Measurement of $B(t \rightarrow Wb)/B(t \rightarrow Wq)$ in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1103/PhysRevLett.112.221801
Publisher	American Physical Society
Version	Final published version
Accessed	Mon Jan 07 11:10:03 EST 2019
Citable Link	http://hdl.handle.net/1721.1/90888
Terms of Use	Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	
Measurement of $B(t \rightarrow Wb)/B(t \rightarrow Wq)$ in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
Argonne National Laboratory, Argonne, Illinois 60439, USA
University of Athens, 157 71 Athens, Greece
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
Baylor University, Waco, Texas 76798, USA
Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
University of California, Davis, Davis, California 95616, USA
University of California, Los Angeles, Los Angeles, California 90024, USA
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
Duke University, Durham, North Carolina 27708, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Florida, Gainesville, Florida 32611, USA
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
University of Geneva, CH-1211 Geneva 4, Switzerland
Glasgow University, Glasgow G12 8QQ, United Kingdom
Harvard University, Cambridge, Massachusetts 02138, USA
Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland;
Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
University of Illinois, Urbana, Illinois 61801, USA
The Johns Hopkins University, Baltimore, Maryland 21218, USA
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;
Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;
Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea;
Ewha Womans University, Seoul, 120-750, Korea
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
University of Liverpool, Liverpool L69 7ZE, United Kingdom
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Michigan, Ann Arbor, Michigan 48109, USA
Michigan State University, East Lansing, Michigan 48824, USA
Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
University of New Mexico, Albuquerque, New Mexico 87131, USA
The Ohio State University, Columbus, Ohio 43210, USA
Okayama University, Okayama 700-8530, Japan
Osaka City University, Osaka 558-8585, Japan
University of Oxford, Oxford OX1 3RH, United Kingdom
Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy
University of Padova, I-35131 Padova, Italy
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
University of Pisa, I-56127 Pisa, Italy
University of Siena, I-53100 Siena, Italy
Scuola Normale Superiore, I-56127 Pisa, Italy
INFN Pavia, I-27100 Pavia, Italy
University of Pavia, I-27100 Pavia, Italy
We present a measurement of the ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where q represents any quark flavor, in events with two charged leptons, imbalance in total transverse energy, and at least two jets. The measurement uses proton-antiproton collision data at center-of-mass energy 1.96 TeV, corresponding to an integrated luminosity of 8.7 fb$^{-1}$ collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure R to be 0.87 ± 0.07, and extract the magnitude of the top-bottom quark coupling to be $|V_{tb}| = 0.93 \pm 0.04$, assuming three generations of quarks. Under these assumptions, a lower limit of $|V_{tb}| > 0.85(0.87)$ at 95% (90%) credibility level is set.

PACS numbers: 12.15.Hh, 13.85.Qk, 14.65.Ha
We use the full Run II data set, corresponding to an integrated luminosity of 8.7 fb$^{-1}$ collected with the CDF II detector [9] at the Tevatron at center-of-mass energy $\sqrt{s} = 1.96$ TeV.

The CDF II detector [9] consists of a particle spectrometer embedded in a magnetic field of 1.4 T, with inner tracking chambers surrounded by electromagnetic and hadronic calorimeters segmented into towers projecting to the interaction point, and outer muon detectors. A tracking system composed of a silicon microstrip detector located at radial distance r from the beam 1.5 $\leq r \leq 28$ cm and of a drift chamber at 43 $\leq r \leq 132$ cm, provides the reconstruction of charged-particle momentum and trajectories with full efficiency up to pseudorapidity $|\eta| \approx 1$ [10]. The silicon microstrip detector is essential for the detection of vertices displaced from the $p\bar{p}$ collision point signaling the decay of long-lived particles. A three-level, online event-seleaston system [11] is used to select events with an e (μ) candidate in the central detector region of pseudorapidity $|\eta| < 1.1$, with $E_T(p_T > 18$ GeV (> 18 GeV/c), which form the data set for this analysis.

The measurement of R is based on the determination of the number of jets originated from b quarks (b jets) in $t\bar{t}$ events reconstructed in the dilepton final state. The dilepton signature consists of two high-p_T charged leptons (e or μ), large missing transverse energy E_T [10] due to the undetected neutrinos from the leptonic W-boson decays, and at least two hadronic jets. The identification of b jets (tagging) is performed by the secvtx algorithm [12], which reconstructs secondary vertices separated from the primary collision vertex.

In order to better exploit the subsample-dependent signal-to-background ratio, we divide the sample into nine statistically independent subsamples according to dilepton flavor (ee, $\mu\mu$, $e\mu$) and b-tagging content (presence of 0, 1, or 2 tags).

As the number of b jets in the event is related to the top-quark branching fraction in the Wb final state, we use the number of observed and predicted events in the various subsamples as input to a likelihood function, which is maximized to extract R.

The selection is similar to the one used by the CDF collaboration to measure the $t\bar{t}$ cross section in the dilepton channel [13]. We select events with off-line--reconstructed isolated oppositely charged electrons ($E_T \geq 20$ GeV) or muons ($p_T \geq 20$ GeV/c). The contributions due to known standard model processes other than t are further reduced by requiring a minimum E_T of 25 GeV, increased to 50 GeV if the direction of any lepton or jet is closer than 20$^\circ$ to the $t\bar{t}$ direction, and E_T significance in excess of 4 (GeV)$^{1/2}$ [13] for events with same-flavor lepton pairs whose invariant mass is in a range of ± 15 GeV/c^2 around the Z boson mass [2]. Jets are reconstructed using a fixed-size cone algorithm [14], with a radius of 0.4 in pseudorapidity-azimuthal angle η -- ϕ space. We select events with at least two taggable [12] jets with $E_T \geq 20$ GeV and $|\eta| < 2$ after correcting for the primary vertex position and jet energy scale. Given the large size of the top-quark mass, we require the sum of the transverse energies of the reconstructed leptons and jets, H_T, to be greater than 200 GeV.

The remaining background is composed of dibosons (WW, WZ, ZZ), Drell-Yan (DY) events ($\tau^+\tau^-$, e^+e^-, $\mu^+\mu^-$) with jets from initial (ISR) or final (FSR) state radiation and large E_T from energy mismeasurements, and associated production of W bosons with multiple jets where one of the jets is misidentified as a charged lepton (fakes). The contributions of SM processes producing two real leptons are estimated using samples of events generated by Monte Carlo (MC) programs. The detector response is then simulated using a GEANT [15] based software package. A combination of data and Monte Carlo samples is used to estimate the contribution of jets misidentified as leptons [13]. Diboson processes are simulated using PYTHIA [16] and normalized to their next-to-leading order in strong interaction coupling cross sections, $\sigma_{WW} = 11.34 \pm 0.68$ pb, $\sigma_{WZ} = 3.47 \pm 0.21$ pb, $\sigma_{ZZ} = 3.62 \pm 0.22$ pb [17]. Drell-Yan and $Z \rightarrow e^+e^-$ events with associated jets are generated using ALPGEN [18], with hadronization simulated using PYTHIA.

Signal $t\bar{t}$ events are modeled using the POWHEG [19] generator, with hadronization simulated using PYTHIA. A top-quark mass value of 172.5 GeV/c^2, consistent with recent measurements [20], is assumed.

Because of the high purity of the $t\bar{t}$ signal in dilepton events, it is possible to perform a measurement of the $t\bar{t}$ cross section in the sample without requiring b tagging. This result, free of any assumption on $B(t \rightarrow Wb)$, is then used to predict the yield of top-quark events in the various tagging categories. After the selection we find 286 events, which constitutes the pretag sample, with an expected background of 54 ± 7 events. The largest background contributions are due to events containing jets misidentified as leptons and Drell-Yan events. From this we measure $\sigma_{pp \rightarrow t\bar{t}} = 7.64 \pm 0.55$ (stat) pb, in agreement with previous results [13].

In order to compare data and expectations in the nine subsamples we predict the amount of signal and background in each of them. In those subsamples containing one or two b-tagged jets, we estimate the number of expected background events following the same strategy used in the b-tagged dilepton cross section measurement [13]. We use these estimates to calculate the background in the subsamples with zero b tags by subtracting their sum from the total background in the pretag sample. All background estimates are independent of R. A summary of SM expectations and observed events by tagging category is given in Table I.

The jet b-tagging efficiency is measured in MC samples using the secvtx algorithm after checking that the identified jet originates from the hadronization of a bottom quark. This efficiency is corrected for differences between
data and simulation. Mistagging occurs if jets from light-flavor quarks are mistakenly identified as coming from b jets, and its efficiency is calculated using data templates and parametrized as a function of event variables such as jet energy and number of tracks in η and p_{T} intervals. In tt events we find an efficiency of ≈40% for tagging b jets and a mistagging probability, of ≈1%. Both efficiencies are used as inputs to the final fit. The likelihood takes into account the possibility of the presence of a third, less energetic, jet and its probability to be tagged. The number of tt signal events expected in each bin of the likelihood is a function of the probability for a jet to be tagged, which depends on R since a b-quark-generated jet is more likely to be b tagged. In Fig. 1 the number of events observed in data and expected for different values of R in the different tagging categories is shown. The number of tt events expected in each bin is obtained by multiplying the number of signal events before requiring b tagging by the R-dependent probability of having 0, 1, or 2 b-tagged jets in the event.

In order to extract R we maximize the likelihood

\[L = \prod_{i} P(\mu^{\exp}_{x|j}|N^{i}_{\text{obs}}) \prod_{j} G(x_{j} | \bar{x}_{j}, \sigma_{j}), \]

where the index i runs over the nine subsamples; \(P(\mu^{\exp}_{x|j}|N^{i}_{\text{obs}}) \) is the Poisson probability to observe \(N^{i}_{\text{obs}} \) events, given the expected value \(\mu^{\exp}_{x|j} \); and \(G(x_{j} | \bar{x}_{j}, \sigma_{j}) \) are Gaussian probability density functions describing the knowledge of nuisance parameters \(x_{j} \), with mean \(\bar{x}_{j} \) and standard deviation \(\sigma_{j} \). These nuisance parameters describe luminosity, background estimates, selection acceptances, and relevant efficiencies. By using the same fit parameters for common sources of systematic uncertainties, correlations among different channels are taken into account.

In the likelihood maximization R is left as a free parameter. In addition, we evaluate the effect of several contributions not accounted for among nuisance parameters. We estimate the systematic uncertainty due to imperfect modeling of initial-state and final-state gluon radiation by varying their amount in simulated events [21] and taking as uncertainty the difference of the result with respect to the nominal one. The contribution from the jet-energy scale is estimated by varying its value by ±1 standard deviation [21], refitting the data, and taking as uncertainty the difference of the result with respect to the nominal result. We find

\[R = 0.871 \pm 0.045(\text{stat})^{+0.059}_{-0.057}(\text{syst}) = 0.87 \pm 0.07. \]

To evaluate the effect of each nuisance parameter on the total systematic uncertainty, we perform the fit by individually fixing each nuisance parameter to a value corresponding to an excursion of one-standard deviation from its mean. The most important contributions to the R systematic uncertainty are reported in Table II.

<table>
<thead>
<tr>
<th>Process</th>
<th>Pretag</th>
<th>One tag</th>
<th>Two tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibosons</td>
<td>12.80 ± 1.57</td>
<td>0.66 ± 0.10</td>
<td>0.035 ± 0.014</td>
</tr>
<tr>
<td>DY + LF</td>
<td>20.07 ± 1.95</td>
<td>1.50 ± 0.70</td>
<td>0.029 ± 0.016</td>
</tr>
<tr>
<td>DY + HF</td>
<td>0.63 ± 0.12</td>
<td>0.167 ± 0.061</td>
<td></td>
</tr>
<tr>
<td>Fakes</td>
<td>21.82 ± 4.38</td>
<td>5.53 ± 1.98</td>
<td>1.017 ± 0.523</td>
</tr>
<tr>
<td>Total background</td>
<td>54.69 ± 7.32</td>
<td>8.33 ± 2.12</td>
<td>1.248 ± 0.529</td>
</tr>
<tr>
<td>tt (R = 7.4 pb)</td>
<td>223.78 ± 20.19</td>
<td>100.52 ± 9.36</td>
<td>29.47 ± 4.14</td>
</tr>
<tr>
<td>Total prediction</td>
<td>278.47 ± 21.39</td>
<td>108.85 ± 9.59</td>
<td>30.72 ± 4.20</td>
</tr>
<tr>
<td>Observed</td>
<td>286</td>
<td>96</td>
<td>34</td>
</tr>
</tbody>
</table>

TABLE II. Systematic effects contributing the largest uncertainty to the measurement of R.

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction to b-tagging efficiency</td>
<td>+0.045, -0.040</td>
</tr>
<tr>
<td>in data and MC simulations</td>
<td>±0.01</td>
</tr>
<tr>
<td>Luminosity</td>
<td>+0.009, -0.012</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>+0.033, -0.025</td>
</tr>
<tr>
<td>ISR and FSR</td>
<td>+0.013, -0.025</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>+0.059, -0.057</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>±0.045</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>+0.074, -0.073</td>
</tr>
</tbody>
</table>
To determine the credibility level limit on R we follow a Bayesian statistical approach. We use a uniform prior probability density for R in the physical interval $[0,1]$. To obtain the posterior probability distribution for R, we integrate over all nuisance parameters using non-negative Gaussian distributions as prior probabilities. We obtain $R > 0.73(0.76)$ at 95% (90%) credibility level. From Eq. (2) and the assumptions therein we obtain $|V_{tb}| = 0.94 \pm 0.04$ and $|V_{tb}| > 0.85(0.87)$ at 95% (90%) credibility level.

In summary, in this Letter we present a measurement of the ratio of the top–quark branching fraction $R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$ in a sample of $t\bar{t}$ candidate events where both W bosons from the top quarks decay into leptons (e or μ). The $t\bar{t}$ are reconstructed using the CDFII detector from a data set corresponding to 8.7fb^{-1} from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The result, $R = 0.87 \pm 0.07$, is consistent with previous measurements by the CDF [5] and D0 [6] Collaborations and differs from the SM expectation by $\approx 1.8\sigma$.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

\[|V_{tb}| = 0.94 \pm 0.04 \quad \text{and} \quad |V_{tb}| > 0.85(0.87)\]

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

\[|V_{tb}| = 0.94 \pm 0.04 \quad \text{and} \quad |V_{tb}| > 0.85(0.87)\]
[10] We use a cylindrical coordinate system where the z axis is along the proton beam direction, ϕ is the azimuthal angle, and θ is the polar angle. Pseudorapidity is $\eta = -\ln \tan(\theta/2)$, while transverse momentum is $p_T = |p| \sin \theta$, and transverse energy is $E_T = E \sin \theta$. Missing transverse energy, E_T, is defined as the magnitude of $-\sum E_T \mathbf{n}_i$, where \mathbf{n}_i is the unit vector in the azimuthal plane that points from the beam line to the ith calorimeter tower.