PIP$_3$ Regulates Spinule Formation in Dendritic Spines during Structural Long-Term Potentiation

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Ueda, Y., and Y. Hayashi. “PIP$_3$ Regulates Spinule Formation in Dendritic Spines During Structural Long-Term Potentiation.” Journal of Neuroscience 33, no. 27 (July 3, 2013): 11040–11047.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1523/jneurosci.3122-12.2013</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Neuroscience</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/89131</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
PIP₃ Regulates Spinule Formation in Dendritic Spines during Structural Long-Term Potentiation

Yoshibumi Ueda¹² and Yasunori Hayashi¹²³

¹Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan, ²RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and ³Saitama University Brain Science Institute, Saitama University, Saitama 338-8570, Japan

Introduction

Spinules are filopodia-like protrusion structures, which are commonly observed on spines. Electron microscopy data show that spinules exist on 32% of spines under basal conditions (Spacek and Harris, 2004). The number of spinules increases in response to stimuli such as theta burst stimulation (Toni et al., 1999), local glutamate stimulation (Richards et al., 2005), and high potassium application (Tao-Cheng et al., 2009). Several proposals for the biological significance of spinules have been made. Spinules extend toward a stimulation site upon local glutamate application (Richards et al., 2005). Tetrodotoxin (TTX) treatment causes spinules to move toward functional presynaptic boutons and contribute to the formation of new synapses (Richards et al., 2005). Additionally, spinules are sometimes engulfed by presynaptic axons. Furthermore, coated pits are present on the tips of these spinules, indicating that spinules are endocytosed (Spacek and Harris, 2004). Endocytosed-spinules are sometimes observed in presynaptic buttons as isolated vesicles separated from the postsynaptic side (Spacek and Harris, 2004). Therefore, the trans-endocytosis of spinules may serve as a mechanism for retrograde signaling or may aid postsynaptic membrane remodeling by removing the excess membrane between postsynaptic sites (Spacek and Harris, 2004).

Phosphatidylinositol-3,4,5-trisphosphate (PIP₃) is a lipid second messenger that plays important roles in a diverse range of neuronal functions. The basal level of PIP₃ is crucial for maintaining AMPA receptor clustering during long-term potentiation (LTP; Arendt et al., 2010). As well as functional LTP, PIP₃ also regulates different aspects of cell polarity such as dendritic arborization and nerve growth factor-induced axonal filopodia formation (Jaworski et al., 2005; Ketschek and Gallo, 2010). To exert these functions, local PIP₃ accumulation is thought to be important and leads to the recruitment of effector proteins such as Akt (Thomas et al., 2001), WAVE (Oikawa et al., 2004), and guanine nucleotide exchange factors of small G-proteins to specific subcellular compartments (Han et al., 1998; Shinohara et al., 2002; Innocenti et al., 2003). However, the subcellular distribution of PIP₃ in neurons remains poorly understood.

In the present study, we found that PIP₃ regulates the number of spinules during the structural expansion of spines, designated here as sLTP. To study the local distribution of PIP₃, a fluorescence lifetime-based PIP₃ probe, FLIMPA3, was constructed. PIP₃ showed greater accumulation in spines than in dendritic shafts under basal conditions. Whereas PIP₃ concentration in a given spine decreased during the glutamate-induced enlargement of a spine, PIP₃ concentration in spinules increased. Accumulated PIP₃ in spinules may work as a retrograde signaling factor or may be involved in new synapse formation.

Received July 2, 2012; revised May 4, 2013; accepted May 28, 2013.

Author contributions: Y.U. and Y.H. designed research; Y.U. performed research; Y.U. analyzed data; Y.U. and Y.H. wrote the paper.

This work was supported by a Grant-in-Aid for Young Scientists (B) and the Special Postdoctoral Research Program of RIKEN (Y.U.) and by RIKEN, National Institutes of Health Grant 70101A71310, Grant-in-Aid for Scientific Research (A), and Grant-in-Aid for Scientific Research on Innovative Area ”Foundation of Synapse and Neurcircuit Pathology” from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (Y.H.). We thank L. Yu, M. Bosch, S. Kwok, F. Hulín-Matsuoka, T. Saneyoshi, H. Matsuno, K. Mizuta, and K. Kim for valuable comments. We are also grateful to A. Suzuki, M. Kawano, H. Matsuno, and K. Matsuura for the preparation of hippocampal slices.

Correspondence should be addressed to Dr. Yoshibumi Ueda, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. E-mail: yueda@riken.jp or happyvybecool@gmail.com.

DOI:10.1523/JNEUROSCI.3122-12.2013

Copyright © 2013 the authors 0270-6474/13/331104-08$15.00/0
Materials and Methods

Construcnts. Monomeric enhanced green fluorescent protein (mEGFP), the fluorescent resonance energy transfer (FRET) donor, was prepared by introducing a single point mutation (A206K) to EGFP, sREACH, the FRET acceptor, was made as previously described (Murakoshi et al., 2008). For the FLIMPA3 probe, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YPF) of the FRET-based PIP3, probe (Sato et al., 2003) were exchanged with mEGFP and sREACH respectively. The pleckstrin homology (PH) domain was from human GRP1. In the FLIMPA3 mutant, amino acids R284 and K343 were, respectively, mutated to a cysteine and alanine residue to abolish PIP3, binding. For the experiment where the PH domain was overexpressed, a PH domain from rat GRP1 was used (a gift from Dr. Jose´ A. Esteban; Arendt et al., 2010). A single point mutation was introduced by PCR-directed mutagenesis to create PH (R284C), which abolished PIP3, binding. PH and PH (R284C) were cloned downstream of mCherry. All constructs were driven by the CAG promoter.

Reagents. TTX was from Latoxan. Picrotoxin was from Nacalai Tesque. BpV(HOpic) was from Calbiochem. LY294002 was from Cayman Chemical Company. 4-Methoxy-7-mitroindoliny (MNI)-γ-glutamate was from Tocris Bioscience. Phospho-Akt (Ser473) antibody was from Cell Signaling Technology.

Neuronal slice culture and probe expression. Organotypic slice cultures of rat hippocampus of either sex were prepared from postnatal day 6–8 rats in accordance with the animal care and use guidelines of RIKEN. Slices were biviscullically transected after 5–8 d in vitro with FLIMPA3. Imaging was performed 1 d after transection in the distal part of the main apical dendritic shafts of CA1 pyramidal neurons.

Culture of Chinese hamster ovary cells and probe expression. Chinese hamster ovary (CHO) cells were cultured in Ham’s F12 Nutrient Mixture (Life Technologies), supplemented with 10% fetal calf serum and 1% penicillin/streptomycin at 37°C in 5% CO2. FLIMPA3, FLIMPA3 mutant, and PH domain were transfected with Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instruction, and left for 24 h at 37°C in 5% CO2. We sometimes observed FLIMPA3 and FLIMPA3 mutant localized at the intracellular membrane of CHO cells possibly due to leak. Therefore, we cannot totally rule out that our spine images may also include signal from the intracellular pool of PIP3.

Observation of Akt activity. CHO cells were plated onto glass dishes. FLIMPA3, FLIMPA3 mutant, and PH domain were transfected with Lipofectamine 2000 and left for 24 h at 37°C in 5% CO2. One day after transfection, cells were treated with 50 ng/ml platelet-derived growth factor (PDGF) for 30 min, fixed with 4% paraformaldehyde for 20 min at room temperature, incubated with 0.1% Triton X-100 for 5 min, followed by treatment with PBS(−) twice. The cells were treated with PBS containing 0.2% Triton X-100 for 5 min, followed by blocking treatment with blocking buffer (PBS/5% normal goat serum/0.1% Triton X-100) for 1.5 h. Then, anti-serine 473 rabbit antibody (1:25) in blocking buffer was applied at 4°C overnight. The cells were washed with PBS twice and incubated with goat anti-rabbit antibody conjugated with Alexa Fluor 555 in PBS(−) (1:250) for 2 h. Images were acquired using an Olympus FX1000 confocal microscopy. Immunostaining signal on the plasma membrane was measured by drawing a line profile across the cells using ImageJ software.

Two-photon imaging. Slices were maintained in a continuous perfusion of modified artificial CSF (ACSF) containing the following (in mM): 119 NaCl, 2.5 KCl, 3 CaCl2, 26.2 NaHCO3, 1 NaH2PO4, and 11 glucose, bubbled and equilibrated with 5% CO2/95% O2. Two-photon imaging was performed using an Olympus FV1000 confocal microscopy (Olympus, Tokyo, Japan). The sample was excited at 770 nm with 1 kHz repetition rate and the emitted light was collected at wavelengths above 780 nm. The emission signals were collected with an appropriate emission filter (Olympus) to avoid background noise. Neuronal activity was studied by using ImageJ software.
Time-lapse imaging was performed using a two-photon microscope (Fluoview 1000; Olympus) equipped with a Mai Tai laser (Spectra-Physics; Newport). All imaging experiments were performed at 30°C. We always make comparisons among datasets recorded in an interleaved manner. In neurons expressing mEGFP, Z-stacks of 15–17 sections separated by 0.5 μm were summed. A constant region of interest was outlined around the spine and the total integrated fluorescence intensity of the green channel was calculated using ImageJ (by W.S. Rasband; National Institutes of Health, Bethesda, MD). Values were background-subtracted.

Fluorescence lifetime imaging. FLIMPA3 was excited at 910 nm and fluorescence levels were detected with a PMT (H7422P-40; Hamamatsu) that was located after the wavelength filters (Chroma Technology, HQS10/70–2p for GFP and BrightLine multi photon filter 680SP). Fluorescence lifetime images were produced on a PCI board (SPC-730 and 830; Becker-Hickl). SPC images (Becker-Hickl) were used for constructing fluorescence lifetime images.

LTP induction by two-photon glutamate uncaging. Two-photon uncaging of MNI-glutamate was performed with a Mai Tai laser (Spectra-Physics) tuned to 720 nm. A repetitive pattern of 2 ms pulses (4–5 mW) at 1 Hz for 30 s (Fig. 1A–F), 40 s (Fig. 1G,H), or 1 min (Fig. 5) was used to induce LTP at the targeted spine. Synaptic spine counts. Spines that protruded from the spine head were counted. Each synaptic spine, regardless of size and orientation, was scored as in previous studies (Tao-Cheng et al., 2009).

Statistics. All values are expressed as mean ± SEM. Statistical analysis was performed using Student’s t test.

Results

To investigate how spine formation occurs during sLTP, GFP was expressed in CA1 pyramidal neurons of organotypic hippocampal slices. First, spine size was investigated by observing GFP intensity. When local glutamate stimulation was induced at single dendritic spines using two-photon uncaging of MNI-caged glutamate, the spines rapidly enlarged after the stimulation and then shrank to a certain extent. However, the spine size was persistently larger at 30 min after stimulation than before the stimulation (Fig. 1D). The time course of spine enlargement is consistent with a previous report (Matsuzaki et al., 2004), and indicates that sLTP was successfully induced. During sLTP, we often observed the generation of filopodia-like protrusion structures termed spines. The incidence of spine occurrence increased quickly after glutamate uncaging, and then gradually decreased over time (Fig. 1A,F).

Considering that PIP3 regulates the motility of cellular structures, we hypothesized that PIP3 could modulate spine formation on spines during sLTP. Therefore, we examined the effect of PIP3 on spine formation after glutamate stimulation. Application of BpV(HOpic), an inhibitor for phosphatase and tensin homolog (PTEN; an enzyme that degrades PIP3 to phosphatidylinositol-4,5-bisphosphate, PIP2) (Jurado et al., 2010), increased the number of spines during the late phase of sLTP (Fig. 1B,E,F). The effect of PTEN inhibitor was abolished by pretreatment with LY294002, an inhibitor for phosphatidylinositol 3-kinase (PI3K; the enzyme that produces PIP3), in both early and late phases (Fig. 1F). PTEN has both PIP3 phosphatase activity and protein phosphatase activity for Shc and focal adhesion kinase (Gu et al., 1999). These data show that the increase in spine formation was caused by an increase in PIP3 rather than inhibition of protein dephosphorylation. Pretreating cells with LY294002 alone lead to a decrease in the number of spines.
Fluorescence lifetime imaging of FLIMPA3 and FLIMPA3 mutant (R284CK343A), where PIP3 binding was abolished. A color gradient was used to represent PIP3 levels with a warmer color indicating a shorter fluorescence lifetime and higher PIP3 levels. Scale bar, 1 μm.

Asterisk denotes a statistically significant difference between the fluorescence lifetime of spines and dendritic shafts of FLIMPA3 ($p < 0.05$); n means the number of spines. The number of neurons observed is 25 and 12 in (Figure legend continues.)
spine formation compared with that observed in control cells during the late phase (Fig. 1C, E, F). To check that PIP$_3$ itself regulates spine formation, the effect of PIP$_3$ masking with overexpressed PH domain, which selectively binds to PIP$_3$, on spine formation was examined. As shown in Figure 1, G and H, the overexpression of a PH domain decreased spine formation in the early and late phase. Together, these data indicate that PIP$_3$ regulates spine formation.

Given that the local accumulation of PIP$_3$, is crucial for its functions, we decided to investigate the subcellular distribution of PIP$_3$. We constructed a fluorescence lifetime-based PIP$_3$ probe, FLIMPA3 (Fig. 2A). The probe was based on the ratiometric FRET-based PIP$_3$ probe, Filip (Sato et al., 2003). However, the donor CFP and acceptor YFP molecules were exchanged with mEGFP and sREACH, respectively. A PH domain from GRP1 was flanked by mEGFP and sREACH through rigid α-helical linkers consisting of repeated EAAAR sequences. Within one of the rigid linkers, a single diglycine motif was introduced as a hinge. The CAAX box sequence of N-ras was used to target this probe to the plasma membrane (Resh, 1996). When the PH domain binds to PIP$_3$, a conformational change in the probe occurs through the flexible diglycine motif. This conformational change in the probe causes intramolecular FRET between mEGFP and sREACH, allowing detection of PIP$_3$ concentration under two-photon fluorescence lifetime imaging microscopy.

First, the response of FLIMPA3 to a physiological stimulation known to increase PIP$_3$ concentration was examined in non-neuronal cells. FLIMPA3 was expressed in CHO cells expressing PDGF receptor (PDGFR). PDGF treatment promotes the dimerization of PDGFR monomers, resulting in its activation and the phosphorylation of multiple tyrosine residues of PDGFR. PI3K is recruited to these tyrosyl phosphorylation sites through its Src-homology 2 domain, resulting in its activation. When 50 ng/ml PDGF was added to a cell expressing FLIMPA3, fluorescence lifetime decreased immediately and reached a plateau within 20 min (Fig. 2B, C). Pretreatment of cells with 100 µM LY294002 abolished the decrease in fluorescence lifetime after PDGF stimulation (Fig. 2C), indicating that the fluorescence lifetime change occurs through PI3K. Addition of a vehicle (HBSS) did not generate a change in fluorescence lifetime (Fig. 2C). A FLIMPA3 mutant, where amino acids R284 and K343 were, respectively, mutated into cysteine and alanine residues to abolish PIP$_3$ binding, did not generate any signal in response to PDGF stimulation (Fig. 2D), indicating that FLIMPA3 responds to PIP$_3$ through the PH domain. Additionally we confirmed that FLIMPA3 does not perturb PIP$_3$ signaling by monitoring PDGF-induced Akt activation. Stimulation of CHO cells with PDGF-induced recruitment of Akt to the plasma membrane through PIP$_3$ binding. This lead to the subsequent phosphorylation of Akt at serine 473 by 3-phosphoinositide-dependent kinase 2 as previously reported (Downward, 1998) (Fig. 2E).

![Figure 4. Spatiotemporal dynamics of PIP$_3$ in spines subjected to sLTP. A, Fluorescence lifetime imaging of FLIMPA3 during sLTP of a single spine induced by two-photon glutamate uncaging. The red spot in the —2 min image indicates the location of the uncaging laser point. White scale bar, 1 µm. The red line indicates the time period of glutamate uncaging. B, Time course of fluorescence lifetime change of FLIMPA3 in a spine subjected to glutamate uncaging, a neighboring spine (within 5 µm of the stimulated spine), and a region of the dendritic shaft next to the stimulated spine. The time course of FLIMPA3 mutant was also shown; n indicates the number of spines. The red line indicates the time of glutamate uncaging. Time course of FLIMPA3 intensity change in spines is shown on the right y-axis. C, Relationship between PIP$_3$ concentration at the 2 min time point (y-axis) and basal PIP$_3$ enrichment at basal state. The linear regression line is shown.](image-url)
PIP3 in spines. The difference in the fluorescence lifetime observed in the dendritic shaft, indicating an accumulation of time image shows that the color in spines is warmer than that organotypic hippocampal slices (Fig. 3).

The increase in PIP3 caused by PTEN inhibitor treatment was abolished by pre-incubation with a PI3K inhibitor (Fig. 3). These results are consistent with previous reports where endogenous levels of PTEN were mainly detected in dendritic shafts (Kreis et al., 2010). There are several factors that explain why the increase in PIP3 levels was slow. The drug may be slow to diffuse through hippocampal slices. Also, BpV(HOpic) is a metal-containing compound, which may be slow to penetrate the cell membrane. Alternatively, the activity of PI3K in unstimulated cells may be low.

Next, the effect of a PI3K inhibitor on PIP3 level was examined. After the addition of a PI3K inhibitor, PIP3 gradually decreases in spines but not in dendritic shafts (Fig. 3D), suggesting that PI3K is more active in spines than in dendritic shafts. It has been reported that although endogenous PI3K is localized to both spines and dendritic shafts, only PI3K associated with AMPARs that predominantly reside in spines are functionally active (Man et al., 2003), which supports our results. Control experiments where dimethylsulfoxide (DMSO) was administered did not reveal any changes in the spines or dendritic shafts (Fig. 3I). Spine size was not affected by the inhibitors when applied 60 min after sLTP stimulation (Fig. 3F). Together, these data suggest that the subcellular distribution of PIP3 is controlled by PTEN and PI3K activity.

Next we investigated the PIP3 dynamics of single spines during sLTP. Soon after the induction of sLTP, the spine volume became larger and fluorescence lifetime was prolonged. After the initial phase of sLTP, the image no longer became warmer and reached a plateau by 30 min (Fig. 4A). The fluorescence lifetime imaging color in dendritic shafts and neighboring spines did not change during sLTP (Fig. 4B). No change in fluorescence lifetime color was observed in spines expressing the mutant FLIMPA3 (Fig. 4B). Next, the mechanism by which fluorescence lifetime color became blue during sLTP was investigated. The time course curve of FLIMPA3 intensity was well matched with the time course of the change in fluorescence lifetime image color (Fig. 4B). Next, the decrease in fluorescence lifetime image color at 2 min after sLTP induction and basal PI3K, enrichment in spines were assessed. The correlation coefficient is 0.61 (n = 23, p < 0.01) (Fig. 4C). These data indicate that PIP3 levels in the spine were diluted by a supply of membrane from the dendritic shaft, where there are relatively low levels of PIP3.

Figure 5. Subspine PIP3 imaging following sLTP stimulation. A–C, Subspine distribution of PIP3, by fluorescence lifetime imaging during sLTP (Ctrl 0.4% DMSO (A), 1 μM BpV(HOpic) (B), and 30 μM LY294002 (C), each drug was added >30 min before glutamate uncaging). Red spots on baseline images show the points that were subjected to glutamate uncaging. Arrows show PIP3 accumulation in spines. Scale bar, 1 μm. D, Time course of PIP3 change in spines; n = number of spines. The red bar indicates the time period of glutamate uncaging. In the case of LY294002, 7–10, 15–20, and 25–30 min, were averaged out due to the smaller dataset. E, Comparison between fluorescence lifetime change in FLIMPA3 (black line) and spinule length (red line) after sLTP in spines pre-incubated with BpV(HOpic). F, Fluorescence lifetime of spinules and spines that exhibit spinules during sLTP was averaged during the early phase and the late phase. Asterisks denote a statistically significant difference (p < 0.05).
To investigate PIP3 dynamics in spinules, subspine PIP3 was examined. PIP3 accumulation in spinules was observed (Fig. 5A,B, white arrows). Time course analysis of spinules showed that PIP3 transiently increased during the early phase and gradually increased after 5–30 min of the late phase (Fig. 5D). In spines that were pre-incubated with a PTEN inhibitor, PIP3 increased more rapidly than in control spines (Fig. 5B,D). PI3K inhibitor treatment reduced PIP3 accumulation in spinules at both early and late phases (Fig. 5C,D). To explore the mechanism by which PIP3 concentration decreases during the late phase in the presence of a PTEN inhibitor, time course analysis of spine length was conducted. The length of spines extended quickly after sLTP induction and peaked at 4 min (Fig. 5E, red line). These data suggest that the rapid decrease in PIP3 concentration is caused by the dilution of PIP3 due to spine elongation. PIP3 levels in spinules showed a massive increase during the early phase compared with that in spines during sLTP (Fig. 5F). Together, we have demonstrated that PIP3 accumulates specifically in spinules, while displaying a decrease in PIP3 in the whole spine.

Discussion

In the present study, the effect of PIP3 on spinule formation during sLTP was investigated. The occurrence of spinule formation on spines was increased in a PIP3-dependent manner. We visualized PIP3 in single dendritic spines using a fluorescence lifetime-based PIP3 probe, FLIMPA3. PIP3 accumulated in spines more than in dendritic shafts. During sLTP of single spines, the high levels of PIP3 in spines were diluted by an influx of membrane from the dendritic shaft, which has relatively low PIP3 levels. Subspine imaging revealed that PIP3 accumulated in spinules, even though PIP3 in the whole spine region was reduced.

Spinules are induced by a variety of stimulations and their presence is highly variable in different experimental systems. The length of spinules reaches 80–500 nm, at 1 min after high potassium stimulation (Tao-Cheng et al., 2005), 1200 nm at 8 min after local glutamate application (Richards et al., 2005) and 167 nm at 30 min following theta burst stimulation (Toni et al., 1999). Our data showed that the length of spinules reached 880 nm at 4 min after glutamate uncaging under control conditions. Using electron microscopy, spinules are found on 32% of spines under basal conditions in adult male rats (Spacek and Harris, 2004), whereas in the present study, spines are observed on 1.2% of spines expressing GFP. The discrepancy may be explained by differences in the age of rats, rats used, and experimental conditions.

When PIP3 levels are modulated by PI3K and PTEN inhibitors, the level of PIP3 also stoichiometrically change in an opposing way, indicating that there is a possibility that PIP3 regulates spinule formation. However, considering that the levels of PIP2 are >100-fold more abundant than PIP3 levels, the change in PIP3 levels by PTEN or PI3K probably only makes a small contribution to the change in total PIP3 levels (Pettitt et al., 2006; Clark et al., 2011). To further strengthen this idea, we performed an experiment to examine the effect of PIP3 masking with overexpressed PH domain on spinule formation (Fig. 1G,H), similarly to the approach used by Arendt et al. (2010) to examine the effect of PIP3 on functional LTP. Overexpression of PH domain affected the early and late phase of spinule formation. These data suggest that PIP3 regulates the spinule formation. The major difference in the action of overexpressed PH domain versus PI3K inhibitor, which only inhibited spinule formation in the later phase, is whether they affect basal levels of PIP3 or not. PI3K inhibitor treatment blocks PI3K enzymatic activity but the basal levels of PIP3 remains constant, at least acutely (change of <10 ps in lifetime after 30 min treatment, which is statistically insignificant; Fig. 3F). In contrast, the PH domain can mask all available PIP3. We speculate that this distinction causes the phenotypic difference between these two treatments. However, the possibility that there may be a PI3K-independent effect during the early phase cannot be totally ruled out.

PIP3 accumulated in spines more than dendritic shafts (Fig. 3A). PIP3 accumulation was caused by a difference in the local activity of PTEN and PI3K (Fig. 3C–I). Several papers have examined the unique activity patterns and the distribution of the enzymes. PTEN accumulates at the center of growth cones of dorsal root ganglion cells under basal conditions and subsequently moves to the peripheral membrane during Semaphorin 3A-induced growth cone collapse (Chadborn et al., 2006). In PC12 cells, PTEN is confined to small membrane patches in the cell periphery through the interaction with Myosin Va (van Diepen et al., 2009). In hippocampal CA1 pyramidal neurons, PTEN is localized to dendritic shafts, but not spines (Kreis et al., 2010). Whereas PI3K is evenly distributed throughout a neuron, only PI3K associated with AMPARs that predominantly reside in spines is functionally active during the static state (Man et al., 2003). Thus, the subcellular distribution of PIP3 is strictly regulated by the location of associated enzymes.

Locally regulated PIP3 exerts its functions in situ. In axons, microdomains of PIP3 are crucial for driving the formation of axonal F-actin patches, filopodia, and axon branches (Ketschek and Gallo, 2010). Our data showed that after sLTP induction, PIP3 concentration at spinules increases whereas the concentration in the whole spine decreases, especially during the early phase (Figs. 4, 5). Although PIP3 concentration in spinules decreases to some extent at the late phase compared with the early phase (Fig. 5D), considering that spines are rich in PIP3 compared with dendritic shaft (Fig. 3A), PIP3 exists in spines. Based on this result, some possibilities for the biological significance of spinules can be proposed. PIP3 can be sent to the presynaptic site and may act as a messenger molecule for retrograde signaling. Alternatively PIP3 signaling may occur at spines to enable new synapses to form with functional presynaptic boutons, contributing to the change in synaptic connectivity.

References

