
As Published: http://dx.doi.org/10.1002/2014GL059651
Publisher: American Geophysical Union (AGU)
Version: Final published version
Accessed: Sat Dec 22 09:19:09 EST 2018
Citable Link: http://hdl.handle.net/1721.1/89479
Terms of Use: Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Coupling dry deposition to vegetation phenology in the Community Earth System Model: Implications for the simulation of surface O_3

M. Val Martin¹, C. L. Heald², and S. R. Arnold³

¹Atmospheric Science Department, Colorado State University, Fort Collins, Colorado, USA, ²Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, ³Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK

Abstract
Dry deposition is an important removal process controlling surface ozone. We examine the representation of this ozone loss mechanism in the Community Earth System Model. We first correct the dry deposition parameterization by coupling the leaf and stomatal vegetation resistances to the leaf area index, an omission which has adversely impacted over a decade of ozone simulations using both the Model for Ozone and Related chemical Tracers (MOZART) and Community Atmospheric Model-Chem (CAM-Chem) global models. We show that this correction increases O_3 dry deposition velocities over vegetated regions and improves the simulated seasonality in this loss process. This enhanced removal reduces the previously reported bias in summertime surface O_3 simulated over eastern U.S. and Europe. We further optimize the parameterization by scaling down the stomatal resistance used in the Community Land Model to observed values. This in turn further improves the simulation of dry deposition velocity of O_3, particularly over broadleaf forested regions. The summertime surface O_3 bias is reduced from 30 ppb to 14 ppb over eastern U.S. and 13 ppb to 5 ppb over Europe from the standard to the optimized scheme, respectively. O_3 deposition processes must therefore be accurately coupled to vegetation phenology within 3-D atmospheric models, as a first step toward improving surface O_3 and simulating O_3 responses to future and past vegetation changes.

1. Introduction
Surface ozone (O_3) is a harmful air pollutant that is toxic to humans and ecosystems. O_3 concentrations in the troposphere are controlled by a balance among chemical production, stratospheric influx, and loss processes. A major loss process for O_3 is surface dry deposition, accounting for about 20% of the O_3 lost in the troposphere [Wild, 2007]. The majority of this O_3 removal occurs over vegetation, mainly by direct uptake through the stomatal pores of plants and by direct deposition over the leaf cuticles [e.g., Wesely, 1989].

Changes in vegetation as a result of human activities and climate change are of great concern for O_3 air quality [e.g., Sanderson et al., 2003; Ganzeveld et al., 2010; Wu et al., 2012]. For example, deforestation may decrease foliar uptake, prompting a rise in O_3 concentration. In addition, changes in vegetation affect emissions of O_3 precursors (e.g., biogenic volatile organic compounds and soil NOx emissions), which in turn affect OH, an important oxidizing agent in the atmosphere that regulates the lifetime of the greenhouse gas methane.

Surface O_3 is challenging to simulate in 3-D atmospheric models [e.g., Murazaki and Hess, 2006; Wu et al., 2007; Lamarque et al., 2012], due to the nonlinearity of the chemistry, the complexity of physical processes, and the heterogeneity of precursor emissions. A recent well-known issue in some models is the positive bias of surface ozone of more than 10 ppb over eastern U.S. and Europe during the summer [e.g., Murazaki and Hess, 2006; Fiore et al., 2009; Reidmiller et al., 2009; Lamarque et al., 2012]. For example, Murazaki and Hess [2006] reported a very large positive bias (40–60 ppb) for the maximum daily 8 h averaged (MDA8) O_3 over eastern U.S. in the summer with the Model for Ozone and Related chemical Tracers version 2 (MOZART-2). Lamarque et al. [2012] reported a similar bias for the Community Earth System Model (CESM) over the eastern U.S. and a bias of 10–30 ppb over Europe. A positive bias of 10–20 ppb was reported for summertime MDA8 O_3 over eastern U.S. in the multimodel Hemispheric Transport of Air Pollution study [Reidmiller et al., 2009]. Most recently, Lapina et al. [2014] reported a consistent bias of 15 ppb for summertime daily O_3 over the eastern U.S. from the mean of three models: GEOS-Chem, GFDL AM3, and STEM.
2. Methods and Results

With the goal of understanding the role of the dry deposition in the persistent positive bias of surface O\textsubscript{3} over eastern U.S. and Europe, and the ability of the global CESM to properly simulate O\textsubscript{3} responses to vegetation changes, we review, evaluate, and optimize the dry deposition parameterization scheme in CESM. For this work, we use CESM driven by Modern Era Retrospective-Analysis (MERRA) reanalyzed meteorological fields from the NASA Global Modeling and Assimilation Office, with a 1.9° × 2.5° horizontal resolution, and 56 vertical levels between the surface and 0.02 hPa (including 13 levels up to 800 hPa). We employ CESM version 1.1.1 for the year 2001 and specified sea surface and sea ice distributions, i.e., we only allow fast land and atmospheric responses to occur. To simulate land surface processes, we use the Community Land Model version 4 (CLM4) [Oleson et al., 2010]; for the atmospheric model, we use the Community Atmospheric Model version 4 (CAM4) [Neale et al., 2013] fully coupled with the interactive gas-aerosol scheme CAM-Chem [Lamarque et al., 2012]. The chemical mechanism contains full tropospheric O\textsubscript{3}−NO\textsubscript{x}−CO−VOC and aerosol phase chemistry, based on MOZART-4 [Emmons et al., 2010].

The dry deposition scheme in CESM is based on the multiple-resistance approach originally described by Wesely [1989], with some updates discussed in Emmons et al. [2010] and Lamarque et al. [2012]. The dry deposition velocity (V\textsubscript{d}) is computed as follows:

\[
V_d = \frac{1}{R_a + R_b + R_c},
\]

where \(R_a\) is the aerodynamic resistance, \(R_b\) is the quasi-laminar sublayer resistance above canopy, and \(R_c\) is the surface resistance. For O\textsubscript{3} and over vegetated regions, \(V_d\) is mainly driven by \(R_b\) during the day since the effects of \(R_c\) and \(R_a\), which are dependent on meteorological conditions, are typically small [Zhang et al., 2002]. \(R_c\) is then computed as follows:

\[
\frac{1}{R_c} = \frac{1}{R_s} + \frac{1}{R_m} + \frac{1}{R_u} + \frac{1}{R_d} + \frac{1}{R_g},
\]

where \(R_s\) is the stomatal resistance, \(R_m\) is the leaf mesophyll resistance (\(R_m=0\) s/cm for O\textsubscript{3}), \(R_u\) is the upper canopy or leaf cuticle resistance, \(R_d\) is the lower canopy resistance, and \(R_g\) is the ground resistance. This surface resistance scheme is commonly applied in both regional and global models, although different approaches are used to calculate the resistance components. For example, \(R_b\) schemes range from simple parameterizations as a function of solar radiation and/or time of day [e.g., Wesely, 1989], one- or two-big-leaf approaches [e.g., Collatz et al., 1991; Zhang et al., 2002], to a multilayer leaf resistance models [e.g., Baldocchi et al., 1987]. Typically, dry deposition schemes are used with fixed vegetation parameters. However, the evolution of Earth System Models in recent years provides the capability to couple the atmospheric composition to evolving vegetation [e.g., Sanderson et al., 2007]. Here we couple the simulation of dry deposition loss of atmospheric species to the vegetation phenology represented in the CLM. In the land model, all the individual resistances in \(R_b\) are computed at the level of each plant functional type (PFT). Then, the deposition velocity in each grid box is computed as the weighted mean over all land cover types available at each grid box [Lamarque et al., 2012] and transferred to CAM-Chem through a coupler. At the same time, CAM-Chem provides CLM with the meteorological fields needed to determine the resistance components dependent on atmospheric conditions (e.g., \(R_s\) and \(R_b\)).

Our investigation of and modifications to the dry deposition scheme revealed a series of oversimplifications in the implementation of the parameterization in the standard code for CAM-Chem (and the MOZART model upon which it is based, including MOZART-2, MOZART-3, and MOZART-4); these are summarized in Table 1. In the original dry deposition scheme, \(R_b\) is based on the simple scheme described by Wesely [1989], in which this resistance is mainly determined by a parameter prescribed for each season and PFT. Thus, \(R_b\) is not integrated over the canopy depth and neglects the leaf area index (LAI) dependence to account for the seasonality and the geographical distribution of the vegetation [Baldocchi et al., 1987; Gao and Wesely, 1995]. In this work, we replace the standard Wesely [1989] \(R_b\) scheme by the Ball-Berry \(R_b\) scheme described by Collatz et al. [1991] and implemented in a global model by Sellers et al. [1996]. The Ball-Berry scheme relates the \(R_b\) directly to the net leaf photosynthesis. Both parameters are computed in CLM and are dependent on environmental and canopy factors [Oleson et al., 2010]. We use the LAI to integrate \(R_b\) over the canopy depth for sunlit and shaded leaves. Monthly LAI in CLM (run with offline phenology) is derived from
Geophysical Research Letters

10.1002/2014GL059651

Table 1. Summary of Major Changes in the CESM Dry Deposition Velocity Scheme

<table>
<thead>
<tr>
<th></th>
<th>Original Scheme</th>
<th>Corrected Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomatal Resistance (R_s)</td>
<td>$R_s = f_s \left{ 1 + \frac{1}{(200(G+0.1))^2} \right} \frac{D_{H2O}}{D_x}$</td>
<td>$R_s = \frac{m \cdot \frac{e_i}{e_s} \cdot P_{atm} + b}{(1 - f_{sun}) \cdot \frac{r_{sha}}{LAI}}$</td>
</tr>
<tr>
<td></td>
<td>[Wesely, 1989]</td>
<td>[Collatz et al., 1991; Sellers et al., 1996]</td>
</tr>
<tr>
<td>Leaf Cuticular Resistance (R_{lu})</td>
<td>$R_{lu} = \frac{r_{sun}}{10^{-5}H + f_s}$</td>
<td>$R_{lu} = \frac{r_{lu}}{LAI \times (10^{-5}H + f_s)}$</td>
</tr>
<tr>
<td></td>
<td>[Wesely, 1989]</td>
<td>[Gao and Wesely, 1995]</td>
</tr>
</tbody>
</table>

*aThe minimum stomatal resistance is r_s, G is solar radiation, T_s is surface air temperature, D_{H2O} and D_x are the molecular diffusivities for water vapor and for a specific gas x, m is the Ball-Berry slope of the conductance-photosynthesis relationship as a function of PFT, A is leaf photosynthesis calculated separately for sunlit and shaded leaves to give r_{sun} and r_{sha}, b is the minimum stomatal conductance when $A \leq 0$, c_i is the CO$_2$ partial pressure at the leaf surface, e_i is the vapor pressure at the leaf surface, e_s is the saturation vapor pressure inside the leaf and P_{atm} is the atmospheric pressure, f_{sun} is sunlit fraction of canopy, LAI is the leaf area index, r_{lu} is minimum leaf cuticular resistance, H is gas-specific Henry Law constant, and f_s is a reactivity factor for oxidation.

The advanced very high resolution radiometer for each PFT. As described in Bonan et al. [2002], CLM considers 15 PFTs based on these 24 biomes and the geographical distribution defined by Olson et al. [1983]. As an example, we show the global distribution of LAI and the seasonal cycle in the broadleaf deciduous temperate forest PFT in Figure S1 in the supporting information. Similarly, the calculation of R_{lu} in the original dry deposition scheme neglects LAI, and we thus correct R_{lu} to scale it over the bulk canopy [Gao and Wesely, 1995]. These errors in dry deposition are due to the implementation in the CESM (and MOZART) models, and are not inherent to the dry deposition schemes themselves.

Figure 1 shows O$_3$ deposition velocity and surface O$_3$ during the summer for the simulation without vegetation dependence in the dry deposition scheme (Original Scheme) and the changes in a simulation with
Figure 2. Comparison of modeled and observed (a) daytime stomatal resistance (R_s) and (b) midday O$_3$ dry deposition velocity (V_d). R_s data show modeled median and minimum-maximum range (gray) and average from observations (black). R_s observations are averages from measurements collected over a broadleaf deciduous forest in Ontario, Canada, and a cotton field in Sacramento, California, during the summer (JJA) [Padro, 1996]. V_d observations (see Table 2) are shown in black, and results from three simulations are shown in grey (Original), blue (Corrected), and red (Optimized), respectively. Symbols show the mean values; vertical bars represent the minimum-maximum range.

vegetation dependence (Corrected Scheme). O$_3$ dry deposition and surface concentrations are substantially affected by linking the dry deposition scheme to LAI, in particular over densely vegetated regions. For example, the eastern U.S. is dominated by broadleaf deciduous forests and summertime LAI is about 4.5 (Figure S1). Deposition velocities increase by 0.25 cm/s (80% increase) with the Corrected Scheme. This leads to a decrease of 12 ppb of surface O$_3$ over the region in summertime.

To examine the performance of the original and corrected dry deposition schemes, we compare modeled R_s with observations. We evaluate daytime R_s because direct uptake through the stomata pores is the dominant O$_3$ removal process over vegetation; for most vegetation types, this uptake only occurs during the day as stomata are closed at night [e.g., Wesely, 1989; LAMAUDE et al., 2002; WU et al., 2011]. Figure 2a displays daytime R_s observations based on long-term measurements gathered in a broadleaf deciduous forest in Ontario, Canada, and a cotton field in Sacramento, California, during the summertime extracted from Padro [1996], Figure 2. We compare these observations to the simulated median R_s and the minimum and maximum range from 6:00 to 21:00 local standard time (LST) during the summer for broadleaf deciduous
Table 2. A Review of Daytime O₃ Dry Deposition Velocities Over Main PFTs

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Location</th>
<th>High LAI</th>
<th>Low LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciduous Forest</td>
<td>Harvard Forest, MA</td>
<td>0.81 (0.72–0.92)</td>
<td>0.30 (0.20–0.35)</td>
</tr>
<tr>
<td></td>
<td>Ontario, Canada</td>
<td>1.0 (0.80–1.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Forest, MA</td>
<td>0.70 (0.50–0.80)</td>
<td>0.25 (0.20–0.40)</td>
</tr>
<tr>
<td></td>
<td>Kane Experimental Forest, PA</td>
<td>0.83 ± 0.015</td>
<td>0.24 ± 0.017</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>Sand Flats State Forest, NY</td>
<td>0.82 ± 0.013</td>
<td>0.55 ± 0.019</td>
</tr>
<tr>
<td></td>
<td>Duke Forest, NC</td>
<td>0.80 (0.60–0.95)</td>
<td></td>
</tr>
<tr>
<td>Coniferous Forest</td>
<td>Schefferville, Quebec</td>
<td>0.30 (0.25–0.35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niwot Ridge Obs, CO</td>
<td>0.55 (0.40–0.60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southern Norway</td>
<td>0.45 (0.40–0.6)</td>
<td>0.05 (0.05–0.075)</td>
</tr>
<tr>
<td></td>
<td>Ulbgr Forest, Denmark</td>
<td>0.73 (0.45–0.95)</td>
<td>0.39 (0.34–0.44)</td>
</tr>
<tr>
<td></td>
<td>Les Landes Forest, France</td>
<td>0.62</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Niwot Ridge Obs, CO</td>
<td>0.5 (0.3–0.68)</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Manitou Forest Obs, CO</td>
<td>0.5 (0.35–0.75)</td>
<td></td>
</tr>
<tr>
<td>Tropical Forest</td>
<td>Ducke, Amazon, Brazil</td>
<td>1.8 (1.25–2.6)</td>
<td></td>
</tr>
<tr>
<td>Cotton Field</td>
<td>Sacramento, CA</td>
<td>0.75 (0.50–0.90)</td>
<td></td>
</tr>
<tr>
<td>Grassland</td>
<td>Sacramento, CA</td>
<td>0.15 (0.10–0.25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand Mountains, AL</td>
<td>0.4 (0.35–0.45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kansas, USA</td>
<td>0.50 (0.30–0.75)</td>
<td>0.35 (0.18–0.45)</td>
</tr>
</tbody>
</table>

*Reported daytime (9:00–15:00 LST) V_d as average (minimum-maximum), avg ± SD or average. Data extracted from Wu et al. [2011], Padro et al. [1991], Padro et al. [1992], Munger et al. [1996], Finkelstein et al. [2000], Kumar et al. [1983], Helle et al. [2004], Mikkelsen et al. [2000], Lamoud et al. [2002], Turnerpen et al. [2009], Park et al. [2014], Fan et al. [1990], Padro et al. [1994], Meyers et al. [1998], and Gao and Wesely [1995].

High LAI are periods with active plant growth and large LAI and Low LAI are periods with no plant growth or snow cover (see text for further explanation).

V_d for 10:00–14:00.

Temperate forests and C3 crops at those locations. The diurnal variability of R_s is mainly regulated by radiation, which controls stomatal opening. During the day, R_s decreases rapidly and reaches a minimum around local noon when stomata are fully open and vegetation photosynthesis activity is at a maximum [e.g., Wesely, 1989; Padro, 1996]. Observed daytime R_s values range from 0.7 to 6 s/cm in both PFTs, and noon minima are 1 s/cm and 0.7 s/cm in the broadleaf deciduous temperate forest and cotton field, respectively. Similar daytime R_s values have been reported in other, however limited, studies. Finkelstein et al. [2000] measured daytime average R_s values of 2–6.4 s/cm over different broadleaf deciduous temperate trees; Granitz et al. [1997] reported daytime O₃ R_s of 1.4–6.6 s/cm inferred from water vapor stomatal conductance measurements in a cotton field. The Ball-Berry R_s scheme implemented in CESM captures the diurnal variability of observed R_s. However, the model substantially overestimates the R_s magnitude by a factor of 5. Lombardo et al. [2012] suggest that O₃ damage to plants (not included here) would further increase the stomatal resistance; including this effect would exacerbate the model bias in stomatal resistance. Canopy parameters used to calculate R_s are not well constrained in CLM4, and that may contribute to the large R_s values [Bonan et al., 2011]. It is also important to note that R_s is difficult to measure, and observations are rather limited. Therefore, other sources of uncertainty may account for or contribute to the difference observed between the model and observations. However, it is unlikely that vegetation density is a major factor here. We find that a 50% increase in the LAI increases summertime midday V_d by about 20%, with a concurrent decrease of 3 ppb in surface O₃ concentrations. Therefore, we use this initial model-observation comparison to optimize the R_s values implemented in our dry deposition scheme.

Figure 1c shows results from a simulation in which we reduce the R_s used in the dry deposition scheme by a factor of 5 to match the observations shown in Figure 2a (Optimized Scheme). This Optimized Scheme also includes the updated vegetation dependence of the Corrected Scheme. The impact of the Optimized Scheme on the ozone simulation is substantial. For example, in the eastern U.S. dry deposition velocities are 0.5 cm/s (~200%) larger than the Original Scheme, with a concurrent decrease of 20 ppb in surface O₃ concentrations. We observe similar decreases in surface O₃ over dense vegetated regions in the tropical Southern Hemisphere (e.g., Amazon) where LAI is large (~5) throughout the year.
To further support the changes suggested by our Corrected and Optimized schemes, we compare simulated ozone dry deposition velocities with observations in Figure 2b. We show the seasonal variation of O₃ V_d over four sites (Harvard Forest (MA, USA), Rocky Mountain National Park (CO, USA), the Amazon (Brazil), and Kansas (USA)) representative of four major PFTs (broadleaf deciduous temperate forest, needleleaf evergreen temperate forest, broadleaf evergreen tropical forest, and grassland). We show the monthly average of midday (9:00–15:00 LST) V_d as well as the minimum and the maximum values simulated by CESM at these locations. Table 2 summarizes midday V_d from field observations reported in the literature over different PFTs. We report midday V_d for high LAI and low LAI periods to distinguish the effect of growth and vegetation density on the deposition velocity. We define “high LAI” as periods with active plant growth and large LAI and “low LAI” as periods with no plant growth or/and snow cover, as defined in each study. Figure 2b includes observations from four of these PFTs, shown as the average and minimum and maximum (or ± standard deviation (SD)) reported in each study for the duration of measurement period. The comparison of O₃ V_d observations from a particular location with global CESM model output (1.9° × 2.5° horizontal resolution) may be biased because of heterogeneity within the grid box. However, we ensure that the grid box, from which the model data are extracted, is dominated by the PFT in which observations were collected. Figure 2b shows that the ozone dry deposition is generally underestimated (in some cases by more than a factor of two) in the Original Scheme and both our Corrected and Optimized schemes improve comparisons with observations. The dry deposition velocity is particularly sensitive to R_s under densely vegetated (high LAI) conditions. For example, the Optimized Scheme produces V_d values that are a factor of two larger than the Corrected Scheme in deciduous forests during the summer and tropical forests throughout the year (~1 cm/s versus 0.5 cm/s), whereas it remains nearly constant in all configurations in deciduous forests during the winter (~0.1 cm/s) and grasslands (~0.3 cm/s). In broadleaf deciduous temperate forests, V_d is primarily controlled by the seasonal cycle of LAI (Figure S1) [e.g., Finkelstein et al., 2000; Wu et al., 2011]. Observations show a pronounced seasonality in V_d with larger values from late spring to early fall (~0.8 cm/s in summer versus 0.1 cm/s in winter; Table 2). It is clear that the original dry deposition scheme configuration has little skill in capturing the seasonal variability of V_d. The new schemes dependent on LAI reproduce the seasonal cycle, with the Optimized Scheme capturing both the variability and the magnitude of the cycle. Similar results are found in needleleaf evergreen temperate forests, with a much less pronounced seasonality in the simulated and observed V_d.

In broadleaf evergreen tropical forests and grasslands, modeled and observed V_d show little to no seasonality. In these PFTs, where LAI remains nearly constant throughout the year [e.g., Turnipseed et al., 2009; Gao and Wesely, 1995], V_d is mainly driven by environmental factors, such as temperature, humidity, light, and the presence of snow. In broadleaf evergreen tropical forests, the Optimized Scheme improves the comparison with observed dry deposition velocities but is still biased low. It is important to note that V_d observations over tropical regions are very scarce, and data shown are based on only one field campaign (Table 2). In grasslands, dry deposition is not very sensitive to vegetation as LAI is very low (<1; Figure S1), and all configurations reproduce the observed ozone dry deposition velocities.

Figure 3. Scatterplots of simulated surface O₃ during the summer (JJA) with the Original Scheme (black), Corrected Scheme (blue) and Optimized Scheme (red) versus observed long-term mean values at (a) individual Clean Air Status and Trends Network (CASTNET) sites (1995–2005) in eastern U.S. and (b) individual European Monitoring and Evaluation Programme (EMEP) sites (1990–2009) in Europe. Squared-correlation coefficients (r^2), slope, and normalized mean biases (NMB) are shown in the inset. Reduced–major axis regression lines (solid) and the 1:1 lines (dash) are also shown.
Figure 3 shows how these changes to the simulation of dry deposition affect the comparison of simulated surface O_3 concentrations with observations during the summer. In this comparison, we focus on the eastern United States and Europe since these are regions with dense observational networks and where a consistent positive bias in simulated surface O_3 has previously been identified. Observations shown for the eastern U.S. and Europe are long-term means from the CASTNET and EMEP networks, respectively. As an example, we show the bias between model and observations with the original dry deposition scheme in Figure S2 (supporting information). Over the eastern U.S. (Figure 3a), the simulation of surface O_3 concentrations is positively biased with all dry deposition scheme configurations. However, including LAI in the dry deposition scheme significantly improves the simulation of surface O_3. The Original Scheme has a mean positive bias of 30 ppb with respect to the observations, i.e., a 44% normalized mean bias (NMB), which is similar to that obtained for other periods studied with CESM [Lamarque et al., 2012], and is clearly outside of the range of climate variability in surface O_3. This bias drops to 23 ppb (38% NMB) in the Corrected Scheme and to 14 ppb (28% NMB) in the Optimized Scheme. Over Europe (Figure 3b), all model configurations also tend to overestimate surface O_3. However, both the Corrected Scheme and Optimized Scheme are substantially closer to observations (respectively, 5 and 10 ppb bias versus 13 ppb in the Original Scheme). A more detailed evaluation using ozone sondes and satellite and aircraft observations shows that the updates to the dry deposition scheme have a negligible effect on O_3 concentrations above 900 hPa, and away from regions and periods with dense vegetation, i.e., eastern U.S. and Europe during the summer and Southern Hemisphere tropical regions (S. Tilmes, National Center for Atmospheric Research (NCAR), personal communication, 2014). Therefore, while the simulation of surface ozone is dramatically impacted by the representation of vegetation phenology in the dry deposition scheme, the global tropospheric ozone budget is largely unaffected. In addition, our changes to the dry deposition scheme have little impact on the simulation of other species (e.g., SO_4, NO_2, and CO), which are less sensitive to dry deposition losses [e.g., Wesely, 1989].

3. Conclusions

Dry deposition represents an important physical mechanism controlling surface O_3 in CESM. Correcting the vegetation dependence and optimizing the stomatal resistance used in the dry deposition scheme in CESM leads to a substantial improvement in the simulation of surface O_3 over regions that are well known to have a positive bias (e.g., eastern U.S. and Europe). Thus, ozone biases reported in the literature [e.g., Murazaki and Hess, 2006; Lamarque et al., 2012] using the Original Scheme can, at least in part, be attributed to important oversimplifications in the implementation of the dry deposition scheme. Ensuring that models correctly link ozone deposition processes with vegetation and use accurate dry deposition schemes may be a first step toward improving surface O_3 simulations. However, our Optimized Scheme is based on limited observational constraints, and additional globally distributed measurements of both stomatal resistance and dry deposition velocities could be used to improve this parameterization. Further work is also needed to fully understand the causes of the bias in the simulated stomatal resistance, and the impact that the scaling applied in our Optimized Scheme may have on the simulation of the hydrological and carbon cycle, via greater stomatal water loss and carbon uptake. Finally, including explicit links between vegetation parameters and dry deposition is critical to the ability of Earth System Models to simulate surface O_3 response to future and past vegetation changes, as well as factors controlling changes in stomatal resistance, such as changes in CO_2 and drought stress. Thus, on-going investigation of the accuracy of such links must proceed concurrently with efforts to project changing global air quality.

References

