The SkipTrie: low-depth concurrent search without rebalancing

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1145/2484239.2484270</td>
</tr>
<tr>
<td>Publisher</td>
<td>Association for Computing Machinery (ACM)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/90889</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
The SkipTrie: Low-Depth Concurrent Search without Rebalancing

Rotem Oshman
University of Toronto
rotem@cs.toronto.edu

Nir Shavit∗
MIT
shanir@csail.mit.edu

ABSTRACT
To date, all concurrent search structures that can support predecessor queries have had depth logarithmic in \(m \), the number of elements. This paper introduces the SkipTrie, a new concurrent search structure supporting predecessor queries in amortized expected \(O(\log \log u + c) \) steps, insertions and deletions in \(O(c \log \log u) \), and using \(O(m) \) space, where \(u \) is the size of the key space and \(c \) is the contention during the recent past. The SkipTrie is a probabilistically-balanced version of a y-fast trie consisting of a very shallow skiplist from which randomly chosen elements are inserted into a hash-table based x-fast trie. By inserting keys into the x-fast-trie probabilistically, we eliminate the need for rebalancing, and can provide a lock-free linearizable implementation. To the best of our knowledge, our proof of the amortized expected performance of the SkipTrie is the first such proof for a tree-based data structure.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—distributed data structures

Keywords
concurrent data structures, predecessor queries, amortized analysis

1. INTRODUCTION
In recent years multicore software research has focused on delivering improved search performance through the development of highly concurrent search structures [11, 14, 7, 16, 5, 4]. Although efficient hash tables can deliver expected constant search time for membership queries [11, 19, 12, 9, 13], all concurrent search structures that support predecessor queries have had depth and search time that is logarithmic in \(m \), the number of keys in the set (without accounting for the cost of contention, which is typically not analyzed). This contrasts with the sequential world, in which van Emde Boas Trees [21], x-fast tries and y-fast tries [22] are known to support predecessor queries in \(O(\log \log u) \) time, where \(u \) is the size of the key universe. This is, in many natural cases, a significant performance gap: for example, with \(m = \log 20 \) and \(u = 2^{32} \), \(\log m = 20 \) while \(\log \log u = 5 \). Though one can lower this depth somewhat by increasing internal node fanout [5, 16], in the concurrent case the resulting algorithms involve complex synchronization, and their performance has never been analyzed.

This paper aims to bridge the gap between the sequential and the concurrent world by presenting the SkipTrie, a new probabilistically-balanced data structure which supports efficient insertions, deletions and predecessor queries. We give a lock-free and linearizable implementation of the SkipTrie from CAS and DCSS instructions (see below for the reasoning behind our choice of primitives), and we analyze its expected amortized step complexity: we show that if \(c(op) \) is the maximum interval contention of any operation that overlaps with \(op \) (that is, the maximum number of operations that overlap with any operation \(op' \) that itself overlaps with \(op \)), each SkipTrie operation \(op \) completes in expected amortized \(O(\log \log u + c(op)) \) steps. We can also tighten the bound and replace the term \(c(op) \) by the point contention of \(op \)—that is, the maximum number of operations that run concurrently at any point during the execution of \(op \)—by introducing more “helping” during searches.

The SkipTrie can be thought of as a y-fast trie [22] whose deterministic load balancing scheme has been replaced by a probabilistic one, negating the need for some of the complex operations on trees that the y-fast trie uses. Let us begin by recalling the construction of the x-fast trie and the y-fast trie from [22].

Willard’s x-fast trie and y-fast trie. Given a set of integer keys \(S \subseteq [u] \), each represented using \(\log u \) bits, an x-fast trie over \(S \) is a hash table containing all the prefixes of keys in \(S \), together with a sorted doubly-linked list over the keys in \(S \). We think of the prefixes in the hash table as forming a prefix tree, where the children of each prefix \(p \) are \(p \cdot 0 \) and \(p \cdot 1 \) (if there are keys in \(S \) starting with \(p0 \) and \(p1 \), respectively). If a particular prefix \(p \) has no left child (i.e.,

This work was supported in part by NSF grant CCF-1217921, DoE ASCR grant ER26116/DE-SC0008923, and by grants from the Oracle and Intel corporations.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM or the author must be honored. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

∗This work was supported in part by NSF grant CCF-1217921, DoE ASCR grant ER26116/DE-SC0008923, and by grants from the Oracle and Intel corporations.

1The name “SkipTrie” has been previously used in the context of P2P algorithms to describe an unrelated algorithm [15] that involves a traditional trie and a distributed skip-graph. We nevertheless decided to use it, as we believe it is the most fitting name for our construction.
there is no key in S beginning with $p \cdot 0$), then in the hash
table entry corresponding to p we store a pointer to the
largest key beginning with $p \cdot 1$; symmetrically, if p has no
right child $p \cdot 1$, then in the entry for p we store a pointer to
the smallest key beginning with $p \cdot 0$. (Note that a prefix is
only stored in the hash table if it is the prefix of some key
in S, so there is always either a left child or a right child or
both.)

To find the predecessor of a key x in S, we first look for
the longest common prefix of x with any element in S, using
binary search on the length of the prefix: we start with the
top half of x (the first $\log_2 u/2$ bits), and query the hash
table to check if there is some key that starts with these
bits. If yes, we check if there is a key starting with the first
$3 \log_2 u/4$ bits of x; if not, we check for the first $\log_2 u/4$ bits of
x. After $O(\log \log u)$ such queries we have found the longest
common prefix p of x with any element in the set S. This
prefix cannot have both left and right children, as then it
would not be the longest common prefix. Instead it has a
pointer down into the doubly linked list of keys; we follow
this pointer. If p has no left child, then we know that $x
begins with $p \cdot 0$, and the pointer leads us to the predecessor of
x, which is the smallest key beginning with $p \cdot 1$; we are
done. If instead p has no right child, then x begins with
$p \cdot 1$, and the pointer leads us to the successor of x, which
is the largest key beginning with $p \cdot 0$. In this case we take
one step back in the doubly-linked list of leaves to find the
predecessor of x.

The x-fast trie supports predecessor queries in $O(\log \log u)$
steps, but it has two disadvantages: (1) insertions and dele-
tions require $O(\log u)$ steps, as every prefix of the key must
be examined and potentially modified; and (2) the space
required for the hash table is $O(|S| \cdot \log u)$, because the depth
of the prefix tree is $\log u$. To remedy both concerns, Willard
introduced the y-fast trie. The idea is to split the keys in $S
into “buckets” of $O(\log u)$ consecutive keys, and insert only
the smallest key from every bucket into an x-fast trie. Inside
each bucket the keys are stored in a balanced binary search
tree, whose depth is $O(\log \log u)$.

The cost of predecessor queries remains the same: first we
find the correct bucket by searching through the x-fast trie
in $O(\log \log u)$; then we search for the exact predecessor by
searching inside the bucket’s search tree, requiring another
$O(\log \log u)$ steps.

As we insert and remove elements from the y-fast trie, a
bucket may grow too large or too small, and we may need
to split it into two sub-buckets or merge it with an adjacent
bucket, to preserve a bucket size of, say, between $\log_2 u$
and $4 \log_2 u$ elements (the constants are arbitrary). To split a
bucket, we must split its search tree into two balanced sub-
trees, remove the old representative of the bucket from the
x-fast trie, and insert the representatives of the new buck-
etes. This requires $O(\log u)$ steps, but it is only performed
“once in every $O(\log \log u)$ insertions”, because there is a slack of
$O(\log u)$ in the allowed bucket size. Therefore the amortized
cost is $O(1)$. Similarly, to merge a bucket with an adjacent
bucket, we must merge the balanced search-trees, remove
the old representatives and insert the new one; we may also
need to split the merged bucket if it is too large. All of this
requires $O(\log \log u)$ steps but is again performed only once in
every $O(\log \log u)$ operations, for an amortized cost of $O(1)$.

The y-fast trie has an amortized cost of $O(\log \log u)$ for
all operations (the search for the predecessor dominates the
cost), and its size is $O(m)$. However, this only holds true
if we continuously move the elements among the collection
of binary trees, so that each tree always has about $\log u
elements. This kind of rebalancing—moving items between
binary trees, into and out of the x-fast trie, and finally rebal-
ances the trees—is quite easy in a sequential setting, but can
prove to be a nightmare in a concurrent one. It is more com-
plex than simply implementing a balanced lock-free binary
search tree, of which no completely proven implementation
is known to date [7]. One might instead use a balanced B+
tree, for which there is a known lock-free construction [3];
but this construction is quite complicated, and furthermore,
the cost it incurs due to contention has not been analyzed.
Instead we suggest a more lightweight, probabilistic solution,
which does not incur the overhead of merging and splitting
buckets.

The SkipTrie. The main idea of the SkipTrie is to replace
the y-fast trie’s balanced binary trees with a very shallow,
truncated skiplist [18] of depth $\log \log u$. Each key inserted
into the SkipTrie is first inserted into the skiplist; initially
it rises in the usual manner, starting at the bottom level
and tossing a fair coin to determine at each level whether
to continue on to the next level. If a key rises to the top
of the truncated skiplist (i.e., to height $\log \log u$), we insert
it into the x-fast trie (see Fig. 1). We do not store any
skiplist levels above $\log \log u$. The nodes at the top level
of the skiplist are also linked backwards, forming a doubly-
linked list. The effect is a probabilistic version of the y-fast
trie: when a key x rises to the top of the skiplist and is
inserted into the x-fast trie, we can think of this as splitting
the bucket to which x belongs into two sub-buckets, one
for the keys smaller than x and one for the keys at least
as large as x. The probability that a given node will rise
to level $\log \log u$ is $2^{−\log \log u} = 1/\log u$, and therefore in
expectation the number of keys between any two top-level
keys is $O(\log u)$. Thus we achieve in a much simpler manner
the balancing among buckets required for the y-fast trie. In
our version, we never have to rebalance, or take keys in and
out of the x-fast trie to make sure they are “well spaced-out.”

To find the predecessor of x in the SkipTrie, a thread first
traverses the x-fast trie to find the predecessor of x among
the top-level skiplist elements, and then traverses the skiplist
to find the actual predecessor of x. Finding the right top-
level skiplist element takes $O(\log \log u)$ steps, and searching
the skiplist takes an expected $O(\log \log u + m)$ additional steps,
for a total of $O(\log \log u)$. To delete a key, we first delete it
from the skiplist, and if it was a top-level node, we also
remove it from the x-fast trie. As with the y-fast trie, insert-
ing or removing a key from the x-fast trie requires $O(\log u)$
steps, but the amortized cost is $O(1)$, because in expecta-
tion only one in every $O(\log \log u)$ keys rises into the x-fast trie.
Finally, the expected size of the SkipTrie is $O(m)$, where m
is the number of keys: the skiplist’s size is well-known to
be $O(m)$ (in our case it is even smaller, because it is trun-
cated), and an x-fast trie over an expected $O(m/ \log u)$ keys
requires $O(m)$ space in expectation.

So how do we design a concurrent SkipTrie? Our data
structure is the composition of a concurrent hash table, a
concurrent skiplist, a doubly-linked list (or two singly-linked
lists sorted in opposite directions), and a concurrent im-
plementation of an x-fast trie. For the hash table we use
Split-Ordered Hashing [19], a resizable lock-free hash table
that supports all operations in expected \(O(1) \) steps. The other components we construct and analyze in this paper: although lock-free versions exist in the literature (e.g.,[8, 11, 14]), their step complexity has not been analyzed, and it appears that the penalty these implementations take for contention is too high for our desired amortized bounds. In terms of the construction itself, the most novel part is the x-fast trie, which to our knowledge has never been implemented concurrently before; in this extended abstract we focus on the x-fast trie and give only a quick sketch of the skiplist implementation. In addition, for lack of space, we give a high-level description of the analysis.

On the choice of atomic primitives. Our implementation of the SkipTrie uses single-word compare-and-swap (CAS) and double-wide double-compare-single-swap (DCSS) operations. A DCSS(\(X, old_X, new_X, Y, old_Y \)) instruction sets the value of \(X \) to \(new_X \), conditioned on the current values of \(X \) and \(Y \) being \(old_X \) and \(old_Y \), respectively. We use DCSS to avoid swinging list and trie pointers to nodes that are marked for deletion: we condition the DCSS on the target of the pointer being unmarked, so that we can rest assured that once a node has been marked and physically deleted, it will never become reachable again.

Although DCSS is not supported as a hardware primitive, we believe that given current trends in hardware and software transactional memory, it is quite reasonable to use lightweight transactions to implement a DCSS; indeed, support for hardware transactional memory is available in Intel's new Haswell microarchitecture, and the specialized STM of [6] sometimes outperforms hardware atomic primitives for very short transactions. Our implementation requires DCSS only for its amortized performance guarantee; we prove that even if some or all DCSS instructions are replaced with CAS (by dropping the second guard), the implementation remains linearizable and lock-free. In particular, after attempting the DCSS some fixed number of times and aborting, it is permissible to fall back to CAS.

We believe that our explicit use of DCSS captures some design patterns that are implicit in, e.g., [8], and other lock-free data structures built from CAS alone; these data structures often “need” a DCSS, so they implement it from CAS, in a way that essentially amounts to a pessimistic transaction. We believe that on modern architecture it is preferable to use an actual DCSS (i.e., a short transaction) for this type of operation, as this allows for an optimistic implementation (as well as the pessimistic one if desired). Using DCSS also reduces the amount of “helping”, which we view as an advantage (see below).

The disadvantage to using non-pessimistic transactional memory is that transactions may abort spuriously, while our analysis assumes the usual semantics of a DCSS, with no spurious aborts. However, a reasonable interpretation, at least for hardware transactional memory with very short transactions, is that spurious aborts occur only with very low probability, so their cumulative expected effect is small. Moreover, because our implementation remains correct even if DCSS is replaced with CAS, we can place a limit on the number of times a DCSS spuriously aborts, after which we fall back.

Addressing the cost of contention. In order to bound the step complexity of operations as a function of the contention, we show that each step taken by an operation \(op \) on \(op' \) that is part of the “contention” on \(op' \). For example, if \(op \) traverses across a deleted node \(u \), this step will be charged to the operation \(op' \) that deleted node \(u \); we must then show that \(op \) and \(op' \) contend with each other, and also that \(op' \) is only charged a constant number of times by \(op \).

The literature defines several measures for the amount of contention on an operation \(op \). Among them are *interval contention* [1], which is the number of operations that overlap with \(op \), and the *point contention* [2], which counts the maximum number of operations that run concurrently at any point during \(op \). However, we believe that attempting to bound the step complexity as a function of the interval or point contention may be too pessimistic a design philosophy, as it spends significant effort addressing situations that are unlikely to arise in practice; it requires every operation to eagerly help operations in its vicinity to complete. This creates extra write contention.

Let us illustrate this idea using the doubly-linked list that will be presented in Section 3. The list maintains both next and prev pointers in each node, but since we do not use a double-compare-and-swap (DCAS), we cannot update both pointers at the same time. Therefore, when inserting a new node, we first update the next pointer of its predecessor (this is the linearization point of an insert), and then we update the prev pointer of its successor. There is a short
we have created extra write contention by eagerly helping other operations complete. This pattern is common; for example, in the singly-linked list of [8], search queries must help clean the data structures by removing marked nodes that they come across, even though there is already a pending delete operation that will remove the marked node before it completes. This creates extra write contention on the base objects accessed by the pending delete, and is likely to slow its progress. We believe that such eager helping is not, in fact, helpful.2

The alternative is the following:

(2) Forgo eager helping, and instead relax our guarantee on the step complexity. This is the choice we make in the current paper. We observe that the “damage” caused by $\text{insert}(2)$ and $\text{insert}(3)$ is transient, and will be repaired as soon as $\text{insert}(5)$ completes, setting $\mathit{7.prev}$ to node 5. In practice, it is unlikely that long gaps will form in the list.3 Furthermore, the temporary gap in the list affects only searches, causing them to make extra reads; it does not create extra writes for any operation. Thus we allow the scenario depicted in Fig. 2, and similar scenarios. We allow operations to ignore temporary local obstacles that they come across as they traverse the list, as long as it is guaranteed that some operation will correct the problem before it completes.

To account for “transient” inconsistencies in the data structure, which are incurred during a recent operation and will be eliminated when the operation completes, we use the following definition:

Definition 1.1 (Overlapping-Interval Contention). The overlapping-interval contention $c_{OI}(\mathit{op})$ of an operation op is the maximum interval contention of an operation op' that overlaps with op.

In our example above, the overlapping-interval contention of the query Q is at least the interval contention of $\text{insert}(5)$, because these two operations overlap. In turn, the interval contention of $\text{insert}(5)$ is at least 3, because, in addition to $\text{insert}(5)$ itself, the operations $\text{insert}(2)$ and $\text{insert}(3)$ overlap with $\text{insert}(5)$. Therefore we can charge the extra steps taken by Q to its overlapping-interval contention.

We remark that in our data structure, the overlapping-interval contention is only used to account for reads, never writes. The number of extra write steps performed by an operation op is bounded by the point contention of op.

Organization. The remainder of the paper is organized as follows. In Section 2 we sketch our new skiplist and its amortized analysis; for lack of space, we give only a brief overview. In Section 3 we give the construction of the doubly-linked list of the SkipTrie, and in Section 4 we construct the x-fast trie and sketch the proof of its linearizability and amortized step complexity.

2In Hebrew and Danish, the appropriate phrase is “a bear’s help”, referring to the tale of a man whose pet bear saw a fly on the man’s nose and swatted him to death to get rid of it.

3For use-cases where many inserts or deletes with successive keys are frequent, it seems that approaches like flat combining are better suited in the first place.
Notation and definitions. We use $p \preceq p'$ to denote the fact that p is a prefix of p', and $p \prec p'$ to denote a proper prefix. When referring to a trie node representing a prefix p, the 0-subtree (resp. 1-subtree) of p is the set of trie nodes representing prefixes or keys p' such that $p0 \preceq p'$ (resp. $p1 \preceq p'$). The direction of a key x under a prefix $p \prec x$ is the bit d such that x belongs to the d-subtree of p.

We let p_i denote the i-th bit of p, and $p(t,...,j)$ denote bits i through j of p (inclusive), and we use $\lcp(x, y)$ to denote the longest common prefix of x and y.

2. AN EFFICIENT LOCK-FREE CONCURRENT SKIPLIST: A BRIEF OVERVIEW

For lack of space, we give only a brief overview of our skiplist construction. Our skiplist is constructed along similar lines as Lea’s skiplist [14], and uses the idea of back links from [8, 20, 17]. It achieves an expected amortized cost of $O(\log \log u + c_l)$, where c_l is the interval contention. If we also have traversals “help” inserts and deletes by raising and lowering towers of nodes they come across, we can tighten the bound and replace c_l with the point contention c_p.

The skiplist consists of $\log \log u$ levels, each of which is itself a sorted linked list. We use the logical deletion scheme from [10], storing each node’s next pointer together with its marked bit in one word. In addition, a list node contains a pointer back pointing backwards in the list, which allows operations to recover if the node is deleted “from under their feet”; a Boolean flag, stop, which is set to 1 when an operation begins deleting the node’s tower in order to stop inserts from raising the tower further; and a pointer down, which points to the corresponding tower node on the level below.

A key procedure of the skiplist implementation is the search procedure, listSearch$(x, start)$, which takes a node start on some level ℓ with start.key $< x$, and returns a pair (left, right) of nodes on level ℓ such that left.key $< x \leq$ right.key, and moreover, at some point during the invocation, left and right were both unmarked, and we had left.next = right. A similar function is used in the linked lists of [10] and [8]. This function also performs cleanup if necessary: if a marked node prevents it from finding an unmarked pair of nodes (left, right) as required (e.g., because there is a marked node between left and right), then listSearch will unlink the node. We use listSearch whenever we need to find the predecessor of a key x on a given level.

A traversal of the skiplist to find the predecessor of a key x begins at the top level, TOP, from some node start.top that has start.top.key $< x$. When we descend to level ℓ, we make a call to listSearch$(x, start_{\ell})$, where startℓ is the point from which we began the traversal on level ℓ, to obtain a pair (leftℓ, rightℓ) bracketing the key x. Then we set start$\ell-1$ \leftarrow leftℓ.down and descend to the next level, where we call listSearch$(x, start_{\ell-1})$. Eventually we reach level 0; if right0.key = x then we return right0, and otherwise we return left0.

To insert a new key x, we first descend down the skiplist and locate the predecessor of x on every level. We choose a height $H(x)$ \sim $\text{Geom}(1/2)$ for x. We first create a new node for x and insert it on the bottom level; this node is called the root. Then we move up and insert x into every level up to min$\{H(x), \text{TOP}\}$. Each insertion is conditioned on the stop flag of the root remaining unset. To delete a key x, we find the root node of the tower corresponding to x, and set its stop flag. Then we delete x’s tower nodes top-down, starting at the highest level on which x has been inserted.

Perhaps the most interesting feature of our skiplist is the analysis of its expected amortized step complexity. There are two key ideas:

1. How many times can an insert or delete operation “interfere” with other operations? If an insert or delete op causes a CAS or DCSS performed by another operation op’ to fail, then op is charged for the extra step by op’. As two inserts go up the skiplist in parallel, or as two deletes go down, they may interfere with each other at most once on every level, because one successful CAS or DCSS is all that is necessary for an operation to move on from its current level. However, they can interfere with each other on multiple levels. This might seem to lead to an amortized cost of $O(c_{oi} \cdot \log \log u)$ instead of $O(\log \log u + c_{oi})$, as we may end up charging each operation once per level. However, we are saved by observing that an operation operation working on key x only “interferes” on levels $h \leq H(x)$, and $H(x)$ is geometrically distributed. Thus, in expectation, each operation only interferes with others on a constant number of levels, and the cost of contention is linear in expectation.

2. How can we bound the expected amortized cost of a skiplist traversal? We modify the beautiful analysis due to Pugh in [18], where he argues as follows: consider the traversal in reverse order, from the node found on the bottom level back to the top. Each time we make a “left” step in the inverted traversal, this corresponds to a node that made it to the current level, but did not ascend to the next level—otherwise we would have found it there, and we would not have needed to move it to the level below. The probability of this is 1/2, and the expected number of “left” steps between “up” steps is 2. Therefore, in expectation, the total number of “left” steps in the traversal is on the order of the height of the skiplist.

In our case, in addition to “left” and “up” (i.e., reversed “right” and “down”) steps, we also have the following types of reversed steps:

- “Right” (reversed “left”): the current node in the traversal was marked, and we had to backtrack using its back pointer. We charge this step to the operation that marked the node. We show that the operation overlaps with the traversal, so this is permitted, and that we never step back over this node again.
- “Cleanup”: the traversal stays in place, but CAS-es a marked node out of the list. This is again charged to the operation that marked the node.
- “Left that should have been up”: we move to a node u on level ℓ, but the “true” height $H(u)$ chosen for u is greater than ℓ. Pugh’s analysis does not account for this case, because it concerns only the “true” heights chosen for the nodes. In our case, we can show that since u’s “true” height is greater than ℓ, we were “supposed” to find it before descending to level ℓ, and the reason we did not is that either u’s tower is currently being raised by an insert, that had not reached level ℓ.

\footnote{Unless the CAS or DCSS is performed in order to “help” some other operation, but then the other operation will be charged instead.}
are covered under the interval contention of the operation inserting node u_{k-1}, and this operation is still active.

In addition to the lemma, we also rely on the fact that prev pointers are never set to marked nodes (this is a condition of the DCSS in fixPrev). Thus, if we follow a pointer $u.\text{prev}$ and reach a marked node v, we know that v was marked after $u.\text{prev}$ was updated for the last time. We will see in Section 4.2 that we only need to follow $u.\text{prev}$ if node u was inserted during the current operation. Therefore we can conclude that crossing the marked node, v, is covered under the overlapping-interval contention of the current operation.

4. A LOCK-FREE CONCURRENT IMPLEMENTATION OF AN X-FAST TRIE

In this section we describe our lock-free implementation of an x-fast trie, and sketch its proof of linearizability and the analysis of its expected amortized performance. In a sequential x-fast trie, only unary nodes, which are missing either a 0-subtree or a 1-subtree, store pointers into the linked list of keys. This is sufficient, because a binary search for the longest common prefix can never end at a binary node—i.e., if a prefix has both 0-children and 1-children, it is not the longest common prefix with any key. However, in a concurrent implementation it is useful to store pointers into the linked list even in binary nodes: suppose that a predecessor query Q looking for the predecessor of x looks up a prefix $p \prec x$ and sees that it exists in the trie, but the node representing it is binary and therefore stores no pointer into the linked list. Immediately afterwards, delete operations remove all the 0-children of p. Because Q found p in the trie, its future lookups will all be for longer prefixes p', where $p \cdot 0 \leq p'$. But because all 0-children of p were deleted, these lookups will all fail, leaving Q “stuck” with no pointer into the linked list. The only possible recovery is to try to backtrack up the trie or to re-start the search, but these solutions are too expensive. Instead, we store in each trie node two pointers, to the largest child in the 0-subtree and the smallest child in the 1-subtree. This ensures that a query always holds a pointer to a top-level skiplist node, and indeed to a node that is not too far from its destination (and is updated to closer and closer nodes as the search progresses).

The data structure. The concurrent x-fast trie consists of a hash table prefixes, mapping prefixes to tree nodes representing them. A tree node n has a single field, n.pointers, which stores two pointers $\text{n.pointers}[0], \text{n.pointers}[1]$ to the largest element in the 0-subtree and the smallest element in the 1-tree, respectively. Recall that “underneath” the x-fast trie we store all keys in a skiplist; the nodes pointed to by $\text{n.pointers}[d]$ for $d \in \{0, 1\}$ are top-level skiplist nodes. A value of $\text{n.pointers}[d] = \text{null}$ indicates that node n has no children in its d-subtree (except possibly new children currently being inserted).

Our goal is to ensure that $\text{n.pointers}[0]$ always points to the largest node in the 0-subtree that has been completely inserted (and not deleted yet), and symmetrically for $\text{n.pointers}[1]$; and furthermore, that if the deletion of top-level skiplist node u has completed, then it is not pointed to by any trie node. In a sense, we can think of each trie node as a linearizable pair of pointers, reflecting all insertions.
and delete operations that have already “crossed” the level of the trie node.

The hash table. As mentioned in Section 1, we use Split-Ordered Hashing [19] to implement the prefixes hash table. We require one additional method, compareAndDelete(p, n), which takes a prefix p and a trie node n, and removes p from prefixes iff the entry corresponding to p contains node n. This is easily achieved in the hash table of [19] by simply checking that p’s entry corresponds to n before marking it.

4.1 X-Fast Trie Operations

Predecessor queries. For convenience, we divide our predecessor query into three procedures.

To find the predecessor of a key x, we first find its longest common prefix in the x-fast-trie using the LowestAncestor function, which performs a binary search on prefix length to locate the lowest ancestor of x in the tree; this is the node representing the longest common prefix that x has with any key in the trie. During the binary search, the query always remembers the “best” pointer into the linked list it has seen so far—the node whose key is closest to x. After log log u steps, LowestAncestor finishes its binary search and returns the “best” pointer into the doubly-linked list (i.e., the top level of the skiplist) encountered during the search.

The node returned by LowestAncestor may be marked for deletion, and its key may be greater than x. Therefore, inside the procedure xFastTriePred, we traverse back pointers (if the node is marked) or prev pointers (if the node is unmarked) until we reach a top-level skiplist node whose key is no greater than x. Finally, we call skiplistPred to find the true predecessor of x among all the keys in the SkipTrie.

Insert operations. To insert a new key x, we first insert it into the skiplist; this is the linearization point of a successful insert, as after this point all searches will find x (until it is deleted). Then, if x reached the top level of the skiplist, we insert the prefixes of x into the trie as follows: for each prefix p ⪯ x from the bottom up (i.e., longer prefixes first), we look up the tree node corresponding to p in the prefixes hash table. If no such node is found, we create a new tree node pointing down to x and try to insert it into prefixes. Upon success, we return; upon failure, we start the current level over.

If a node is found but its pointers field is (null, null), we know that it is slated for deletion from prefixes; we help the deleting operation by deleting the node from prefixes ourselves. Then we start the current level over.

Finally, suppose that a tree node n is found in the hash table, and it has n.pointers ≠ (null, null). Let d be the direction of x’s subtree under p, that is, d ∈ {0, 1} satisfies p · d ⪯ x. If d = 0, then n.pointers[d] should point to the largest key in n’s subtree and if d = 1 then n.pointers[d] should point to the smallest key in n’s subtree. Thus, if d = 0 and n.pointers[d].key ≥ x, or if d = 1 and n.pointers[d].key ≤ x, then x is adequately represented in n, and we do not need to change anything; otherwise we try to swing the respective pointer n.pointers[d] to point down to x, conditioned on x remaining unmarked.

Delete operations. To delete a key x, we first locate its predecessor pred among all top-level skiplist nodes, then try to delete x from the skiplist by calling either skiplistDelete, if the node is not a top-level node, or toplevelDelete if it is a top-level node. If we succeed, and if x was a top-level skiplist node, then we need to update x’s prefixes in the trie so that they do not point down to the node u we just deleted.

We go over the prefixes top-down (in increasing length), and for each prefix p ⪯ x, we check if prefixes contain an entry for p; if not, we move on to the next level. If it does contain an entry n for p, but n.pointers does not point down to u, we also move on. Finally, if n.pointers[d] = u (where d is the direction of u under p, that is, p · d ⪯ x), then we call listSearch to find a pair of nodes (left, right) that “bracket” key x on the top level of the skiplist: these nodes

```plaintext
1 (left, right) ← listSearch(node.key, pred)
2 while node.marked do
3    node.prev ← node.prev
4    if DCSS(node.prev, node_prev, left, left.succ, (node, 0)) then return
5    (left, right) ← listSearch(node.key, pred)
6 node.ready ← 1

Algorithm 1: fixPrev(pred, node)

1 if !node.ready then
2    fixPrev(pred, node)
3    skiplistDelete(pred, node)
4 repeat
5    (left, right) ← listSearch(node.key, right)
6    fixPrev(left, right)
7 until right.marked

Algorithm 2: toplevelDelete(pred, node)

1 return skiplistPred(key, xFastTriePred(key))

Algorithm 5: predecessor(key)
```
4.2 Analysis of the Trie

Because prefixes is a linearizable hash table, our analysis treats it as an atomic object. For convenience we let prefixes[p] denote the value currently associated with p in the hash table (or null if there is none); that is, the result of prefixes.lookup[p]. We also abuse notation slightly by using insert(u) and delete(u) to refer to an operation in the SkipTrie whose top-level skiplist node is u (i.e., an insert that created node u, or a delete that marked node u).

Linearizability of the trie is very easy to show: all we have to show is that for each prefix p and direction d, if prefixes[p] ≠ null and prefixes[p].pointers[d] ≠ null, then prefixes[p].pointers[d] points to some node that was reachable in the top level of the skiplist at some point in time. This holds even if CAS is used instead of DCSS. The properties of the doubly-linked list and the skiplist, which are themselves linearizable, then guarantee that we will find the predecessor of x.

For the amortized step complexity, we define the notion of an operation crossing a certain level, which is informally when its changes “take effect” on that level. We say that insert(u) crosses level ℓ when one of the following occurs inside the ℓ-th iteration of the for-loop: (1) a new node for prefix p is successfully inserted into prefixes in line 12, (2) the condition in line 17 evaluates to true, or (3) a successful DCSS occurs in line 19. We say that delete(u) crosses level ℓ when one of the following occurs inside the ℓ-th iteration of the for-loop: (1) we set tn to null in line 8, or (2) we set curr to a value different from node in line 10 or line 18. We can show that once an operation has crossed a certain
level, its effects on that level are persistent. For \textbf{insert}(u), this means that the trie points to a node “at least as good as u”, and for \textbf{delete}(u), this means that u will never be reachable from the trie.

Lemma 4.1. Suppose that \textbf{insert}(u) has crossed level \(\ell \) and u is unmarked. Let p be the length-\(\ell \) prefix of u.key, and let \(d \in \{0, 1\} \) be such that \(p \cdot d \leq u.key \). Then

(a) \(\text{prefixes}[p] \neq \text{null} \) and \(\text{prefixes}[p].\text{pointers}[d] \neq \text{null} \), and

(b) If \(d = 0 \) then \(\text{prefixes}[p].\text{pointers}[d].\text{key} \geq u.key \), and if \(d = 1 \) then \(\text{prefixes}[p].\text{pointers}[d].\text{key} \leq u.key \).

If \textbf{delete}(u) has crossed level \(\ell \), then either \(\text{prefixes}[p] = \text{null} \), or \(\text{prefixes}[p].\text{pointers}[d] \neq \text{null} \).

When \(Q = \text{predecessor}(x) \) finishes the binary search in the trie and lands in the top level of the skiplist, it may have to traverse \textbf{prev} pointers, back pointers of deleted nodes, and \textbf{next} pointers of unmarked nodes that stand between \(Q \) and its destination, the predecessor of \(x \) on the top level. We call the length of this top-level traversal the list cost of \(Q \). To account for this cost, we calculate the charge that \(Q \) picks up as it searches through the tree: every time \(Q \) queries some level and “misses” an \textbf{insert} or \textbf{delete} that has not yet crossed that level, that operation pays \(Q \) one budget unit, which \(Q \) can then consume to traverse through the doubly-linked list.

More formally, we represent \(Q \)'s binary search through the trie as a complete binary tree, where each node \(a \) is labeled with a search query \(q(a) \in \{0, 1\}^* \). The root is labeled with the first query \(x_{0, \ldots, \log u/2} \) performed by the search. For an inner node \(a \), the left child of \(a \) is labeled with the query performed if \(q(a) \) is not found in the hash table, and the right child of \(a \) is labeled with the query performed if \(q(a) \) is found. For example, the root’s children are labeled \(x_{0, \ldots, \log u/4} \) and \(x_{0, \ldots, 3 \log u/4} \) respectively.

The leaves of the tree correspond to the result of the binary search; for a sequential trie, this is the longest common prefix of \(x \) with any key in the trie. In the concurrent trie this is no longer true, due to concurrent insertions and deletions: the contents of the \textbf{prefixes} hash table does not accurately reflect keys which are currently being inserted or removed. However, we can show that the search behaves properly with respect to keys which are not currently being inserted or removed.

Suppose that inside \(Q \), \textbf{LowestAncestor}(x) eventually returns a node \(u \) with \(u.key = y \). The path \(Q \) follows through its binary search tree is the path from the root to \(\text{lcp}(x, y) \), as \(y \) is the key returned. For a key \(z \neq y \), define the critical point for \(z \) in \(Q \)'s binary search tree to be the highest node where the path from the root to \(\text{lcp}(x, y) \) diverges from the path to \(\text{lcp}(x, z) \). Then using Lemma 4.1 we can show:

Lemma 4.2. If \(v \) is an unmarked node with \(v.key = z \) such that \(|z - x| < |y - x| \) and \(\text{sign}(z - x) = \text{sign}(y - x) \) (that is, \(y \) and \(z \) are “on the same side” of \(x \)), and \(a \) is the critical point for \(z \) in \(Q \)'s binary search tree, then when \(Q \) queried \(q(a) \), the operation that inserted \(v \) had not yet crossed level \(|q(a)| \).

Thus, on a very high level, for any unmarked node \(v \) that is closer to the target node (i.e., closer to the predecessor of \(x \) on the top level of the skiplist) than the node returned by \textbf{LowestAncestor}, we can charge the operation that was not yet done inserting \(v \) when \(Q \) passed the critical point for \(v.key \). In particular, when we follow \textbf{prev} pointers, the nodes we cross were inserted during \(Q \). For marked nodes that are traversed, we show that we can charge the operation that marked them, and this is covered under the overlapping-interval contention. And finally, if, after moving backwards following \textbf{prev} pointers, we went “too far back” and must make extra forward steps, then Lemma 3.4 shows that all nodes we cross are either newly-inserted nodes or are covered under the overlapping-interval contention of \(Q \). Therefore \(Q \) is adequately compensated for its list cost, and we can show

```
1 pred ← predecessor(key − 1);
2 (left, node) ← listSearch(key, pred)
3 if node.orig_height ≠ TOP then return skiplistDelete(left, node)
4 if toplevelDelete(left, node) then return false
5 for i = 0, . . . , log u − 1 do
6   p ← key[0, . . . , i]
7   direction ← key[i + 1]
8   tn ← prefixes.lookup(p)
9   if tn = null then continue
10  curr ← tn.pointers[direction]
11  while curr = node do
12    (left, right) ← listSearch(key, left)
13    if direction = 0 then
14      DCSS(pointers[direction], curr, left, left.succ., (right, 0))
15    else
16      makeDone(left, right)
17      DCSS(pointers[direction], curr, right, (right.prev, right.marked), (left, 0))
18      curr ← tn.pointers[direction]
19    if (p ≤ curr.key) then // the sub-tree corresponding to p · direction has become empty
20      CAS(tn.pointers[direction], curr, null)
21    if tn.pointers = (null, null) then // the entire sub-tree corresponding to p has become empty
22      prefixes.compareAndDelete(p, tn)
23  return true
```

Algorithm 7: \textbf{delete}(key)
that its expected amortized step complexity, considering just
the x-fast trie (i.e., the binary search and the traversal in the
top level of the skiplist), is $O(\log \log u + c_{OI})$.

The remainder of the proof consists of “assigning the blame”
for each DCSS instruction and hash-table operation exe-
cuted by insert and delete. To cross a level, each oper-
ation needs to perform only one successful DCSS or hash-
table operation. Every failed DCSS instruction or operation
on prefixes is charged to the operation that caused it to fail, by executing some successful DCSS or operation
on prefixes. The various trie operations can charge each
other at most once per level, for a total amortized cost of
at most $O(c_P \cdot \log u)$ when considering the x-fast trie by it-
self. However, because in expectation only one in every log u
SkipTrie operation must insert or delete from the x-fast trie,
the expected amortized cost of SkipTrie insertions and delet-
ions in the x-fast trie is only $O(c_P + \log \log u)$. Thus, the
dominant cost is the cost of predecessor queries. (Note that
$c_P \leq c_I \leq c_{OI}$ for any operation.)

Because expected amortized step complexity is composi-
tional, we can combine our analysis of the various compo-
nents of the SkipTrie to obtain the following bounds:

Theorem 4.3. The SkipTrie is a linearizable, lock-free
data structure supporting insert, delete and predecessor
queries in expected amortized $O(\log \log u + c_{OI})$, where c_{OI}
is the overlapping-interval contention of the operation.

5. REFERENCES

[1] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long
lived adaptive splitter and applications. Distrib.

b+tree. In Proceedings of the 24th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA
’12, Pittsburgh, PA, USA, June 25-27, 2012, pages

[4] Nathan G. Bronson, Jared Casper, Hassan Chaﬁ, and
Kunle Olukotun. A practical concurrent binary search

implementation for the simulation event set problem.

[6] Aleksandar Dragojević and Tim Harris. Stm in the
small: trading generality for performance in software
transactional memory. In Proceedings of the 7th ACM
european conference on Computer Systems, EuroSys
’12, pages 1–14, 2012.

[7] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and
Franck van Breugel. Non-blocking binary search trees.
In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing,
ACM.

and skip lists. In PODC ’04: Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing, pages 50–59, New York, NY,

[10] T. Harris. A pragmatic implementation of
non-blocking linked-lists. In Proceedings of the 15th
International Conference on Distributed Computing,

Multiprocessor Programming, Morgan Kaufmann, NY,
USA, 2008.

Hopscotch hashing. In Proceedings of the 22nd
international symposium on Distributed Computing,
Springer-Verlag.

utilities.
http://gee.cs.oswego.edu/dl/concurrency-
interest/index.html.

[14] D. Lea. Concurrent skiplist map in
java.util.concurrent.
http://gee.cs.oswego.edu/dl/concurrency-
interest/index.html.

[15] Li Meifang, Zhu Hongkai, Shen Derong, Nie Tiezheng,
Kou Yue, and Yu Ge. Pampoo: an efficient skip-trie
based query processing framework for p2p systems. In
Proceedings of the 7th international conference on
Advanced parallel processing technologies, APPT’07,
Springer-Verlag.

[16] Aleksandar Prokopec, Nathan G. Bronson, Phil
Bagwell, and Martin Odersky. Concurrent tries with
efficient non-blocking snapshots. In Proceedings of
Principles and Practice of Parallel Programming, New
Orleans, USA, 2012.

Technical Report CS-TR-2222.1, Institute for
Advanced Computer Studies, Department of
Computer Science, University of Maryland, 1989.

[18] W. Pugh. Skip lists: a probabilistic alternative to
balanced trees. ACM Transactions on Database

[19] O. Shalev and N. Shavit. Split-ordered lists: Lock-free
tenable hash tables. In The 22nd Annual ACM
Symposium on Principles of Distributed Computing,

compare-and-swap. In Proceedings of the fourteenth
annual ACM symposium on Principles of distributed

[21] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time. In Proceedings of the 16th
Annual Symposium on Foundations of Computer
IEEE Computer Society.

[22] Dan E. Willard. Log-logarithmic worst-case range
queries are possible in space theta(n). Inf. Process.