y-maze alternation. qPCR analysis showed that these mice had ~20 copies of EYFP and therefore 20 copies of the Chr2 gene. Distinct from ChAT–ChR2–EYFP mice, VGAT–ChR2–EYFP mice did not differ statistically from their littermate controls in terms of either spontaneous alternations (t(10) = 0.1914, p = 0.8520; Fig. 9C) or number of arm entries (t(10) = 1.562, p = 0.1944; Fig. 9D).

To further probe working memory in ChAT–ChR2–EYFP mice, the two-trial variation of the MWM was used (Vorhees and Williams, 2006). In this variation of the task, mice must first find a novel platform location by chance and then, after a 10 s ITI, find it again. To analyze mouse performance on this task, we used the latency and distance savings ratio to standardize data (Varvel and Lichtman, 2002). These ratios were calculated by dividing the distance traveled, or latency on the first trial by that on the sum of the first and second trials. Values >0.5 indicate improvement from the first to the second trial. ChAT–ChR2–EYFP mice had significantly lower distance savings ratio (t(14) = 2.501, p = 0.0254) and latency savings ratio (t(14) = 3.684, p = 0.0025; Fig. 9E–H) than control mice. Together, these results indicate that ChAT–ChR2–EYFP mice have impaired working memory.

ChAT–ChR2–EYFP mice have impaired attentional processing

To determine whether ChAT–ChR2–EYFP mice may be affected in other cognitive domains that are sensitive to cholinergic tone and could contribute to the deficits we observed, we used the 5-CSRT task. During pretraining, transgenic mice did not differ from controls in terms of trials needed to achieve criterion [two-way RM-ANOVA; no effect of genotype (F(1,12) = 0.6766, p = 0.4268) and no effect of training phase (F(4,48) = 2.306, p = 0.0717)]. It should be noted that one mouse of each genotype never completed the pretraining and were not subjected to training in the 5-CSRT task. Our initial goal was to train mice first using a 4 s stimulus duration and then proceed to 2 s as described previously (Romberg et al., 2011). However, after 12 training sessions at 4 s stimulus duration, whereas all control mice reached criterion with an average of 10.28 ± 1.23 trials, all ChAT–ChR2–EYFP mice failed to acquire the task. Therefore, we increased the stimulus duration time (decreased the attentional demand) to 16 s and then 8 s to do the training. Probe trials were then performed with 4 and 2 s stimulus durations.

Under less demanding attentional conditions, ChAT–ChR2–EYFP mice were able to acquire the task, reaching criteria at both stimulus durations (16 and 8 s) in the same number of sessions as controls [two-way RM-ANOVA; no effect of genotype (F(1,12) = 1.122, p = 0.3103) and no effect of stimulus duration (F(1,12) = 2.492, p = 0.1404)]. However, during probe trials, ChAT–ChR2–EYFP mice showed significant impairments in choice accuracy [two-way RM-ANOVA; main effect of genotype (F(1,12) = 29.86, p = 0.0001) and no effect of stimulus duration (F(1,12) = 0.6894, p = 0.4226); Fig. 10A], with post hoc analysis showing that the ChAT–ChR2–EYFP mice had impaired accuracy at both stimulus durations. The rate of omissions for ChAT–ChR2–EYFP mice was unaffected [two-way RM-ANOVA; no effect of genotype (F(1,12) = 1.928, p = 0.1902) and main effect of stimulus duration (F(1,12) = 13.79, p = 0.0030); Fig. 10B]. Additionally, ChAT–ChR2–EYFP mice showed a significant increase in premature responses [two-way RM-ANOVA; main effect of genotype (F(1,12) = 21.74, p = 0.0005) and main effect of stimulus duration (F(1,12) = 7.657, p = 0.0171); Fig. 10C]. Post hoc analysis revealed that the ChAT–ChR2–EYFP mice had more premature responses at each stimulus duration. No change in perseverative responses was observed in ChAT–ChR2–EYFP mice [two-way RM-ANOVA; no effect of genotype (F(1,12) = 0.0502, p = 0.8268) and no effect of stimulus duration (F(1,12) = 0.6894, p = 0.4226); Fig.
Importantly, there were no differences between genotypes in terms of response latency [two-way RM-ANOVA; no effect of genotype ($F_{(1,12)} = 1.570, p = 0.2341$) and no effect of stimulus duration ($F_{(1,12)} = 2.112, p = 0.1718$)] or reward collection latency [two-way RM-ANOVA; no effect of genotype ($F_{(1,12)} = 1.082, p = 0.3189$) and no effect of stimulus duration ($F_{(1,12)} = 0.001394, p = 0.9708$); Fig. 10 E, F].

Discussion

Here we report an extensive characterization of the BAC transgenic ChAT–ChR2–EYFP mouse line and reveal two major findings. First, there are several extra copies of the ChAT–ChR2–EYFP gene in this mouse line, which led to increased levels of functional transporters, increased release of ACh, and improvement of physical endurance. Second, it seems that this chronic increase in cholinergic tone in the CNS may affect the expression of distinct receptors in specific brain regions, it is unlikely that all phenotypes described previously are attributable to cholinesterase inhibition or dysfunction by distinct mechanisms (Lara et al., 2010; Rocha-Resende et al., 2012; Roy et al., 2012; Prado et al., 2013). Thus, ChAT–ChR2–EYFP mice will be essential to determine whether increased VAChT expression can improve cardiovascular function.

Although a number of studies indicate that ACh is involved in the regulation of metabolic homeostasis (for review, see Picciotto et al., 2012), no significant difference between ChAT–ChR2–EYFP and wild-type littermates was observed when an extensive list of metabolic parameters was analyzed, including RER, the volume of oxygen produced (VO$_2$), the volume of carbon dioxide produced (VCO$_2$), body weight, sleeping time, ambulatory movement, and serum glucose. However, our data show that ChAT–ChR2–EYFP mice consume significantly more food and water during the dark period. It is possible that the small increase in food and water intake observed in these transgenic mice reflects the fact that, in the home-cage-like environment, they have a small tendency to be more active than controls. Surprisingly, ChAT–ChR2–EYFP mice did not show changes in locomotor activity in a novel environment, anxiety-like behavior, or depression-like behavior. To note, increased cholinergic transmission has been suggested to be pro-depressive (Janowsky et al., 1972; Overstreet et al., 1986; Overstreet, 1993; Fagergren et al., 2005). Moreover, antagonists of nicotinic and muscarinic receptors have antidepressant activity (Rabenstein et al., 2006; Andreasen and Redrobe, 2009). Because chronic increase in cholinergic tone may affect the expression of distinct receptors in specific brain regions, it is unlikely that all phenotypes described previously are attributable to cholinesterase inhibition or dysfunction may be affected in ChAT–ChR2–EYFP mice.

Despite their increased motor endurance, ChAT–ChR2–EYFP mice were unable to improve their performance in the rotarod, suggesting that increased cholinergic tone in the CNS is deleterious for learning an acrobatic skill. Previous experiments with mice presenting reduced levels of VACHT (40% VACHT knockdown heterozygous mice) had indicated that motor learning depends on cholinergic tone (Prado et al., 2006; de Castro et al., 2009b). Together, these results suggest that either too much or too little ACh in the brain is detrimental for motor learning.
We have also detected diminished performance of ChAT–ChR2–EYFP mice in two distinct tasks designed to measure spatial memory. In both the Barnes maze and MWM, ChAT–ChR2–EYFP mice present a specific deficit in the retrieval of information. In both tests, ChAT–ChR2–EYFP mice were able to learn the task (location of the platform or the exit hole), as evidenced by their improved performance over the 4 d of training. However, in probe trials, ChAT–ChR2–EYFP mice performed poorly compared with their littermate controls in both tests. This phenotype may not be related only to spatial memory deficits, because these mice also presented impairments in the cued version of the MWM. Because ChAT–ChR2–EYFP mice can improve their performance during the 4 d of training in the Barnes maze and MWM, it is unlikely that they present any gross sensory motor deficits that would preclude visualization of cues. Conversely, deficits in the cued version of the MWM suggest that increased cholinergic tone might interfere with the mouse’s ability to recognize that the platform is the goal (cue detection). It has been reported that detection of signals depends on cholinergic neurotransmission (Sarter et al., 2005; Parikh et al., 2007). Therefore, the chronic excess of cholinergic tone may disrupt the transmission of salient information related to a cue, preventing these animals from using such information to guide them to their goal.

Working memory is a prefrontal cortical process that is modulated by cholinergic signaling (Croxford et al., 2011). There is strong evidence implicating cholinergic activity in enhancing discrimination of signal-to-noise in the prefrontal cortex (for review, see Hasselmo and Sarter, 2011), a role that is critical in regulating attention (Sarter et al., 2005; Parikh et al., 2007; Hasselmo and Sarter, 2011). However, the focus in the literature has been on hypocholinergic function (McGaughey et al., 2002; Dalley et al., 2004; Harati et al., 2008; Parikh et al., 2013), and to date, there has not been an evaluation of chronic cholinergic deregulation on attentive processing. Additionally, ACh has been shown to be important for feature binding, the process by which the brain processes specific features of an object and compile a unified picture of it (Botly and De Rosa, 2009). Interestingly, ChAT–ChR2–EYFP mice showed inattentive behavior related to cholinergic dysregulation; however, they also showed increased premature responses in the 5-CSRT task, a behavior that has been shown to be regulated by serotonergic signaling (Fletcher et al., 2013; Humphston et al., 2013). ACh has been proposed to help filter sensory information by increasing persistent spiking in cortical neurons, compatible with its proposed role in facilitating cue detection (Hasselmo and Stern, 2006). Such a mechanism depends on background tonic level of ACh but also on the transient increase in cholinergic activity (Parikh et al., 2007). Whether tonic cholinergic activity in the ChAT–ChR2–EYFP mice is so high that it precludes additional transient increases in cholinergic tone remains to be determined. However, the observation that ChAT–ChR2–EYFP mice have working memory and attention deficits suggests the possibility that multiple forms of information encoding are affected in these mice. Therefore, these experiments emphasize the importance of regulated ACh release in cognitive function.

The precise mechanism by which excessive release of ACh in ChAT–ChR2–EYFP mice affects memory is not yet clear. It is likely that cellular regulation of neuronal spiking (Hasselmo and Sarter, 2011) may be affected by chronically increased levels of extracellular ACh. Moreover, increased and sustained cholinergic tone may affect forebrain circuitries by changing the expression of receptors and the regulation of other neurochemical systems, leading to abnormal processing, encoding, or retrieval of information. The overall memory deficits observed in ChAT–ChR2–EYFP mice suggest the need for specific temporal and spatial control of synaptic ACh levels for optimal cognitive performance.

In contrast with the worse performance of ChAT–ChR2–EYFP mice in cognitive tasks, augmented cholinergic tone seems to improve physical fitness, suggesting that increasing cholinergic
tone may be beneficial in the periphery. Whether increased cholinergic function will be beneficial in other parameters regulated by the autonomic nervous system, as well as for improving the activity of the cholinergic anti-inflammatory pathway, remains to be determined.

Given that we detect improvement physical endurance and decreased performance in a series of behavioral tasks that have been previously related to cholinergic functions, we have interpreted our results as a potential consequence of increased cholinergic tone. It should be noted that we cannot eliminate the possibility that the large number of copies of the BAC inserted in the mouse genome disrupted a specific gene locus that could both improve physical endurance and disrupt cognition, although this seems unlikely. Also, we cannot discard the possibility that the high copy number of ChrR2 or YFP may have unexpected consequences. We attempted to test this possibility by using another mouse line with high copy number of ChrR2 and YFP. The VGAT–ChrR2–EYFP mice, which have 20 copies of these genes, did not present impairments in working memory. These results support the argument that the effects observed in ChAT–ChrR2–EYFP mice are related to cholinergic hyperfunction. Importantly, these altered phenotypes fundamentally differentiate ChAT–ChrR2–EYFP from control mice.

In short, our experiments indicate that ChAT–ChrR2–EYFP mice overexpress VACHT and show important functional consequences, including unforeseen effects in cognitive processing. Because most studies using optogenetic control of cholinergic neurons have used mice expressing Cre or ChrR2 that was inserted in the ChAT–BAC (Witten et al., 2010; Bell et al., 2011; Gu and Yakel, 2011; Nagode et al., 2011; Cachope et al., 2012; Kalmbach et al., 2012), it is important to be aware that VACHT overexpression may contribute to behavioral or cellular outputs. Therefore, novel approaches to control cholinergic neurons using optogenetics may be necessary. Inactivation of the VACHT gene in the ChAT–BAC is a possible alternative. However, ChAT–ChrR2–EYFP mice will be valuable to test current theories of cholinergic function and the consequences of overactive cholinergic signaling for information processing.

References
Bell KA, Shim H, Chen CK, McQuiston AR (2011) Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain alpha4 and beta2 subunits. Neuropharmacology 61:1379–1388. CrossRef Medline

