Evidence for s-Channel Single-Top-Quark Production in Events with One Charged Lepton and Two Jets at CDF

We report evidence for s-channel single-top-quark production in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96$ TeV using a data set that corresponds to an integrated luminosity of 9.4 fb$^{-1}$ collected by the Collider Detector at Fermilab. We select events consistent with the s-channel process including two jets and one leptonically decaying W boson. The observed significance is 3.8 standard deviations with respect to the background-only prediction. Assuming a top-quark mass of 172.5 GeV/c^2, we measure the s-channel cross section to be $1.41^{+0.44}_{-0.42}$ pb.

DOI: 10.1103/PhysRevLett.112.231804 PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Qk

In proton-antiproton collisions, top quarks can be singly produced through electroweak interactions. This process provides a unique opportunity to test the standard model (SM) and search for non-SM physics. Each channel of the single-top-quark process is sensitive to different classes of SM extensions: the t-channel process, in which an intermediate W boson decays into a top (antitop) quark and an antibottom (bottom) quark, is sensitive to contributions from additional heavy bosons [1]; the t-channel process, in which a bottom quark transforms into a top quark by exchanging a W boson with another quark, is more sensitive to flavor-changing neutral currents [1]. Independently studying the production rate of these channels provides more restrictive constraints on SM extensions than just studying the combined production rate [2].

Single-top-quark production was first observed independently by the CDF and D0 experiments in 2009 [3,4]. The t-channel production was first observed in 2011 by the D0 experiment [5] and confirmed in 2012 by the ATLAS [6] and CMS [7] experiments. The ATLAS [8] and CMS [9] experiments also reported evidence for top-quark associated production with a W boson. The s-channel process has not yet been observed. Because of the smaller production cross section and larger backgrounds, it is more difficult to isolate it compared to the t-channel process in proton-antiproton collisions. It is even more difficult at the Large Hadron Collider, although the absolute production rate is higher, as proton-antiproton collisions yield a significantly smaller signal-to-background ratio compared to the Tevatron. Recently, the D0 Collaboration announced the first evidence for the s-channel process in the charge lepton (l) + jets channel with a data set corresponding to 9.7 fb$^{-1}$ of integrated luminosity [10].

In this Letter, we present the measurement of the single-top-quark s-channel cross section with the full CDF Run II data set in the l + jets final state [11]. The data are collected with the general-purpose Collider Detector at Fermilab (CDF II) [12] and correspond to an integrated luminosity of 9.4 fb$^{-1}$. The CDF II detector is a solenoid magnetic spectrometer surrounded by calorimeters and muon detectors.

Since top-bottom quark coupling is much larger than the magnitudes of the top-down and top-strange quark couplings, we assume that all top quarks decay into Wb pairs. We select events in which the W boson decays leptonically into an electron or a muon with a corresponding neutrino. Electrons or muons from t decay are also accepted. Thus, the final state of the signal process consists of one reconstructed electron or muon, one corresponding neutrino, and two jets originating from bottom quarks (b jets). Since the final state of this process is the same as used in the search for a Higgs boson (H) produced in association with a W boson [13], the techniques used in this Letter are
based on this recent search but with a discriminant optimized for the present measurement.

There are important differences in the jet selection strategy between this s-channel-optimized analysis and the previous measurements [14], which were optimized for the t-channel process. The t-channel process usually yields one light-flavor jet in the forward region (pseudorapidity $|\eta| > 2.0$), which is crucial to distinguish the t-channel signal from background events. Since including these forward jets does not lead to a more powerful discriminator for the s-channel measurement, only central jets ($|\eta| < 2.0$) are included. Moreover, for the s-channel process, events with two b jets provide the most sensitivity, while most t-channel events have only one reconstructable b jet. As a result, the sensitivity of the s-channel analysis has been improved with a more efficient b-jet selection algorithm [15].

Events are collected using three classes of online selection requirements (triggers). In order to improve the lepton acceptance, a novel inclusive trigger strategy is used while most events with two leptons satisfy the mass resolution and can be calculated in Refs. [23–25]. For the double-tag categories, the category with the highest signal-to-background ratio is chosen if an event satisfies more than one category; for the single-tag category, one jet of the event is required to be tight tagged, and the other one is untagged. Signal and background events are modeled using a combination of data-driven methods and Monte Carlo (MC) simulation including the CDF II detector response modeled by GEANT3 [18] with the CTEQ5L parton distribution function [19] and tuned to the Tevatron underlying-event data [20]. The single-top-quark events are modeled using POWHEG [21] with the top-quark mass set to 172.5 GeV/c^2, while quark shower and hadronization are performed by PYTHIA [22]. Signal events generated by POWHEG are at next-to-leading-order accuracy in the strong coupling α_s, which is an improved model compared to the leading-order model used in Ref. [14]. The background model remains unchanged from the previous measurement [14]. The diboson (WW, WZ, ZZ), $t\bar{t}$, and Higgs-boson processes (with the Higgs-boson mass set to 125 GeV/c^2) are modeled using simulated events generated with PYTHIA and normalized to the cross section calculated in Refs. [23–25].

Events in which a W or Z boson is produced in association with jets ($W/Z + j$) are generated with ALPGEN [26, 27] at leading order with up to four partons with generator-to-reconstructed-jet matching [28,29] and
their hadronic shower simulated with PYTHIA. The background from the multijet process, which does not contain a W boson, is predicted using a data-driven model. The normalizations of multijet and W+jets processes are determined in a control sample (pretag sample) that includes events without any b-tag requirement. There are 122 039 events in the pretag sample, which is dominated by W + jets and multijet events. Since multijet events typically have smaller E_T than W-boson events, their normalizations are determined by fitting the E_T distribution in the control sample. Normalization in the b-tagged signal sample for the W + heavy-flavor-jets background is calculated by applying the tagging efficiency and the fraction of heavy-flavor jets to the rates calculated in the pretag sample. The fraction of heavy-flavor jets is derived from fitting jet-flavor-sensitive variables in the b-tagged W + one-jet data sample [14]. For the W + light-flavor background, where one or two light-quark jets or gluon jets are misidentified as b jets, the normalization is calculated from the W + jets pretag sample by subtracting the heavy-flavor fraction and multiplying by the per-jet b-tag misidentification rate. For the multijet background, a b-tag rate derived from the data is used to estimate the normalization of the tagged multijet background.

The estimated event yields are shown in Table I. Here, and in all following figures, we combine b-tag categories with similar signal purity (TT with TL and T with LL). Table I shows that the predicted background and its uncertainty are larger than the expected signal. By using variables with different distributions for signal and backgrounds, we improve signal purity in some regions of these distributions. The invariant-mass distribution of the top-quark candidates shown in Fig. I is the most powerful single discriminating variable.

We train a set of artificial neural networks [30] to further discriminate the signal process using the combined information on the reconstructed top-quark mass and several other variables. The neural networks incorporate the following variables: invariant mass of the top-quark candidate $M_{T\ell\nu j}$; invariant mass of all signal final-state particles $M_{T\ell\nu j}$; transverse momentum of the charged lepton p_T^{ℓ}; invariant mass of the two jets M_{jj}; angle between the charged-lepton momentum and the momentum of the jet from the top-quark decay in the top-quark rest frame $\cos\theta_{\ell j}$; scalar sum of transverse energy of the two jets, the charged lepton, and the neutrino H_T; transverse mass of the top-quark candidate $M_{T\ell\nu j}^\text{TM}$ defined to be the invariant mass calculated using the projections of the three-momentum components in the plane perpendicular to the beam axis; and the output value of the neural network that determines the b jet most likely to originate from the top-quark decay. We optimize the neural networks separately for each tagging category and for different lepton categories using different input variables. The variable $M_{T\ell\nu j}^\text{TM}$ is used only for extended muon events, and the output value of the b-jet-selector neural network only for the central-lepton events. In the neural-network training, the background samples consist of all backgrounds predicted by simulation, and the fractional yields among background samples are set as predicted by the background model.
We use the pretag sample to check the modeling of each input variable. We investigate the neural-network output in the b-tagged signal region only after ensuring that all variables are well modeled in the control sample. The distributions of neural-network output are shown in Fig. 1, with categories having similar signal purities combined.

We employ a binned-likelihood technique to extract the single-top-quark s-channel cross section from the neural-network-output distribution. We assume a uniform prior probability density for all non-negative values of the cross section and integrate the posterior probability density over the parameters of effects associated with all sources of systematic uncertainties parametrized using Gaussian priors truncated to avoid negative probabilities. We include systematic uncertainties parametrized using Gaussian the parameters of effects associated with all sources of

The sensitivity is defined to be the significance expected assuming the SM cross section and as measured from pseudoexperiments where the background-only assumption is 2.9 standard deviations. From background-only pseudoexperiments, we determine the significance of the excess of the measured cross section over the expected backgrounds as corresponding to a p value of 5.5×10^{-5}, equivalent to 3.8 standard deviations. We interpret the observed excess as evidence of the single-top-quark production through the s-channel process.

In summary, we perform a measurement of the single-top-quark s-channel cross section in the final state with a charged lepton and two jets using the full CDF Run II data set. We find evidence for the single-top-quark s-channel process, and we measure the s-channel cross section to be $1.41^{+0.44}_{-0.42}$ pb, in agreement with the SM prediction.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Natural Sciences and Engineering Research Council of Canada, the National Science Council of the Republic of China, the Swiss National Science Foundation, the A.P. Sloan Foundation, the Bundesministerium für Bildung und Forschung, Germany, the Korean World Class University Program, the National Research Foundation of Korea, the Research Council (ARC), and the EU community Marie Curie Fellowship Contract No. 302103.

*Curie Fellowship Contract No. 302103.

*Visitor from University of British Columbia, Vancouver, BC V6 T 1Z1, Canada.

*Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

*Visitor from University of California Irvine, Irvine, CA 92697, USA.
The third process, t\W production, contributes negligibly in p\pbar collisions, given the cross section of 0.25 pb [31].
The factorization and renormalization scale in the ALPGEN samples are both set to be $\sqrt{M_0^2 + \sum_{\text{partons}} m_\gamma^2}$, where $m_\gamma^2 = m^2 + p_\gamma^2/c^2$, m is zero for all partons except that $m_b = 4.7$ GeV/c^2, and $m_c = 1.5$ GeV/c^2. [27] M. L. Mangano, F. Piccinini, A. D. Polosa, M. Moretti, and R. Pittau, J. High Energy Phys. 07 (2003) 001.

