Measurement of $B(t \to Wb)/B(t \to Wq)$ in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.112.221801

Publisher
American Physical Society

Version
Final published version

Accessed
Mon Apr 25 01:19:10 EDT 2016

Citable Link
http://hdl.handle.net/1721.1/90888

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

Detailed Terms
Measurement of $B(t \to Wb)/B(t \to Wq)$ in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica de Altres Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7University of California, Davis, Davis, California 95616, USA
8University of California, Los Angeles, Los Angeles, California 90024, USA
9Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14Duke University, Durham, North Carolina 27708, USA
15Fermilab National Accelerator Laboratory, Batavia, Illinois 60510, USA
16University of Florida, Gainesville, Florida 32611, USA
17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18University of Geneva, CH-1211 Geneva 4, Switzerland
19Glasgow University, Glasgow G12 8QQ, United Kingdom
20Harvard University, Cambridge, Massachusetts 02138, USA
21Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland; Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
22University of Illinois, Urbana, Illinois 61801, USA
23The Johns Hopkins University, Baltimore, Maryland 21218, USA
24Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25Center for High Energy Physics, ITHEP, Moscow 117259, Russia
26University of Kentucky, 800 Rose Street, Lexington, Kentucky 40506, USA
27University of Liverpool, Liverpool L69 7ZE, United Kingdom
28University College London, London WC1E 6BT, United Kingdom
29Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31University of Michigan, Ann Arbor, Michigan 48109, USA
32Michigan State University, East Lansing, Michigan 48824, USA
33Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
34University of New Mexico, Albuquerque, New Mexico 87131, USA
35The Ohio State University, Columbus, Ohio 43210, USA
36Okayama University, Okayama 700-8530, Japan
37Osaka University, Osaka 558-8585, Japan
38University of Oxford, Oxford OX1 3RH, United Kingdom
39aIstituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy
39bUniversity of Padova, I-35131 Padova, Italy
40University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
41aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
41bUniversity of Pisa, I-56127 Pisa, Italy
41cUniversity of Siena, I-53100 Siena, Italy
41dScuola Normale Superiore, I-56127 Pisa, Italy
41eINFN Pavia, I-27100 Pavia, Italy
41fUniversity of Pavia, I-27100 Pavia, Italy

PRL 112, 221801 (2014) PHYSICAL REVIEW LETTERS week ending 6 JUNE 2014

221801-2
We present a measurement of the ratio of the top-quark branching fractions $R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$, where q represents any quark flavor, in events with two charged leptons, imbalance in total transverse energy, and at least two jets. The measurement uses proton-antiproton collision data at center-of-mass energy 1.96 TeV, corresponding to an integrated luminosity of 8.7 fb$^{-1}$ collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure R to be 0.87 ± 0.07, and extract the magnitude of the top-bottom quark coupling to be $|V_{tb}| = 0.93 \pm 0.04$, assuming three generations of quarks. Under these assumptions, a lower limit of $|V_{tb}| > 0.85(0.87)$ at 95% (90%) credibility level is set.

DOI: 10.1103/PhysRevLett.112.221801

In the standard model (SM) of fundamental interactions, the top-quark decay rate into a W boson and a down-type quark q ($q = d, s, b$) is proportional to $|V_{tq}|^2$, the squared element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1]. In the hypothesis of three generations and unitarity for that 3×3 matrix, and using the existing constraints on V_{ts} and V_{td}, the magnitude of the top-bottom quark coupling is $|V_{tb}| = 0.99915^{+0.00002}_{-0.00005}$ [2,3]. Under these assumptions, the ratio of the branching fractions

$$R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$$

(1)

is indirectly determined by the knowledge of $|V_{ts}|$ and $|V_{td}|$ [2] as

$$R = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = 0.99830^{+0.00004}_{-0.00009},$$

(2)

implying that the top quark decays almost exclusively to the Wb final state. A deviation from this prediction would be an indication of non-SM physics, suggesting, for example, the existence of a fourth quark generation [4].

The branching ratio and $|V_{tb}|$ in Eq. (2) can be determined by studying the rate of decays of pair-produced top quarks into different quark flavors. In this Letter we report the measurement of R in the sample of top-quark pairs decaying leptonically ($t \bar{t} \rightarrow W^+qW^-\bar{q} \rightarrow q\bar{q}l\bar{\nu}l\nu$). This method was used in previous measurements of R by the CDF [5] and the D0 [6] Collaborations at the Fermilab Tevatron proton-antiproton collider. In the channel involving two charged leptons in the final state (dilepton channel), D0 measured $R = 0.86 \pm 0.05$ [6]. Recently the CDF collaboration updated its measurement in the channel involving a charged lepton and jets obtaining $R = 0.94 \pm 0.09$ [7], both consistent with SM expectations.

A direct measurement of $|V_{tb}|$ can be obtained from the single-top-quark production cross section [8], which is proportional to $|V_{tb}|^2$. By contrast, the branching ratio measurement reported here, based on top-pair production, determines the size of $|V_{tb}|$ relative to the other CKM matrix elements. While the single top measurement depends on the absolute cross section, the branching ratio measurement depends on the relative yields for 0, 1, or 2 top decays to a b quark. In this sense the two measurements are complementary and the measurement of $|V_{tb}|$ presented here is less dependent on either the uncertainty on the theoretical calculation of the top-quark production cross section or many experimental uncertainties associated with its measurements.

This analysis studies events with two charged leptons, either electron (e) or muon (μ), two neutrinos, and two or more jets in the final state; we do not search for r leptons.
We use the full Run II data set, corresponding to an integrated luminosity of 8.7 fb$^{-1}$ collected with the CDF II detector [9] at the Tevatron at center-of-mass energy $\sqrt{s} = 1.96$ TeV.

The CDF II detector [9] consists of a particle spectrometer embedded in a magnetic field of 1.4 T, with inner tracking chambers surrounded by electromagnetic and hadronic calorimeters segmented into towers projecting to the interaction point, and outer muon detectors. A tracking system composed of a silicon microstrip detector located at radial distance r from the beam $1.5 \leq r \leq 28$ cm and of a drift chamber at $43 \leq r \leq 132$ cm, provides the reconstruction of charged-particle momentum and trajectories with full efficiency up to pseudorapidity $|\eta| \approx 1$ [10]. The silicon microstrip detector is essential for the detection of vertices displaced from the $p\bar{p}$ collision point signaling the decay of long-lived particles. A three-level, online event-selection system [11] is used to select events with an e (μ) candidate in the central detector region of pseudorapidity $|\eta| < 1.1$, with $E_T (p_T) > 18$ GeV (> 18 GeV/c), which form the data set for this analysis.

The measurement of R is based on the determination of the number of jets originated from b quarks (b jets) in $t\bar{t}$ events reconstructed in the dilepton final state. The dilepton signature consists of two high-p_T charged leptons (e or μ), large missing transverse energy E_T [10] due to the undetected neutrinos from the leptonic W-boson decays, and at least two hadronic jets. The identification of b jets (tagging) is performed by the secvtx algorithm [12], which reconstructs secondary vertices separated from the primary collision vertex.

In order to better exploit the subsample-dependent signal-to-background ratio, we divide the sample into nine statistically independent subsamples according to dilepton flavor ($ee, \mu\mu, e\mu$) and b-tagging content (presence of 0, 1, or 2 tags).

As the number of b jets in the event is related to the top-quark branching fraction in the Wb final state, we use the number of observed and predicted events in the various subsamples as input to a likelihood function, which is maximized to extract R.

The selection is similar to the one used by the CDF collaboration to measure the $t\bar{t}$ cross section in the dilepton channel [13]. We select events with off-line–reconstructed isolated oppositely charged electrons ($E_T \geq 20$ GeV) or muons ($p_T \geq 20$ GeV/c). The contributions due to known standard model processes other than $t\bar{t}$ are further reduced by requiring a minimum E_T of 25 GeV, increased to 50 GeV if the direction of any lepton or jet is closer to 20° to the E_T direction, and E_T significance in excess of 4 (GeV)$^{1/2}$ [13] for events with same-flavor lepton pairs whose invariant mass is in a range of ± 15 GeV/c^2 around the Z boson mass [2]. Jets are reconstructed using a fixed-size cone algorithm [14], with a radius of 0.4 in pseudorapidity-azimuthal angle $\eta \rightarrow \phi$ space. We select events with at least two taggable [12] jets with $E_T \geq 20$ GeV and $|\eta| < 2$ after correcting for the primary vertex position and jet energy scale. Given the large size of the top-quark mass, we require the sum of the transverse energies of the reconstructed leptons and jets, H_T, to be greater than 200 GeV.

The remaining background is composed of dibosons (WW, WZ, ZZ), Drell-Yan (DY) events ($\tau^+\tau^-, e^+e^-, \mu^+\mu^-$) with jets from initial (ISR) or final (FSR) state radiation and large E_T from energy mismeasurements, and associated production of W bosons with multiple jets where one of the jets is misidentified as a charged lepton (fakes). The contributions of SM processes producing two real leptons are estimated using samples of events generated by Monte Carlo (MC) programs. The detector response is then simulated using a GEANT [15] based software package. A combination of data and Monte Carlo samples is used to estimate the contribution of jets misidentified as leptons [13]. Diboson processes are simulated using PYTHIA [16] and normalized to their next-to-leading order in strong interaction coupling cross sections, $\sigma_{WW} = 11.34 \pm 0.68$ pb, $\sigma_{WZ} = 3.47 \pm 0.21$ pb, $\sigma_{ZZ} = 3.62 \pm 0.22$ pb [17]. Drell-Yan and $Z \rightarrow e\ell^\prime$ events with associated jets are generated using ALPGEN [18], with hadronization simulated using PYTHIA.

Signal $t\bar{t}$ events are modeled using the POWHEG [19] generator, with hadronization simulated using PYTHIA. A top-quark mass value of 172.5 GeV/c^2, consistent with recent measurements [20], is assumed.

Because of the high purity of the $t\bar{t}$ signal in dilepton events, it is possible to perform a measurement of the $t\bar{t}$ cross section in the sample without requiring b tagging. This result, free of any assumption on $B(t \rightarrow Wb)$, is then used to predict the yield of top-quark events in the various tagging categories. After the selection we find 286 events, which constitutes the pretag sample, with an expected background of 54 ± 7 events. The largest background contributions are due to events containing jets misidentified as leptons and Drell-Yan events. From this we measure $\sigma_{pp \rightarrow t\bar{t}} = 7.64 \pm 0.55$ (stat) pb, in agreement with previous results [13].

In order to compare data and expectations in the nine subsamples we predict the amount of signal and background in each of them. In those subsamples containing one or two b-tagged jets, we estimate the number of expected background events following the same strategy used in the b-tagged dilepton cross section measurement [13]. We use these estimates to calculate the background in the subsamples with zero b tags by subtracting their sum from the total background in the pretag sample. All background estimates are independent of R. A summary of SM expectations and observed events by tagging category is given in Table I.

The jet b-tagging efficiency is measured in MC samples using the secvtx algorithm after checking that the identified jet originates from the hadronization of a bottom quark. This efficiency is corrected for differences between
where the index \(i\) expected for various values of \(R\) is a mistagging probability, of \(\approx 1\%\). Both efficiencies are used as inputs to the final fit. The likelihood takes into account the possibility of the presence of a third, less energetic, jet and its probability to be tagged. The number of \(t\bar{t}\) signal events expected in each bin of the likelihood is a function of the probability for a jet to be tagged, which depends on \(R\) since a \(b\)-quark-generated jet is more likely to be \(b\) tagged. In Fig. 1 the number of events observed in data and expected for different values of \(R\) in the different tagging categories is shown. The number of \(t\bar{t}\) events expected in each bin is obtained by multiplying the number of signal events before requiring \(b\) tagging by the \(R\)-dependent probability of having 0, 1, or 2 \(b\)-tagged jets in the event.

In order to extract \(R\) we maximize the likelihood

\[
L = \prod_i \mathcal{P}(\mu_{\text{exp}}(R, x_j)|N_{\text{obs}}^i) \prod_j G(x_j|\bar{x}_j, \sigma_j),
\]

where the index \(i\) runs over the nine subsamples; \(\mathcal{P}(\mu_{\text{exp}}(R, x_j)|N_{\text{obs}}^i)\) is the Poisson probability to observe \(N_{\text{obs}}^i\) events, given the expected value \(\mu_{\text{exp}}\), and \(G(x_j|\bar{x}_j, \sigma_j)\) are Gaussian probability density functions describing the knowledge of nuisance parameters \(x_j\), with mean \(\bar{x}_j\) and standard deviation \(\sigma_j\). These nuisance parameters describe luminosity, background estimates, selection acceptances, and relevant efficiencies. By using the same fit parameters for common sources of systematic uncertainties, correlations among different channels are taken into account.

In the likelihood maximization \(R\) is left as a free parameter. In addition, we evaluate the effect of several contributions not accounted for among nuisance parameters. We estimate the systematic uncertainty due to imperfect modeling of initial-state and final-state gluon radiation by varying their amount in simulated events [21] and taking as uncertainty the difference of the result with respect to the nominal one. The contribution from the jet-energy scale is estimated by varying its value by \(\pm 1\) standard deviation [21], refitting the data, and taking as uncertainty the difference of the result with respect to the nominal result. We find

\[
R = 0.871 \pm 0.045(\text{stat})^{+0.059}_{-0.057}(\text{syst}) = 0.87 \pm 0.07. \tag{4}
\]

To evaluate the effect of each nuisance parameter on the total systematic uncertainty, we perform the fit by individually fixing each nuisance parameter to a value corresponding to an excursion of one-standard deviation from its mean. The most important contributions to the \(R\) systematic uncertainty are reported in Table II.

TABLE I. Summary of background contributions, \(t\bar{t}\) SM expectations (assuming \(|V_{tb}| = 1\), and data candidates by tagging categories for the 8.7 fb\(^{-1}\) data sample. HF and LF indicate heavy flavor and light flavor jets.

<table>
<thead>
<tr>
<th>Process</th>
<th>Pretag</th>
<th>One tag</th>
<th>Two tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibosons</td>
<td>12.80 ± 1.57</td>
<td>0.66 ± 0.10</td>
<td>0.035 ± 0.014</td>
</tr>
<tr>
<td>DY + LF</td>
<td>20.07 ± 1.95</td>
<td>1.50 ± 0.70</td>
<td>0.029 ± 0.016</td>
</tr>
<tr>
<td>DY + HF</td>
<td>0.63 ± 0.12</td>
<td>0.167 ± 0.061</td>
<td></td>
</tr>
<tr>
<td>Fakes</td>
<td>21.82 ± 4.38</td>
<td>5.53 ± 1.98</td>
<td>1.017 ± 0.523</td>
</tr>
<tr>
<td>Total background</td>
<td>54.69 ± 7.32</td>
<td>8.33 ± 2.12</td>
<td>1.248 ± 0.529</td>
</tr>
<tr>
<td>(t\bar{t}) ((\sigma = 7.4) pb)</td>
<td>223.78 ± 20.19</td>
<td>100.52 ± 9.36</td>
<td>29.47 ± 4.14</td>
</tr>
<tr>
<td>Total prediction</td>
<td>278.47 ± 21.39</td>
<td>108.85 ± 9.59</td>
<td>30.72 ± 4.20</td>
</tr>
<tr>
<td>Observed</td>
<td>286</td>
<td>96</td>
<td>34</td>
</tr>
</tbody>
</table>

TABLE II. Systematic effects contributing the largest uncertainty to the measurement of \(R\).

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction to (b)-tagging efficiency</td>
<td>(+0.045, -0.040)</td>
</tr>
<tr>
<td>in data and MC simulations (\sigma_\theta)</td>
<td>(\pm 0.01)</td>
</tr>
<tr>
<td>Luminosity</td>
<td>(+0.009, -0.012)</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>(+0.033, -0.025)</td>
</tr>
<tr>
<td>ISR and FSR</td>
<td>(+0.013, -0.025)</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>(+0.059, -0.057)</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>(+0.045)</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>(+0.074, -0.073)</td>
</tr>
</tbody>
</table>
To determine the credibility level limit on \(R \) we follow a Bayesian statistical approach. We use a uniform prior probability density for \(R \) in the physical interval \([0,1]\). To obtain the posterior probability distribution for \(R \), we integrate over all nuisance parameters using non-negative Gaussian distributions as prior probabilities. We obtain \(R > 0.73(0.76) \) at 95% (90%) credibility level. From Eq. (2) and the assumptions therein we obtain \(|V_{tb}| = 0.94 \pm 0.04 \) and \(|V_{cb}| > 0.85(0.87) \) at 95% (90%) credibility level.

In summary, in this Letter we present a measurement of the ratio of the top–quark branching fraction \(R = B(t \to Wb)/B(t \to Wq) \) in a sample of \(t\bar{t} \) candidate events where both \(W \) bosons from the top quarks decay into leptons (\(e \) or \(\mu \)). The \(t\bar{t} \) are reconstructed using the CDFII detector from a data set corresponding to 8.7 fb\(^{-1}\) from \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV. The result, \(R = 0.87 \pm 0.07 \), is consistent with previous measurements by the CDF [5] and D0 [6] Collaborations and differs from the SM expectation by \(\approx 1.8\sigma \).

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

*Deceased.

\(^{ab} \)Visitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.

\(^{ac} \)Visitor from University College Dublin, Dublin 4, Ireland.

\(^{ad} \)Visitor from ETH, 8092 Zürich, Switzerland.

\(^{ae} \)Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{af} \)Visitor from Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal.

\(^{ag} \)Visitor from University of Iowa, Iowa City, IA 52242, USA.

\(^{ah} \)Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

\(^{ai} \)Visitor from Kansas State University, Manhattan, KS 66506, USA.

\(^{aj} \)Visitor from Brookhaven National Laboratory, Upton, NY 11973, USA.

\(^{ak} \)Visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.

\(^{al} \)Visitor from University of Melbourne, Victoria 3010, Australia.

\(^{am} \)Visitor from Muons, Inc., Batavia, IL 60510, USA.

\(^{an} \)Visitor from Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan.

\(^{ao} \)Visitor from National Research Nuclear University, Moscow 115409, Russia.

\(^{ap} \)Visitor from Northwestern University, Evanston, IL 60208, USA.

\(^{aq} \)Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.

\(^{ar} \)Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.

\(^{as} \)Visitor from CNRS-IN2P3, Paris, F-75205 France.

\(^{at} \)Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.

\(^{au} \)Visitor from The University of Jordan, Amman 11942, Jordan.

\(^{av} \)Visitor from Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.

\(^{aw} \)Visitor from University of Zürich, 8006 Zürich, Switzerland.

\(^{ax} \)Visitor from Massachusetts General Hospital, Boston, MA 02114 USA.

\(^{ay} \)Visitor from Harvard Medical School, Boston, MA 02114 USA.

\(^{az} \)Visitor from Hampton University, Hampton, VA 23668, USA.

\(^{ba} \)Visitor from Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

\(^{bb} \)Visitor from University of the Basque Country UPV-EHU, 48080 Bilbao, Spain.

\(^{bc} \)Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bd} \)Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{be} \)Visitor from the University of Jordan, Amman 11942, Jordan.

\(^{bf} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bg} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bh} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bi} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bj} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bk} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bl} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bm} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bn} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bo} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bp} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bq} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{br} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bs} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bt} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bu} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bv} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bw} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bx} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{by} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{bz} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{ca} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{cb} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{cc} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{cd} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{ce} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^{cf} \)Visitor from the University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
[10] We use a cylindrical coordinate system where the z axis is along the proton beam direction, ϕ is the azimuthal angle, and θ is the polar angle. Pseudorapidity is $\eta = -\ln \tan(\theta/2)$, while transverse momentum is $p_T = |p| \sin \theta$, and transverse energy is $E_T = E \sin \theta$. Missing transverse energy, E_T, is defined as the magnitude of $-\sum E_T \hat{n}_i$, where \hat{n}_i is the unit vector in the azimuthal plane that points from the beam line to the ith calorimeter tower.