Matched filter decoding of random binary and Gaussian codes in broadband Gaussian channel

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Abdrashitov, Vitaly, Muriel Medard, and Dana Moshkovitz. “Matched Filter Decoding of Random Binary and Gaussian Codes in Broadband Gaussian Channel.” 2013 IEEE International Symposium on Information Theory (July 2013).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/ISIT.2013.6620682</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Feb 05 13:26:46 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/90436</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Abstract—In this paper we consider the additive white Gaussian noise channel with an average input power constraint in the power-limited regime. A well-known result in information theory states that the capacity of this channel can be achieved by random Gaussian coding with analog quadrature amplitude modulation (QAM). In practical applications, however, discrete binary channel codes with digital modulation are most often employed. We analyze the matched filter decoding error probability in random binary and Gaussian coding setups in the wide bandwidth regime, and show that the performance in the two cases is surprisingly similar without explicit adaptation of the codeword construction to the modulation. The result also holds for the multiple access Gaussian channels, when signal-to-noise ratio to the modulation is low. Moreover, the two modulations can be even mixed together and the broadcast Gaussian channels, when signal-to-noise ratio (SNR) is low. This capacity is achieved by the random Gaussian $N(0, P)$ coding with analog quadrature amplitude modulation and a continuous constellation. The random binary coding with codeword symbols $\{+\sqrt{P}, -\sqrt{P}\}$ and binary phase-shift keying (BPSK) modulation approaches the rate C_{AWGN} tightly as the SNR goes to zero (per (1)). This is also true for high-order phase-shift keying (PSK) or quantized QAM modulations.

Note that the fact that two modulations have the same capacity in the low-SNR regime does not imply that they have similar code and decoder constructions. For instance, impulsive frequency-shift keying with low duty cycle is also capacity-approaching for the wide-bandwidth AWGN channel [3], but it employs a specific modulation and its error performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.

In our work we consider random coding and matched filter decoding. Matched filter is a maximum likelihood (ML) decoder, so it achieves the best (lowest) decoding error probability. The decoder outputs the codeword which has the maximal correlation with the channel output, i.e. the maximal performance is different from that of random coding.
binary and Gaussian codewords can be mixed together into a hybrid code as on Figure 1 with asymptotically negligible effect on performance.

The rest of the paper is organized as follows. In Section II, we consider a discrete-time channel, introduce pairwise error decoding probability, and use the Berry-Esseen theorem to estimate the difference between such probabilities in the cases of random binary and Gaussian coding. In Section III we use these results to give an upper bound in a bandlimited Gaussian channel to the difference of the average probabilities of decoding error between the two coding schemes, BPSK and analog QAM, respectively. We show this difference vanishes as the bandwidth grows sufficiently large. In Section IV we extend our results to the codes which mix both the binary and the Gaussian symbols in their codewords. In addition, we generalize our bound to multiple user and degraded broadcast channels.

II. DISCRETE-TIME CHANNEL — TWO CODEWORDS

Let us consider an additive discrete-time Gaussian channel $Y^n = X^n + Z^n$ with a Gaussian noise $z \sim (z_1, \ldots, z_n)$, z_i’s are i.i.d. and drawn from $N(0; N)$. A codebook C contains codewords $c_m \in C$ of a length n. They are drawn randomly and independently from the binary Uniform $\left(\{+\sqrt{p}, -\sqrt{p}\}\right)^n$ or the Gaussian $N(0; p)^n$ distribution in the binary or the Gaussian coding cases, respectively.

Suppose that a codeword $A = (A_1, \ldots, A_n)$ has been sent. Upon receiving a noisy input $Y = A + Z$ the matched filter decoder outputs a codeword B for which the channel output Y is the most likely result. The decoder uses ML symbol metrics $\lambda_{mi} \triangleq Y_i c_{mi}$, where c_{mi} is the i-th symbol of the codeword c_m. The decoder decision on the input Y is given by $g(Y) = \arg \max_{x \in C} \sum_{i=1}^n \lambda_{mi} = \arg \max_{x \in C} c \cdot Y$ (here and further vectors are multiplied in the inner product sense). Thus the $g(Y)$’s correlation with the Y is the largest over the entire codebook. The average pairwise error probability, i.e. the probability that $A + Z$ will be decoded to a specific codeword $B \neq A$ is:

$$\epsilon(A, B) = \Pr[B(A + Z) \neq A(A + Z)]$$

$$= \Pr[\sum_{i=1}^n B_i(A_i + Z_i) \neq \sum_{i=1}^n A_i(A_i + Z_i)]$$

$$= \Pr[\sum_{i=1}^n (B_i - A_i)(A_i + Z_i) \geq 0]$$

$$= \Pr[\sum_{i=1}^n ((B_i - A_i)(A_i + Z_i) + \mathbb{E}[A_i^2]) \geq n\mathbb{E}[A_i^2]]$$

$$= \Pr[\sum_{i=1}^n U_i \geq p\sqrt{n}].$$

(2)

Here, A, B are two different codewords in the codebook, and $U_i \triangleq (B_i - A_i)(A_i + Z_i) + p$. Since all codeword symbols in all the codewords are chosen independently from the input distribution, the random variables $\{A_1, \ldots, A_n, B_1, \ldots, B_n, Z_1, \ldots, Z_n\}$ are mutually independent. Clearly the U_i’s are also independent for different values of i, and are identically distributed random variables with mean $\mathbb{E}U_i = \mathbb{E}[B_i A_i + B_i Z_i - A_i^2 - A_i Z_i + p] = 0$. Let

$$\mu_k = \mathbb{E}[A_i^k] = \mathbb{E}[B_i^k]$$

be the k-th moments of codeword symbols. In the binary case $\mu_{2k} = p^k$, in the Gaussian case $\mu_{2k} = (2k - 1)!p^k$. All odd moments are zero. For the U_i’s we can calculate their variance

$$\sigma^2 = \text{Var}[U_i]$$

$$= \mathbb{E}[(B_i A_i + B_i Z_i - A_i^2 - A_i Z_i + p)^2]$$

$$= 2\mathbb{E}[Z_i^2]p + \mu_4,$$

and upper-bound the absolute third moment via the Cauchy-Schwarz inequality

$$\rho = \mathbb{E}||U_i||^3$$

$$\leq \sqrt{\mathbb{E}[U_i^2] \mathbb{E}[U_i^4]}$$

$$= \left(\mathbb{E}[Z_i^4](6p^2 + 2\mu_4) + \mathbb{E}[Z_i^2](-24p^3 + 30p\mu_4 + 6\mu_6) + 3p^4 - 6p^2\mu_4 + \mu_6^2 + 2p\mu_6 + \mu_8\right)^{1/2}(2\mathbb{E}[Z_i^2]p + \mu_4)^{1/2}.$$

(4)

In the calculation of the variance and the third moment bound all terms A_i^k, B_i^k, Z_i^k with odd powers of A_i, B_i, Z_i are zero mean, and do not affect the result. Note, that by (3), (4) for $p \ll \mathbb{E}[Z_i^2] = N$ (the low-SNR regime) we have

$$\sigma^2 \approx \rho \approx N\rho_0 \leq 4\sqrt{3}(Np)^{3/2}, \rho_0 \leq 6\sqrt{2}(Np)^{3/2}.$$

(5)

The indices ‘b’ and ‘g’ of σ, ρ denote the binary and the Gaussian cases, respectively.

We shall upper bound the difference between the pairwise probabilities (2) in the binary and the Gaussian cases using the Berry-Esseen theorem [5]. The theorem is a quantitative version of the central limit theorem: it gives the maximal error of approximation of a scaled sum of iid random variables X_i by the normal distribution. If $\mathbb{E}[X_i] = 0, \mathbb{E}[X_i^2] > 0, \mathbb{E}[X_i^3] < \infty$, then for any real t

$$\left|\Pr[\sum_{i=1}^n X_i \leq t] - \Phi_\mathcal{N}(t)\right| \leq \frac{C\mathbb{E}[X_i^3]}{\mathbb{E}[X_i^2]^{3/2}\sqrt{n}},$$

(6)

where $\Phi_\mathcal{N}(t)$ is the cumulative distribution function (CDF) of the zero-mean normal distribution with variance σ^2, and $C < 0.5$ [6].

Per the Berry-Esseen theorem we have

$$\left|\Pr[\sum_{i=1}^n U_i \leq t] - \Phi_\mathcal{N}(t)\right| \leq \frac{C\rho}{\sigma^3\sqrt{n}}.$$

(7)

Let us compare the average pairwise probabilities of error (2) for the Gaussian and the binary cases. Since the pairwise

Fig. 1. Mixing of binary and Gaussian codewords
probabilities of error do not depend on specific codewords A, B, we denote the result just by \(\Delta \epsilon_{\text{pw}} \), where the subscript stands for “pairwise”:

\[
\Delta \epsilon_{\text{pw}} \triangleq |\epsilon_g(A, B) - \epsilon_b(A, B)|
\]

\[
\leq |\sum_{i : c_i \neq c} \epsilon_g(c_i, c) - \sum_{i : c_i \neq c} \epsilon_b(c_i, c)|
\]

\[
\leq \sum_{i : c_i \neq c} \Delta \epsilon_{\text{pw}} \leq (2RT - 1) \Delta \epsilon_{\text{pw}}. \tag{9}
\]

In order to make the union bound small, we fix the codebook size \(2^{RT} \), and make the \(\Delta \epsilon_{\text{pw}} \) small by letting the codelength \(n = \frac{2^{RT}}{N_0} \) grow by decreasing the SNR and keeping the message duration \(T \) constant. Thus, we express the \(\Delta \epsilon_{\text{pw}} \) in (9) in terms of the message duration \(T \) and the SNR \(\gamma \):

\[
\Delta \epsilon_{\text{pw}} \leq \frac{C_\gamma}{\sigma_0^3 \sqrt{2\pi N_0}} + \frac{C_\rho}{\sigma_b^3 \sqrt{2\pi N_0}}
\]

\[
+ \Phi_{\sigma_0^2} \left(\frac{PT\gamma N_0}{2} \right) - \Phi_{\sigma_b^2} \left(\frac{PT\gamma N_0}{2} \right). \tag{10}
\]

Note that the \(p \) is expressed as \(\gamma N_0 \).

After that we use the expressions (3), (4) for the \(\sigma, \rho \), and expand our bound in Taylor series at \(\gamma = 0 \):

\[
\Delta \epsilon_{\text{pw}} \leq \left(\frac{3}{\sqrt{2}} + \sqrt{3} \right) \sqrt{\frac{\gamma}{S}} + \frac{\gamma}{2\pi\sqrt{2\pi}} \sqrt{Se^{-S/2}}
\]

\[
+ O(\left(\frac{\gamma^3}{S} \right) + O(\gamma^2 \sqrt{Se^{-S/2}})) \tag{11}
\]

\[
\gamma \leq \frac{3}{\sqrt{2}} + \sqrt{3} \frac{\gamma}{\sqrt{S}} + \frac{\gamma}{2\pi\sqrt{2\pi}} \sqrt{Se^{-S/2}}
\]

\[
+ \frac{\gamma^3}{2} + \frac{\gamma^2}{2} \sqrt{Se^{-S/2}},
\]

where \(S = \frac{PT}{N_0} = TC_{\text{AWGN}}(W \to \infty) \) is the maximal possible amount of information in nats per codeword in the infinite bandwidth regime. Here we again make use of the low-SNR assumption.

Next, we use the union bound to estimate the difference between the average decoding error probabilities over the entire codebook. These average probabilities do not depend on the specific transmitted codeword, and the parameter \(c \) is omitted. We also upper-bound the numerical constants, and use \(\sqrt{Se^{-S/2}} < 1, \forall S \geq 0 \):

\[
\Delta \epsilon \leq (2RT - 1) \Delta \epsilon_{\text{pw}} \tag{12a}
\]

\[
\leq (2RT - 1) \left(2 \sqrt{\frac{\gamma}{S}} + \frac{\gamma}{5} + \sqrt{\frac{\gamma^3}{S}} + \frac{\gamma^2}{2} \right) \tag{12b}
\]

\[
= (2RT - 1) \left(\frac{2}{\sqrt{WT}} + \frac{S}{5WT} + \frac{S}{(WT)^{3/2}} + \frac{S^2}{(WT)^2} \right) \tag{12c}
\]

\[
\leq (2RT - 1) \left(\frac{2}{\sqrt{WT}} \right)^2 + \frac{2\gamma^2}{\sqrt{WT}} \triangleq \delta. \tag{12d}
\]

The final bound \(\delta = \delta(T, W, \gamma, R) \) is given in terms of the codeword duration, the bandwidth, the SNR and the transmission rate. Increasing the bandwidth \(W \) (thus decreasing the SNR) will make the difference between the average error probabilities in the binary and the Gaussian cases arbitrarily close to zero for the fixed rate \(R \) and the duration \(T \):

\[
\lim_{W \to \infty} \Delta \epsilon \leq \lim_{W \to \infty} \delta = 0. \tag{13}
\]

Therefore, the ML decoder performance on random binary codes approaches that of random Gaussian codes asymptotically.

Numerical values of the bound \(\delta \) for different values of the rate, the duration \(T \), and the corresponding codelength \(n = 2WT \), are shown on Figure 2. The plot shows the boundary between the practical region and the unrealistic region of...
codebooks with fewer than 2 codewords. For a bandwidth 10^7 Hz the difference between the error probabilities can be made as low as 10^{-8} for bit rates below 3 bit/s, although small codebooks with few very long codewords are needed for such $\Delta \epsilon$. In this setup the bound is virtually the same for the Gaussian random coding with mixed modulation (BPSK and continuous QAM). We also demonstrate that the results derived in the previous section are valid for multiuser environments. Further generalizations will be pointed out in the conclusion.

In this section we extend our results to the hybrid binary-Gaussian random coding in mixed modulation (BPSK and continuous QAM). We also demonstrate that the results derived in the previous section are valid for multiuser environments. In particular we generalize the bound (12d) to multiaccess and the degraded broadcast Gaussian channels.

A. Hybrid code

The result can be extended to mixtures of the binary and the Gaussian random coding in which $n_b < n$ codeword symbols are drawn from the binary distribution, and the remaining $n_g = n - n_b$ symbols — from the Gaussian distribution (see Figure 1). The specific places of the binary and the Gaussian symbols in a codeword are not important, as long as they are the same for all codewords. The difference $\Delta \epsilon^{h-b}_{pw}$ between the pairwise error probability of this hybrid coding and that of the pure binary coding can be upper-bounded in a way similar to (8):

$$\Delta \epsilon^{h-b}_{pw} = \left| \Pr \left[\sum_{i=1}^n U_i^h \leq pm \right] - \Pr \left[\sum_{i=1}^n U_i^b \leq pm \right] \right|$$

$$= \left| \Pr \left[\sum_{i=1}^{n_g} U_i^g \leq \frac{pm}{\sqrt{n_g}} \right] - \Pr \left[\sum_{i=1}^{n_g} U_i^b \leq \frac{pm}{\sqrt{n_g}} \right] \right|$$

$$\leq \frac{C P_g}{\sigma^3_g \sqrt{n_g}} + \Phi \left(\frac{pm}{\sigma^2_g} \right) - \Phi \left(\frac{pm}{\sigma^2_g} \right) + \frac{C P_b}{\sigma^3 \sqrt{n_g}}.$$

(14)

If $n_g = \alpha_g n$ for some constant α_g, then, by following the arguments used for (10)–(12d), we result in

$$\Delta \epsilon^{h-g}_{b} = (2^{RT} - 1) \frac{\Delta \epsilon^{h-g}_{pw}}{\sqrt{W T \alpha_g}}.$$

(15)

where δ is the upper bound (12d). The difference $\Delta \epsilon^{h-g}_{b}$ between the hybrid and the Gaussian codes has the same expression with $\alpha_g = n/n_b$ instead of the α_g. On the other hand $\Delta \epsilon^{h-b}_{pw} \leq \Delta \epsilon^{h-g}_{b} + \Delta \epsilon$ by the triangular inequality. Therefore,

$$\Delta \epsilon^{h-b}_{pw} \leq (2^{RT} - 1) \min \left\{ \left(\Delta \epsilon^{h-g}_{pw} + \Delta \epsilon \right), \delta \sqrt{\alpha_g} \right\}$$

(16)

$$\leq \delta \min \{ \alpha_g^{1/2} + 1, \alpha_g^{1/2} \} \leq 2.15 \delta.$$

Similarly, $\Delta \epsilon^{h-g}_{b} \leq 2.15 \delta$. The similar results can also be obtained by applying a more general version of Berry-Esseen theorem for non-identically distributed summands ([5]) to the mixture input distribution.

B. Gaussian Multiple Access Channel

Consider M transmitters (users) with average power constraints P_m. A wideband multiple access channel with a Gaussian noise spectral density $N_0/2$ and a bandwidth W (Hz) is given by $Y = \sum_{m=1}^M X(m) + Z$. We assume that the total SNR is small $\sum_{m=1}^M P_m/W N_0 \ll 1$. Each user is associated with a random codebook c_{m}, of a size 2^{n_m}. If the transmission rates R_m of the users are in the MAC capacity region

$$\sum_{m \in S} R_m < W \log \left(1 + \frac{\sum_{m \in S} P_m}{W N_0} \right) \quad \forall S \subseteq \{1, \ldots, M\}, S \neq \emptyset,$$

(17)

then the receiver can decode the messages of all the users correctly with high probability by decoding the messages successively with interference cancellation [8], [9].

In the low-SNR regime there is even no need for interference cancellation, we just treat the signals from all the users but one as an extra noise $\sum_{k \neq m} X(k)$. The corresponding shrinking of the capacity region is at most $W \left(\log \left(1 + \frac{P_m}{W N_0} \right) - \log \left(1 + \frac{\sum_{k \neq m} P_k}{W N_0} \right) \right) \approx \frac{P_m}{W N_0} \sum_{k \neq m} P_k$ and is negligible with respect to the capacity in the low-SNR regime.

As before, we start with analyzing the average pairwise error probabilities in the binary and Gaussian cases, and then proceed to the case of many codewords. Let $A = \{A^m\}_{m=1}^M$, $B = \{B^m\}_{m=1}^M$ be two sets of independent and identically distributed codewords for all the users, $E[\|A^m\|^2] = E[\|B^m\|^2] = \ldots$
Then, the probability of decoding into the B when the A was sent is bounded by
\[
\epsilon^M_{\text{MAC}}(A, B) \leq \sum_{m} \Pr[B^m(B^m - A^m) + A^m] \geq A^m \sum_{k=1}^M A^k + Z].
\] (18)

Each summand on the right side can be expressed by (2) with $U^m = (B^m - A^m) + \sum_{k=1}^M A^k + Z(m)$ and $\alpha^m = \frac{P}{W N}$. The low-SNR approximations (5) still hold for $E[U^m|^2]$ and $E[U^m|Z(m)]$, given $p = \frac{P}{2W}$. Next, we use (8b) to bound the difference between the average pairwise error probabilities in the binary and the Gaussian cases for every term in the summation (18). For the case of many codewords with a duration T and a codewidth $n = 2WT$ the difference between the average probabilities of decoding error per (12d) is bounded by
\[
\Delta^M_{\text{MAC}} \leq \sum_{m=1}^M (2R_m T - 1) \frac{2 + 2P_m W N}{\sqrt{WT}}. \quad \text{(19)}
\]

C. Gaussian Degraded Broadcast Channel

Consider a transmitter X with an average power constraint P, and M receivers (users) $\{Y_m\}_{m=1}^M$ with Gaussian noise spectral densities $\{N_m\}_{m=1}^M$, $N_1 < N_2 < \cdots < N_M$. A wideband degraded broadcast channel with a bandwidth W is given by $Y(m) = X + Z(m)$ for $1 \leq m \leq M$. In the low-SNR regime $\frac{P}{W N} \ll 1$. Each user is associated with a random codebook C_m of a size $2^n R_m$. If the transmission rates R_m between the transmitter and the users are in the capacity region
\[
R_m < W \log(1 + \frac{\alpha_m P}{W N m + \sum_{k=1}^{m-1} \alpha_k P}) \quad \forall m \in \{1, \ldots, M\}
\]
for some $\{\alpha_1, \ldots, \alpha_M\}$, such that $\alpha_k \geq 0$, $\sum_{k=1}^M \alpha_k = 1$, (20) then all the receivers can decode their messages correctly with high probability, given the transmitter allocates α_m fraction of its power to the m-th user. Each user decodes the messages of less capable users first, then performs interference cancellation and decodes its own message [10, 11].

As we did with multiple access channel, we simplify decoding in the low-SNR regime by treating other users’ messages as an extra noise. The capacity region shrinks to
\[
R_m < W \log(1 + \frac{\alpha_m P}{W N m + \frac{1}{\epsilon} + \alpha_k P})
\]
difference (20) is negligible. Let $A = (A^m)_{m=1}^M$, $B = (B^m)_{m=1}^M$ be two sets of independent and identically distributed codewords for all the users, $E[A^m|^2] = E[B^m|^2] = \frac{\alpha_m P}{2W}$. Then, the probability of decoding into the B when the A was sent is bounded by
\[
\epsilon^\text{DBC}_{\text{PW}}(A, B) \leq \sum_{m} \Pr[(B^m - A^m) \sum_{k=1}^M A^k + Z(m) \geq 0].
\] (21)

Each term on the right side can be expressed by (2) with $U^m = (B^m - A^m) \sum_{k=1}^M A^k + Z(m) + \frac{\alpha_m P}{2W}$. The low-SNR approximations (5) still hold for $E[U^m|^2]$ and $E[U^m|Z(m)]$, given $p = \frac{\alpha_m P}{2W}$. By using (8b) and (12d), we get a bound for the difference between the average probabilities of decoding error with the Gaussian/binary coding for the case of many codewords with a duration T and a codewidth $n=2WT$:
\[
\Delta_\text{DBC} \leq \sum_{m=1}^M (2R_m T - 1) \frac{2 + 2\alpha_m W N}{\sqrt{WT}}. \quad \text{(22)}
\]

V. Conclusion

In this paper we compared the performance of matched filter decoding of the binary and Gaussian coding in the AWGN channel with average input power constraint. We showed that in the low-SNR wide-bandwidth regime in capacity approaching setups with binary encoder and BPSK modulation the decoding error probability is asymptotically close to that of the random Gaussian coding scheme with continuous constellation with the same codewidth. The result can be easily extended to multiuser channels. The binary input distribution achieves the lowest value of $\frac{1}{\rho}/\sigma^2$ in (8b), and is therefore the closest to the optimal Gaussian input distribution in terms of the bound (12a) on Δ. However, the technique we used for comparison of the input distributions also works for non-binary distributions (with more than 2 points of support), thus, our result is valid for higher order digital modulations (QPSK, 16-QAM, etc.). The performance of non-uniform input distributions can also be bounded with our method. They come up, for example, in the channels with a peak power constraint, whose optimal input distributions are not Gaussian, nor even continuous [7]. Finally, different codeword symbols do not need to be identically distributed. We analyzed a hybrid code which uses both Gaussian, and binary symbols in its codewords, and requires both discrete and continuous modulation at the same time. Such a code is comparable to the pure binary or the pure Gaussian codes in terms of the error performance.

References