The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1137/120880343</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Industrial and Applied Mathematics</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Mar 11 09:32:05 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/91157</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
PROTECTING CIRCUITS FROM COMPUTATIONALLY BOUNDED AND NOISY LEAKAGE∗

SEBASTIAN FAUST†, TAL RABIN‡, LEONID REYZIN§, ERAN TROMER¶, AND VINOD VAIKUNTANATHAN∥

Abstract. Physical computational devices leak side-channel information that may, and often does, reveal secret internal states. We present a general transformation that compiles any circuit into a circuit with the same functionality but resilience against well-defined classes of leakage. Our construction requires a small, stateless, and computation-independent leak-proof component that draws random elements from a fixed distribution. In essence, we reduce the problem of shielding arbitrarily complex circuits to the problem of shielding a single, simple component. Our approach is based on modeling the adversary as a powerful observer that inspects the device via a limited measurement apparatus. We allow the apparatus to access all the bits of the computation (except those inside the leak-proof component), and the amount of leaked information to grow unbounded over time. However, we assume that the apparatus is limited in the amount of output bits per iteration and the ability to decode certain linear encodings. While our results apply in general to such leakage classes, in particular, we obtain security against (a) constant-depth circuits leakage, where the leakage function is computed by an AC0 circuit (composed of NOT gates and unbounded fan-in AND and OR gates); (b) noisy leakage, where the leakage function reveals all the bits of the internal state of the circuit, but each bit is perturbed by independent binomial noise—i.e., flipped with some probability p. Namely, for some number 0 ≤ p ≤ 1/2, each bit of the computation is flipped with probability p, and remains unchanged with probability 1 − p.

Key words. side channel attacks, leakage resilience, models

AMS subject classification. 68Q10

DOI. 10.1137/120880343

1. Introduction. The best of cryptographic algorithms are insecure when their implementations inadvertently reveal secrets to an eavesdropping adversary. Even when the software is flawless, practical computational devices leak information via numerous side channels, including electromagnetic radiation (visible and otherwise) [38, 29], timing [7], power consumption [28], acoustic emanations [41], and numerous effects at the system architecture level (e.g., cache attacks [5, 34, 35]). Leaked information is even more easily accessible when the computational device is in the hands of

†EPFL, LASEC, Lausanne CH-1015, Switzerland (sebastian.faust@gmail.com). This work was partially done while Sebastian Faust was at KU Leuven and Aarhus University. Sebastian Faust received funding from the Marie Curie IEF/FP7 project GAPS, grant 626467.

‡IBM Research, PO Box 704, Yorktown Heights, NY 10598 (talr@us.ibm.com).

§Department of Computer Science, Boston University, Boston, MA 02215 (reyzin@cs.bu.edu).

This author was supported in part by NSF grants 0546614, 0831281, 1012910, and 1012798.

¶School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (tromer@cs.tau.ac.il).

This work was done while Eran Tromer was at MIT and Microsoft Research. Eran Tromer was supported, in part, by NSF CyberTrust grant CNS-0808907 and AFRL grant FA8750-08-1-0088. Views and conclusions contained here are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, of AFRL, NSF, the U.S. Government, or any of its agencies.

∥MIT, 32 Vassar St., Cambridge, MA 02139 (vinodv@csail.mit.edu). This work was done while Vinod Vaikuntanathan was at IBM Research, Microsoft Research, and the University of Toronto, and was supported, in part, by a Josef Raviv Postdoctoral Fellowship.

© 2014 the Authors
an adversary, as is often the case for many modern devices such as smart cards, TPM chips, and (potentially stolen) mobile phones and laptops. Reducing such information leakage has proven excruciatingly difficult and costly, and its complete elimination is nowhere in sight.

Micali and Reyzin [30] proposed a general model for rigorously analyzing protection against side-channel attacks. They model a side-channel attacker as a two part entity—the first is the measurement apparatus that performs measurements on the physical state of the device. This is done on behalf of the second entity which is the adversarial observer. The observer is assumed to be computationally powerful (e.g., polynomial time or even unbounded), and takes as input the measurements of the apparatus. Thus, the power of the adversarial observer is primarily constrained by the quality of the information provided by the measurement apparatus.

It is interesting to note that even though computational devices leak abundantly, many side-channel attacks are hard to carry out and some devices remain unbroken. This is due to the fact that useful measurements can often be difficult to realize in practice. Physical measurement apparatus often produce a “computationally limited” and “noisy” measurement of the state of the object; they usually do not carry out sophisticated computation. In-depth analysis typically happens in the form of postprocessing by the observer (rather than in the measurement apparatus).

In this work, we follow the paradigm of Ishai, Sahai, and Wagner [24], who construct a general transformation from any cryptographic algorithm into one that is functionally equivalent, but also leakage resilient. The particular class of leakage functions they consider is the class of spatially local measurement functions, namely, functions that read and output at most \(k \) bits of information. In particular, the leakage functions are completely oblivious to a large portion of the circuit’s state.

In contrast, we are interested in security against global measurements, which are often easier to carry out than localized measurements that require a focus on specific wires or memory cells; in many side-channel attacks, the main practical difficulty for the attacker lies precisely in obtaining high spatial resolution and accuracy. Furthermore, global measurements are typically also more informative than local measurements. The question that motivates our work is whether, analogously to [24], we can construct a general circuit transformation that tolerates global side-channel measurements.

1.1. The model. Inspired by Ishai, Sahai, and Wagner [24], we model arbitrary cryptographic computation by circuits computing over a finite field \(\mathbb{K} \) (a special case is Boolean circuits that operate over \(\mathbb{GF}(2) \)). Since cryptographic devices are often implemented as digital circuits, our model of computation directly corresponds to devices in the physical world. Importantly, the circuit has a secret state (such as a cryptographic key for a block cipher), which we want to protect from the adversary.

Our adversarial model considers an adversary who attacks this circuit by adaptively running it on inputs of her choice and learning the result of its computation. The result is computed from the input and the state (which may be updated by the computation). With each query to the circuit, the adversary may choose a leakage function \(f \) from some set \(\mathcal{L} \) of tolerated leakage functions (this choice, as well as the choice of input to the circuit, may be made adaptively, depending on all the information obtained by the adversary up to this point). We allow \(f \) to depend on the secret state and all intermediate results that may occur during computation. We model this by giving as input to \(f \) the values that are carried on all the wires connecting the circuit’s gates. Since we do not make any assumption on the spatial locality of
the leakage, we achieve resilience to global leakage functions. However, the set \(\mathcal{L} \) of leakage functions we can handle is restricted in other ways, as we discuss below.

On computationally weak and noisy leakages. We consider two classes of leakage functions in this work.

- **Computationally-bounded leakage functions:** We assume that \(\mathcal{L} \) contains only simple aggregated leakage functions. That is, functions in \(\mathcal{L} \) are too weak to perform certain computations (e.g., parity of many bits) and their range is bounded by some parameter \(\lambda \). As a concrete example, we consider functions in the class \(\text{AC}^0 \)—that is, functions that can be computed by circuits of small depth.\(^1\) Some restriction on the computational power of the leakage function is necessary, because of the impossibility results on general circuit obfuscation \([3]\) (see [21, sections 1 and 1.3] for a discussion of the connection between leakage resilience and obfuscation). The second restriction—bounding the amount of leakage—is similarly necessary, as otherwise even very simple leakage functions can output the complete secret state (e.g., the identity function). Notice, however, that while the amount of information leaked each time is bounded, the total amount of information leaked over multiple runs of the circuit is not.

- **Noisy leakage functions:** Alternatively, instead of limiting the computational power and output size of \(f \), we assume that \(\mathcal{L} \) consists only of noisy functions. That is, functions in \(\mathcal{L} \) do not compute exact results, but rather their output is perturbed with some noise. As a concrete example, we assume that the leakage reveals all the bits of the circuit’s state, perturbed by independent binomial noise. Notice that in this case the amount of leakage for each run of the circuit is not bounded.

The restriction of computationally bounded and noisy leakages are motivated by the observation that physical measurement apparatus typically produce a computationally simple or noisy measurement of the device’s state. For instance, the power consumption of a cryptographic devices is often described as a simple aggregated functions such as the Hamming weight or the Hamming distance of the processed data. Also, physical measurements are inherently noisy. Such noise may result from the environment (nonalgorithmic noise) or from the device itself (algorithmic noise). Thus we model the measurement apparatus as a simple (possibly noisy) aggregated function of the device’s state. We stress that once the leakage is in the hands of the adversary, she can carry out arbitrary computation (it need not even be efficient).

Of course, the concrete leakage classes for which we present secure circuit transformations are not particularly strong. For instance, in the computationally bounded setting we instantiate \(\mathcal{L} \) with \(\text{AC}^0 \). \(\text{AC}^0 \) is weak since it cannot even compute parity and hence many practical side-channel attacks do not fall into this class (e.g., the Hamming weight of all wires). Nevertheless it is strong enough to allow for measuring approximate Hamming weight \([1]\), or the Hamming weight of a subset of the values on the wires: something routinely measured by side-channel attacks in practice.

For the noisy setting we make the assumption that the value on each wire is perturbed by independent noise. This assumption may not hold in practice since, e.g., algorithmic noise is correlated with the processed data. Constructing circuits that remain secure against correlated noisy leakages is an important research question.

\(^1\)An earlier version of this paper contained an erroneous claim that our results extend to \(\text{ACC}^0[p] \), which is \(\text{AC}^0 \) augmented with MOD\(p\) gates. They do not, because average-case hardness results are not known for such circuits.
Intergate wires versus all of the circuit. Formally, we model global leakage functions by giving the values on all wires that connect gates as input to a single leakage function. One may object that this input to the leakage function does not capture all of the physical information present in the circuit, because we do not include the internals of the gates. For instance, we do not give as input the number of conducting transistors inside the gate, while in practice such low-level effects may significantly contribute to the physical leakage [42]. In the case of computationally weak leakage functions, this is not a real limitation, because, although our leakage functions are computationally weak, they suffice to evaluate constant-size operations (e.g., count the number of conducting transistors in a Boolean gate). This allows our leakage functions to simulate the internal behavior of a gate just by knowing its inputs, as long as this behavior is not too complex.

On leak-free components. Most gates in our protected circuits are, indeed, very simple constant-size objects. However, we introduce a special component, a so-called opaque gate. We assume such gates are leak free. That is, they leak on their inputs and outputs, but the leakage function cannot observe their internals. Naturally, in order for this assumption to be meaningful, an opaque gate must be complex enough so that its internals are not simulatable by a leakage function that gets information only about the wires connected to this gate. In particular, our opaque gates are not constant size.

However, even though we assume nonconstant-size leak-free components, this assumption is mitigated by the fact that, in our constructions, these components are simple, stateless, and computation independent. In particular, the complexity of implementing our leak-free component is independent of the complexity of the computed circuit, and they neither hold secrets nor maintain state.

We have two kinds of opaque gates, denoted O (which is used for both constructions) and Q (which is used only for the noisy leakage construction). They have no inputs. They output an element sampled according to a fixed distribution, which is independent of the computation being carried out. The O gate, described in more detail in sections 3.2, samples k uniformly random field elements subject to the condition that they add up to zero (in the case of the field being $\text{GF}(2)$, it simply means sampling a bit string of even parity). The Q gate, described in more detail in section 3.3, is more complex; it samples many such k-tuples of field elements and then computes a degree-two polynomial on them.

Although the requirement of a leak-free component is a strong one, the leak-free components we require are minimal in some respects.

1. It is a fixed standardized functionality which can be designed and validated once and added to one’s standard cell library—which is far better than having to devise separate protection mechanisms for every circuit of interest.

2. It has no secret keys, no inputs, and no internal state, i.e., it is independent of the computation in the circuit and merely samples from a distribution. While the assumption of a shielded physical device that samples perfect randomness is a strong one, we can relax it. For the case of AC^0 leakage we can relax this assumption and require only randomness that is $\text{polylog}(k)$ independent [6]. Also, alternatively, we can derandomize our construction by using Nisan’s unconditional pseudorandom generator (PRG) against AC^0 [33]. Notice that such a PRG still has to be implemented by a leak-free component and, hence, in this case, our opaque gates become stateful, which requires building leak-free memory.
3. Alternatively, because we only need samples from a distribution, we can have the opaque “gate” simply read its output one by one from a precomputed list. Thus, it suffices to have leak-proof one-time storage (a consumable “tape roll”) instead of leak-proof computation. This is an option if the computation is performed only a bounded number of times.

Of course, leak-free components, however simple, are a limitation. The work of Ishai, Sahai, and Wagner [24], which protects against leakage of some wire values, does not utilize these components. Furthermore, subsequent work (see section 1.3) eliminated the need for these components even in cases of more complex leakage. On the other hand, many variations of the leak-free component assumption have been made in the literature. We highlight some of these works below; which ones are more or less realistic is debatable.

The model of Micali and Reyzin [30] and many subsequent works (e.g., [13, 36, 14]) assume the presence of leak-free memory. This is captured by the statement that “only computation leaks information” (axiom 1 in [30]), i.e., memory that is not accessed during a computation step does not affect the observable leakage during that step.

The “oblivious RAM” model of Goldreich [17] and Goldreich and Ostrovsky [19] reverses the roles: while memory is leaky, the computation is assumed to be on a leak-free secure processor. In this model, they show a generic transformation that makes random-access machines resilient to polynomial-time leakage (with polylogarithmic blowup in memory size and running time). We also note that in the recent circuit compilers of Juma and Vahlis [26], Goldwasser and Rothblum [20], and Dziembowski and Faust [11, 12] leak-free components have been used (they have been very recently eliminated in [21]). We discuss these works in more detail in section 1.3.

1.2. Our results. We demonstrate circuit transformations that compile any circuit into one that is functionally equivalent but resists attacks by leakage functions described above. The circuit transformation \(TR \) takes as input the description of a circuit \(C \) and compiles it into a transformed circuit \(\hat{C} \) that uses the same gates as \(C \) (plus the leak-free component). For example, \(C \) may be a standard block cipher, in which case \(\hat{C} \) would be its secure implementation (note that the entire block cipher does not have to be computed with a single combinatorial circuit—because we allow the circuit to maintain state, \(C \) can be a clocked circuit with registers).

We define resilience of \(\hat{C} \) against leakage class \(L \) by a simulation-based security notion, which is essentially the same as the one in [24]. A circuit transformation \(TR \) is said to be resilient to leakages of \(L \) if observing the computation of \(\hat{C} \) with leakages from \(L \) does not offer any advantage over black-box access to \(C \) without any leakage. Formally, we show that for any adversary \(A \) that gets to interact with \(\hat{C} \) by giving it inputs, observing some physical leakage \(f \in L \) from the computation on those inputs, and viewing its outputs, there exists a simulator \(S \) with only black-box access to \(C \) such that \(A \) and \(S \) have indistinguishable output distributions. Let us now discuss our constructions in more detail.

Leakage resilience from linear secret sharing. Our constructions, at a high level, are similar to the construction of Ishai, Sahai, and Wagner [24]: we perform a gate-by-gate transformation. Every wire of \(C \) is encoded into a bundle of wires in \(\hat{C} \) using a linear secret sharing scheme \(\Pi \); each wire of the bundle carries a share of the original wire in \(C \). Each gate in \(C \) is replaced by a gadget in \(\hat{C} \) which operates on encoded bundles. The gadgets are carefully constructed to use \(\Pi \) internally in a way that looks “essentially random” to functions in the leakage class \(L \) (notice that the internals of these gadgets may leak), and we show that this implies that the whole
content of the transformed circuit remains “essentially random” to functions in \(\mathcal{L} \). Hence, the adversary gets no advantage from her observation of the leakage. We provide two constructions: one resilient against computationally weak leakage, and the other resilient against noisy leakage.

Resilience to computationally weak leakage. The security of our first construction relies on an assumption on the computational power of \(\mathcal{L} \), namely, that it cannot decode \(\Pi \) (even when the output of a function in \(\mathcal{L} \) is then processed by a computationally unbounded adversary; see Definition 3.2 in section 3.2). This is general for any \(\Pi \) and \(\mathcal{L} \) that cannot decode \(\Pi \). If \(k \) is the size of the leakage-resilient encoding \(\Pi \) of a single bit, then our transformation increases the circuit size by a factor of \(O(k^2) \). The following is an informal statement of the result (see Theorem 3.3 for the formal version).

Informal Theorem 1. Let \(\mathcal{K} \) be a finite field and let \(k \) be a security parameter. Let \(\mathcal{L} \) be some class of leakage functions and let \(\mathcal{L}_\Pi \) be the class of functions obtained by adding, to every function in \(\mathcal{L} \), any \(O(k^2) \) field operations in \(\mathcal{K} \), arranged at most 3 layers deep. Suppose the encoding \(\Pi \) is such that the adversary, using leakage functions from \(\mathcal{L}_\Pi \) twice, cannot distinguish what field element is encoded. There is a compiler that transforms any circuit over \(\mathcal{K} \) into one that is secure against any adversary that executes the transformed circuit a polynomial number of times, using a leakage function from \(\mathcal{L} \) at each execution. The compiled circuit uses \(O(\mathcal{L}k) \) copies of a circuit-independent, input-independent, stateless, randomized leak-free gate. The compiler increases the circuit size by a factor of \(O(k^2) \).

As a special case, to get secure circuit transformations for concrete leakage classes, we can invoke circuit lower bounds [16, 22]. Thus, for the case where the scheme \(\Pi \) is instantiated with the parity encoding (i.e., a bit \(b \) is shared into random bits whose parity is \(b \)), and the leakage class \(\mathcal{L} = \mathcal{AC}_0^0 \), the lower bound of Hastad [22] implies that to functions in \(\mathcal{L} \) the encoded bit \(b \) looks essentially random. The following is an informal statement of the result (see Corollary 5.2 and discussion thereafter for a formal version).

Informal Theorem 2. Let \(k \) be a security parameter. Let \(0 < \delta < 1 \) and \(4 < d < 1/\delta - 1 \) be some constants. Let \(\mathcal{L} \) be the class of \(\mathcal{AC}_0^0 \) circuits of depth \(d - 4 \), consisting of at most \(\exp(O(k^{(1-\delta)/4})) \) unlimited-fan-in and-or-not gates, and at most \(|k^3/2| \) output values. There is a compiler that transforms any Boolean circuit of size \(s \) into one that is secure against any adversary that executes the transformed circuit at most \(q \) times, using a leakage function from \(\mathcal{L} \) at each execution. The resulting security is information theoretic, with security level \(q \exp(-\Omega(k^{(1-\delta)/4})) \). The compiled circuit uses \(O(\mathcal{L}k) \) copies of a circuit-independent, input-independent, stateless, randomized leak-free gate. The compiler increases the circuit size by a factor of \(O(k^2) \).

In particular, to be resilient to \(\lambda \) bits of leakage by \(\mathcal{AC}_0^0 \) leakage functions of depth \(d_\lambda \) and size \(\exp(O(\lambda)) \), we can use \(k = (2\lambda)^{d_\lambda + 6} \) and achieve security level \(q \exp(-\Omega(\lambda)) \).

Resilience to noisy leakage. The security of our second construction relies on the assumption that the functions in \(\mathcal{L} \) output wires of \(\hat{C} \) perturbed by independent binomial noise. In this case, we can consider an \(\mathcal{L} \) that consists of just a single leakage function. Namely, if \(w_i \) is the value on wire \(i \), the leakage function \(\mathcal{N}_p \) outputs \(w_i \oplus \eta_i \), where \(\eta_i \) is 1 with some probability \(p > 0 \). For such leakages the parity encoding works again. By the XOR Lemma (see Lemma 4.2 in section 4.1), \(\mathcal{N}_p(\bar{a}) \) and \(\mathcal{N}_p(\bar{b}) \) are statistically close when \(\bar{a} \) and \(\bar{b} \) are random bit strings of different parity. Similarly to the construction for computationally weak leakages, we show that computing with
such encodings yields secure computation against N_p leakages. This transformation increases the circuit size by a factor that is polynomial in $1/p$. The following is an informal statement of the result (see Theorem 3.5 for the formal version).

Informal Theorem 3. Let k be a security parameter. There is a compiler that transforms any Boolean circuit of size s into one that is secure against any adversary that executes the transformed circuit q times using the leakage function N_p (which gives each wire value correctly with probability $1 - p$, as defined above) at each execution. The resulting security is information theoretic, with security level $qs \exp(-\Omega(kp^6))$. The compiled circuit uses two kinds of circuit-independent, input-independent, stateless, randomized leak-free gates ($O(sk)$ copies of one and $O(s)$ copies of the other). The compiler increases the circuit size by a factor of $O(k^2)$.

Our opaque gates. As already outlined above, our constructions make an extra requirement: C uses a small leak-free component O (used in all constructions) and/or Q (used in the case of noisy leakages). O merely outputs samples from a fixed distribution, namely, the encoding of 0 under Π (if Π is the parity encoding then O just outputs random bit strings with parity 0). Q is more complicated and will be described in section 3.3. Thus, our results can be interpreted as reducing the physical security of arbitrary circuits to the security of a single simple component, which can be manufactured in bulk, independently of the larger circuits that need protection. This approach to physical security follows the approach of Micali and Reyzin [30] of reductions between physical devices.

Security proof via general composition. Let us call circuit transformations that replace wires by wire bundles carrying encoded values and gates by gadgets that operate on these bundles encoding based. We show a general technique for proving leakage resilience of encoding-based circuit transformations. Namely, we capture a strong notion of leakage resilience for transformed circuits (or their gadgets), by saying that they are reconstructible if there exist certain simulators (so called reconstructors) for the internal wires that fool the leakage class. More precisely, a reconstructor is given only the encoded inputs and outputs of a transformed circuit (or gadget) and has to come up with values for the internal wires that look consistent for leakages in L. We then show a composition result: if all parts of a circuit are reconstructible then so is the whole circuit. This will imply security of the transformation. Important contributions of this work are our proof techniques that are particularly useful for computationally weak leakage functions, and have recently been used in [12]. We refer the reader to section 4.2 for an outline of the proof techniques.

1.3. Related work. Leakage-resilient cryptography is a very active research area; in particular, there is a considerable amount of recent work that proposes techniques to protect specific cryptographic tasks (such as signing, decrypting, or zero-knowledge proofs) against leakage. We do not survey this work here and focus, instead, on general transformations.

Chari et al. [8] proved the security of linear secret sharing (specifically, XOR masking) for protection of values against noisy leakage. They did not, however, specify how to compute on the shares without reconstructing the original values.

Ishai, Sahai, and Wagner [24] were the first to propose a general circuit transformation resilient against adversaries who see up to k wires in each invocation of the circuit. While we use similar techniques for our construction, our security analysis differs significantly from the one in [24], because we need to handle a broader class of adversaries and cannot hide any part of the circuit’s state from the leakage function. Notice that our transformation that resists AC^0 leakages is trivially secure against
PROTECTING CIRCUITS FROM LEAKAGE

k-probing. Hence, our leakage model can be interpreted as a generalization of [24], using the ideas of leakage functions and reductions between physical components introduced in the work of Micali and Reyzin [30]. It is important to note that our generalization of the model of [24] comes at a cost: our transformation is less efficient and requires leak-free components.

Following our work, Rothblum [40] proposed a different circuit transformation that also resists AC^0 leakage but does not require leak-free components; it requires a computational hardness assumption; however. Miles and Viola [32] and Miles [31] proposed a circuit transformation that resists more powerful classes of leakage, such as AC^0 augmented with $\log^2 k$ gates that compute any symmetric function (including parity), and, under certain computational assumptions, TC^0 and even NC^1 (their transformation, like ours, assumes a simple leak-free component).

A different generalization of the work of [24] was proposed by Ajtai [2], who showed how to compile RAM programs onto ones that are resilient to wire probing; his transformation can also be viewed in the circuit model, allowing more probed wires than the transformation of [24].

In a somewhat different vein, following our work, other compilers have been proposed that protect arbitrary computation against any polynomial-time local leakage function. In particular, Juma and Vahlis [26] and Goldwasser and Rothblum [20] present techniques that allow computation in the presence of arbitrary bounded-range polynomial-time leakage functions. The advantage these schemes have over our work is that they tolerate much stronger leakage functions; the work of Goldwasser and Rothblum [20] is particularly strong in this regard, as it allows for an exponentially higher leakage rate (as a function of the transformed circuit size) than the work of Juma and Vahlis [26]. On the other hand, these works rely on the additional assumption of “only computation leaks information” that we do not use; in other words, they assume that intermediate results can be placed into nonleaking memory or, equivalently, that different parts of the computation leak independently. (In the case of [20] this assumption is very strong; the transformed circuit is assumed to be split into very many pieces that leak independently; in the case of [26], only two pieces are required.)

Similarly to our work, Juma and Vahlis [26] and Goldwasser and Rothblum [20] make use of leak-free components. The gate in [26] has to do key refreshing of a secret key for a fully homomorphic encryption scheme, while in [20] for a given public key the component either outputs a random encryption or an encryption of 0. An advantage that the work of Juma and Vahlis enjoys is that its transformation requires only a single copy of the leak-free component for the whole transformed circuit.

Dziembowski and Faust [12] proposed a compiler in the same local-leakage model as [26, 20] but without relying on computational assumptions. Their compiler relays on homomorphic properties of the inner product extractor and simplifies both the compiler and the leak-free gates that were used in earlier works. Goldwasser and Rothblum [21] eliminated both the computational assumptions and the need for leak-free components, but retained the assumption that multiple (and numerous) parts of the circuit leak independently. The already mentioned transformation of Miles and Viola [32] is also secure in this model of bounded-size polynomial-time “local” leakage, where “local” means a constant number of independently leaking parts (which are not, however, local in the sense of circuit layout or time); their result for this model does not require computational assumptions, but still relies on a leak-free component.

Duc, Dziembowski, and Faust [10], following the work of Prouff and Rivain [37], proposed a compiler in a leakage model that is very similar to our noisy leakage model, with each wire leaking a noisy version of its value. Their work allows for more general
noise distributions and does not require any leak-free gates, but requires more overall
noise to achieve security.

Reader’s Guide. In the next two sections we introduce the security notion of a
circuit transformation. In section 3.2 we give our circuit transformation for computationally weak leakages, and in section 3.3 for noisy leakages. Security of our con-
struction is proved in section 4. We first define the notion of reconstructibility, then
in section 4.3 and 4.4 we prove that our simple gadgets satisfy these notions. This
is followed by our composition lemma in section 4.5, and finally leads in section 4.6
to stateful circuit transformations. In section 5 we show how our construction for
computationally weak leakage applies to the specific case when the leakage function
is in \(\text{AC}^0 \).

2. Notation. In this paper vectors, denoted \(\vec{v} = (v_1, \ldots, v_n) \), are column vec-
tors. Matrices are typically denoted by capital letters with an arrow on top. If a
matrix \(\vec{M} \) has \(n \) rows and \(m \) columns, then we say that it is an \(n \times m \) matrix. \(M_{i,j} \)
denotes the \((i, j)\)th element, i.e., the entry in row \(i \) and column \(j \). Matrix addition
and vector multiplication are defined in the standard way.

We denote function composition by \(f \circ g : x \mapsto f(g(x)) \). If \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are two
sets of functions, then \(\mathcal{L}_2 \circ \mathcal{L}_1 \) is a set of functions \(\{ f \circ g \mid f \in \mathcal{L}_2, g \in \mathcal{L}_1 \} \). For some
set of functions \(\mathcal{L} \) we write \(n \times \mathcal{L} \) to denote \(n \) “parallel” computations of functions in
\(\mathcal{L} \). That is, \(n \times \mathcal{L} = \{(f_1, \ldots, f_n)| f_1, \ldots, f_n \in \mathcal{L} \} \). Notice that we overload notation
and sometimes say that functions \(f \in n \times \mathcal{L} \) take \(n \) copies of the same input (i.e., \(f \)
computes \((f_1(x), \ldots, f_n(x))\)), while sometimes \(f \) takes \(n \) different inputs \(x_1, \ldots, x_n \)
(i.e., \(f \) computes \((f_1(x_1), \ldots, f_n(x_n))\)).

Let \(C(d, s, \lambda) \) denote the class of AND-OR-NOT unlimited fan-in Boolean circuits
with depth \(d \) (not counting NOT gates), size \(s \), and \(\lambda \) bits of output. We will some-
times care about arithmetic circuits over a finite field \(K \); in this case, let the function
class \(\text{SHALLOW}(d, s) \) (for \(d, s \in \mathbb{N} \)) denote the class of functions that can be computed
by deterministic circuits that have at most \(s \) field addition, subtraction, and multi-
plication gates that are arranged at most \(d \) deep (i.e., the longest path in the circuit
has at most \(d \) such gates on it). We will allow an arbitrary number of gates supplying
constants from \(K \); such gates will not be counted as part of \(s \) and \(d \). Note that even
if \(K = \text{GF}(2) \), these two classes are different: one deals with unlimited-fan-in Boolean
operations, while the other deals with algebraic operations of fan-in 2.

The statistical distance of two random variables \(D_1, D_2 \) is

\[
\frac{1}{2} \sum_x | \Pr[D_1 = x] - \Pr[D_2 = x] | .
\]

They are \(\epsilon \)-close (denoted by \(D_1 \approx_{\epsilon} D_2 \)) if their statistical distance is at most \(\epsilon \). They are \((\tau, \epsilon) \)-computationally close (denoted by \(D_1 \approx_{(\tau, \epsilon)} D_2 \)) if for any distinguisher \(D \)
that runs in time \(\tau \) and outputs 0 or 1, \(D(D_1) \approx_{\epsilon} D(D_2) \). The notation \(d \leftarrow D \)
denotes sampling a value \(d \) according to a random variable \(D \) (or uniformly, if \(D \) is
simply a set).

3. Circuit transformations. A circuit transformation \(\text{TR} \) takes as input a se-
curity parameter \(k \), a circuit \(C \), and an initial state \(m_0 \) and produces a new circuit
\(\hat{C} \) and new initial state \(\hat{m}_0 \).\(^2\) Let us discuss how \(C \) and \(\hat{C} \) look and what properties

\(^2\)Throughout this work, we use the hat notation \(\hat{\circ} \) (reminiscent of the proverbial “tinfoil hat”) to designate circuits or components that are transformed for leakage resilience.
the transformation \(TR \) needs to satisfy. The discussion below adapts the definitions of [24] to general classes of leakage functions, as suggested in [30].

The original circuit \(C \). We assume that the original circuit \(C \) carries values from an (arbitrary) finite field \(K \) on its wires and is composed of the following gates (in addition to the memory gates which will be discussed later): \(+, \cdot \), and \(\oplus \) (which compute, respectively, the sum, difference, and product in \(K \), of their two inputs), the “coin flip” gate \($ \) (which has no inputs and produces a random independently chosen element of \(K \)), and for every \(\alpha \in K \), the constant gate \(\text{const}_\alpha \) (which has no inputs and simply outputs \(\alpha \)).

Fan-out in \(C \) is handled by a special \text{copy} gate that takes as input a single value and outputs two copies. If we use one output of a gate \(\ell \) times, then it is passed through a subcircuit of \(\ell - 1 \) \text{copy} gates arranged in a tree (the structure of the tree may be chosen arbitrarily). Notice that \text{copy} gates are just the identity (pass-through wires) and are present mainly for notational convenience.

Stateful circuits. As in the work of Ishai, Sahai, and Wagner [24], we define the notion of a stateful circuit. A stateful circuit additionally contains memory gates, each of which has a single incoming and a single outgoing edge. Memory gates maintain state: at any clock cycle, a memory gate sends its current state down its outgoing edge and updates it according to the value of its incoming edge. Any cycle in the circuit must contain at least one memory gate. The state of all memory gates at clock cycle \(i \) is denoted by \(m_i \), with \(m_0 \) denoting the initial state. Inputs to and outputs from clock cycle \(i \) are denoted, respectively, by \(x_i \) and \(y_i \).

When a circuit is run in state \(m_{i-1} \) on input \(x_i \), the computation will result in a wire assignment \(W_i \) (a wire assignment to \(C \) is a string in \(K^\ell \), \(t \in \mathbb{N} \), where each element represents a value on a wire in \(C \)); the circuit will output \(y_i \) and the memory gates will be in a new state \(m_i \).

We will denote this by \((y_i, m_i, W_i) \in C[m_{i-1}](x_i) \).

The transformed circuit \(\hat{C} \). \(\hat{C} \) will make use of the same atomic gates as \(C \) and also of leak-free (“opaque”) gates described in sections 3.2 and 3.3. We require from the transformed circuit \(\hat{C} \) with state \(\hat{m}_0 \) that it “behaves identically” to \(C \) with initial state \(m_0 \). We formalize this by the soundness property of a circuit transformation \(TR \). That is, for all \(C \) and \(m_0 \), for any number of clock cycles \(q \) and any set of inputs \(x_1, x_2, \ldots, x_q \) (one for each clock cycle), the distribution of the outputs \(y_1, y_2, \ldots, y_q \) is the same for \(C \) starting at state \(m_0 \) and \(\hat{C} \) starting at state \(\hat{m}_0 \). (We note that [24] defined a more relaxed notion of soundness, requiring only indistinguishable, rather than perfectly identical behavior, but we do not need it in this work.)

Security of circuit transformation \(TR \). We want to make sure that the transformed circuit leaks no useful information to an adversary. We use the term \((L, \tau)-adversary\) to denote an adversary \(A \) with physical observations limited to functions in the class \(L \) and running time (not including the computation by the leakage function itself) limited to \(\tau \). If the adversary \(A \) gets to query the circuit \(q \) times, each time choosing a fresh function from \(L \), which computes its output based on the entire wire assignment, we call it a \text{q-adaptive} \((L, \tau)-adversary\). To formalize that such an adversary learns nothing useful, we show the existence of a simulator \(S \), and prove that anything the adversary learns can also be learned by \(S \) which does not get any leakage.

Consider the experiments in Figure 1 that start with some circuit \(C \) in state \(m_0 \), and allow it to run for \(q \) iterations. In both experiments, we assume that \(A \) and \(S \) are stateful, i.e., remember their state from one invocation to the next.

3. \(m_i \), \(x_i \), and \(y_i \) will be vectors with length \(n, n_1 \), and \(n_O \) (resp.).
The security definition below says that the transformed circuit is secure if the outputs of the two experiments are indistinguishable. We are now ready to state our security notion precisely. The definition is for both computational and statistical outputs of the two experiments are indistinguishable. We are now ready to state

\[\text{Definition 3.1 (security of circuit transformation). } \]

Recall that \(k \) is the security parameter. A circuit transformation \(\text{TR} \) is \((\mathcal{L}, \tau_\mathcal{A}, \tau_\mathcal{S}, \tau_D, q, \epsilon)\)-secure if for every \(q \)-adaptive \((\mathcal{L}, \tau_\mathcal{A})\)-adversary \(\mathcal{A} \) there is a simulator \(\mathcal{S} \) running in time \(\tau_S \) such that for all (stateful) circuits \(C \) with initial states \(m_0 \)

\[\text{Exp}_\text{TR}^{\text{real}}(\mathcal{A}, \mathcal{L}, q, C, m_0, k) \approx_{\tau_D, \epsilon} \text{Exp}_\text{TR}^{\text{sim}}(\mathcal{S}, \mathcal{A}, q, C, m_0, k), \]

where the random variables are outputs of the experiments. Sometimes, we abbreviate parameters and refer to a circuit transformation being \(\mathcal{L} \)-secure, which means it is \((\mathcal{L}, \tau_\mathcal{A}(k), \tau_\mathcal{S}(k), \tau_D(k), q(k), \epsilon(k))\)-secure for some polynomials \(\tau_\mathcal{A}, \tau_\mathcal{S}, \tau_D, q, \) and some negligible function \(\epsilon \).

Note that a stronger result is obtained when \(\mathcal{L}, \tau_\mathcal{A}, \tau_D, \) and \(q \) are larger (as it allows for more leakage functions and stronger adversaries), and when \(\tau_\mathcal{S} \) and the distinguishing advantage \(\epsilon \) are smaller (because it indicates tighter simulation).

In the following sections, we discuss three circuit transformations, which follow a similar approach that we call encoding-based circuit transformations. We then show three examples of encoding-based circuit transformations. In section 3.2, we propose encoding-based circuit transformations for computationally weak and in section 3.3 for noisy leakages.

3.1. Encoding-based circuit transformations. At a high level, in an encoding-based circuit transformation, each wire \(w \) in the original circuit \(C \) is represented by a wire bundle in \(\hat{C} \), consisting of \(k \) wires \(\vec{w} = (w_1, \ldots, w_k) \), that carry an encoding of \(w \). The gates in \(C \) are replaced by gate by gate with so called gadgets, computing on encoded values. Our construction will ensure that each wire bundle will carry an encoding of its value that is chosen uniformly and independently of all the wires in the transformed circuit. The main difficulty in the concrete constructions of section 3.2–3.3 will be to construct gadgets that remain “secure” even if their internals may leak. Before devising the concrete gadgets, let us explain the main ingredients of encoding-based circuit transformations.

Encoding scheme \(\Pi \). The main ingredient of the transformations presented below is an encoding scheme \(\Pi = (\text{Enc, Dec}) \), which maps a single element of a finite field \(\mathcal{K} \) to a vector in \(\mathcal{K}^k \) and back. More precisely, for \(k \in \mathbb{N}_{>0} \), \(\text{Dec} : \mathcal{K}^k \to \mathcal{K} \) is a deterministic function, and \(\text{Enc} \) is a (probabilistic) algorithm that, on input \(x \in \mathcal{K} \),
chooses uniformly at random an element of $\text{Dec}^{-1}(x)$ (where $\text{Dec}^{-1}(x)$ is the set $\{y \in \mathbb{K}^k : \text{Dec}(y) = x\}$).

Linear encoding schemes. A special type of an encoding scheme is a linear encoding scheme, which requires that Dec is an affine function. For $k \in \mathbb{N}_{>0}$, Dec is defined by a decoding vector $\vec{r} = (r_1, \ldots, r_k) \in \mathbb{K}^k$ as $\text{Dec} : (y_1, \ldots, y_k) \mapsto \sum_i y_i r_i = \vec{r}^T \vec{y}$. In the simplest case of $\mathbb{K} = \mathbb{GF}(2)$, a linear encoding of a bit x is a random string of k bits whose exclusive-or is x. The case when $\mathbb{K} = \mathbb{GF}(2)$ will be called parity encoding, denoted by Π_{parity}. Further examples of linear encoding schemes are any threshold or nonthreshold linear secret sharing scheme [4].

We abuse notation and use $\text{Enc}(x)$ to denote the distribution of encodings of x, \vec{x} to denote a particular encoding from this distribution, and $\text{Enc}(x_1, \ldots, x_n) = (\text{Enc}(x_1), \ldots, \text{Enc}(x_n)) = (\vec{x}_1, \ldots, \vec{x}_n)$ to denote the encoding of a set of elements $x_1, \ldots, x_n \in \mathbb{K}$. Furthermore, denote by $\text{Enc}(\cdot)$ the uniform distribution over all encodings.

Encoding inputs—decoding outputs. Because the transformed gadgets in \hat{C} operate on encodings, \hat{C} needs to have a subcircuit at the beginning that encodes the inputs and another subcircuit at the end that decodes the outputs. However, in our proofs, we want to be able to also reason about transformed circuits without encoding and decoding. Thus, we do not require that every transformed circuit \hat{C} should have such encoding and decoding. Instead, we introduce artificial input and output gates that can be part of C for syntactic purposes. If such gates are present (as they would be on any “complete” circuit that one would actually wish to transform), then \hat{C} will include input encoding and output decoding. If they are not, then \hat{C} will operate on already encoded inputs and produce encoded outputs.

More precisely, if we wish for \hat{C} to include input encoding and output decoding, then the circuit C given to TR must have a special encoder gate on every input wire. In C the encoder gate is simply the identity, since no encoding is needed. Also, on every output wire there must be a special decoder gate, which is also the identity. These special gates must not appear anywhere else in C and do not count for the size of the circuit. In \hat{C} each encoder gate is replaced by an encoder gadget which performs encoding (see below) and each decoder gate is replaced by a decoder gadget that performs decoding (see below).

The encoder gadget takes an input $a \in \mathbb{K}$ and outputs an encoding (i.e., a wire bundle) $\vec{a} \in \mathbb{K}^k$ of a. The encoding can be chosen arbitrarily from the support of $\text{Enc}(a)$, e.g., $\vec{a} = (r_1^{-1} a, 0, \ldots, 0)$. The decoder gadget takes an encoding (i.e., a wire bundle) $\vec{a} \in \mathbb{K}^k$ of a and outputs $a \leftarrow \text{Dec}(\vec{a})$. For our concrete transformations below, encoder and decoder can be implemented with just const_a, \oplus, and \odot gates.

Transformation of the state. So far we have considered the transformation of stateless circuits. A stateful circuit C additionally has an initial state m_0 that is stored in memory cells. For syntactical reasons we assume that each such memory cell in C is followed by a mask gate, which is implemented in \hat{C} by the identity function.

To augment the circuit transformation to handle stateful circuits, we have to explain how to transform the initial state m_0 and what to do with each memory gate. The initial state is replaced by a randomly chosen encoding $\text{Enc}(m_0)$. Each memory gate is replaced by a gadget that consists of k memory gates to store the encoding, followed by a mask gadget that represents the mask gate in C. The implementation of the mask gadget is transformation specific and will be described for our concrete instantiations below. Notice that in contrast to encoder and decoder, the mask gadget is necessary to achieve security; otherwise we cannot safely tolerate leakage.
that exceeds the length of a single encoding. The high-level structure of the circuit transformation is given in Figure 2.

3.2. Circuit transformations resilient to computationally bounded leakage. The transformation of [24] protects against leakage that reveals the values of up to $k-1$ wires, and hence, is oblivious to huge parts of the computation. In this section we now present our circuit transformation TR_C that protects circuits against global, but computationally bounded leakage. More precisely, we will show that from any linear encoding scheme Π over K, we can construct a circuit transformation TR_C that protects circuits against leakages from class \mathcal{L}, where \mathcal{L} contains all functions that cannot decode Π.

To capture formally that leakage functions in \mathcal{L} cannot decode Π, we will need the notion of leakage indistinguishability. Roughly speaking, this notion formalizes what it means for an encoding of two values to be indistinguishable in the presence of leakage from \mathcal{L}. But let us first introduce a more general definition that speaks about leakage indistinguishability of two distributions:

Definition 3.2 (leakage indistinguishability of distributions and encodings). Two distributions X, X' are said to be p-adaptive $(\mathcal{L}, \tau, \epsilon)$-leakage-indistinguishable if for any adversary A, running in time τ and making at most p queries to its oracle,

$$\left| \Pr[x \leftarrow X : A^{\text{Eval}(x, \cdot)}(1^k) = 1] - \Pr[x \leftarrow X' : A^{\text{Eval}(x, \cdot)}(1^k) = 1] \right| \leq \epsilon,$$

where $\text{Eval}(x, \cdot)$ takes as input a leakage function $f \in \mathcal{L}$ and outputs $f(x)$.

We say that an encoding scheme Π is p-adaptive $(\mathcal{L}, \tau, \epsilon)$-leakage-indistinguishable if for any $a, a' \in K$ the two distributions $\text{Enc}(a)$ and $\text{Enc}(a')$ are p-adaptive $(\mathcal{L}, \tau, \epsilon)$-leakage-indistinguishable.

Recall that the function class $\text{SHALLOW}(d, s)$ (for $d, s \in \mathbb{N}$) is the class of functions that can be computed by deterministic circuits (i.e., ones without $\|$ gates) that have at most $s \oplus, \ominus,$ and \odot gates that are arranged at most d deep (i.e., the longest path in the circuit has at most d such gates on it).\(^5\)

The theorem below shows the existence of a circuit transformation TR_C based on arbitrary leakage indistinguishable linear encoding schemes Π.

Theorem 3.3 (security against computationally bounded leakage). Recall that k is the security parameter. Furthermore, let \mathcal{L}_Π be some class of leakage functions

\(^4\)The purpose of mask is to guarantee rerandomization of the memory and destroy partial information that an adversary may have learnt about the secret state.

\(^5\)Note that copy and const α gates are allowed in the circuit and do not count towards d or s.
and let \(q, \epsilon, \tau \geq 0 \).

If there exists a linear encoding scheme \(\Pi \) over \(\mathbb{K} \), with outputs of size \(k \), that is \(2 \)-adaptive \((\mathcal{L}, \tau, \Pi, \epsilon)\)-leakage-indistinguishable, then there exists a circuit transformation \(\mathbf{TR}_C \) that is \((\mathcal{L}, \tau, \Pi, \epsilon)\)-secure for

- any \(\tau_A \) and \(\tau_D \) satisfying \(\tau_A + \tau_D \leq \tau \Pi - q \mathbb{O}(k^2) \), where \(s \) is the number of gates in \(C \);
- some \(\tau_S \leq \tau_A + q s \mathbb{O}(k^2) \);
- some \(\epsilon \leq \epsilon \Pi (q + 1)(s(k + 2) + n) \), where \(n \) is the number of memory gates in \(C \);
- any \(\mathcal{L} \) that satisfies \(\mathcal{L} \circ \mathbf{SHALLOW}(3, \mathbb{O}(k^2)) \subseteq \mathcal{L} \Pi \) (for \(\mathbb{K} = \mathbb{GF}(2) \), \(\mathcal{L} \circ \mathbf{SHALLOW}(2, \mathbb{O}(k^2)) \subseteq \mathcal{L} \Pi \)).

In particular, if the encoding scheme is \(2 \)-adaptive \(\Pi \)-leakage indistinguishable, then the transformation is \(\mathcal{L} \)-secure.

The transformation increases the size of each multiplication gate by a factor of \(\mathbb{O}(k^2) \) and the size of the rest of the circuit by a factor of \(\mathbb{O}(k) \).

Notice that we define \(\mathcal{L} \) implicitly by \(\mathcal{L} \Pi \) and the function class \(\mathbf{SHALLOW}(3, \mathbb{O}(k^2)) \).

Loosely speaking, if we want that our circuits are resilient to functions in \(\mathcal{L} \), then we need an encoding scheme \(\Pi \) that is resilient to functions at least from some set \(\mathcal{L} \circ \mathbf{SHALLOW}(3, \mathbb{O}(k^2)) \). Our result is better (or tighter) if the difference between \(\mathcal{L} \) and \(\mathcal{L} \Pi \) can be described by functions that are as simple as possible. In our case the difference between \(\mathcal{L} \) and \(\mathcal{L} \Pi \) (in terms of computational power) is described by the class \(\mathbf{SHALLOW}(3, \mathbb{O}(k^2)) \). We will present a concrete instantiation of the above theorem in section 5, where we set \(\Pi \) to \(\Pi \text{parity} \) and \(\mathcal{L} \) to \(\mathcal{AC}^0 \), in which case we obtain statistical, rather than computational, indistinguishability.

The leak-free gate \(\mathcal{O} \). Ideally, one would hope that our transformation \(\mathbf{TR}_C \) requires only standard gates of constant size to transform arbitrary circuits. Unfortunately, it is not clear how to prove security when we restrict \(\mathbf{TR}_C \) to only use such gates. To show security, we allow \(\mathbf{TR}_C \) to additionally use the leak-free gate \(\mathcal{O} \). The \(\mathcal{O} \) gate has size linear (in \(k \)), but as discussed in the introduction is very simple otherwise. In particular, it has no inputs, and merely outputs an encoding sampled from the distribution \(\text{Enc}(\mathbf{0}) \). Crucially, while the wires coming out of this gate can be observed by the leakage function, we assume that the gate itself does not leak information. For the case of \(\mathbb{K} = \mathbb{GF}(2) \) our leak-free component can be implemented by a leak-free subcircuit that works as follows: generate \(k \) random bits \(b_0, \ldots, b_{k-1} \) and output \(b_i \oplus b_{i+1} \mod k \) for \(0 \leq i < k - 1 \). Note that this subcircuit is of constant depth.

Our transformation follows the outline given in section 3.1 using the gadgets given in Figure 3. A visual description of its main component, the \(\widehat{\mathbf{g}} \) gadget, is presented in Figure 4. At a high-level the \(\widehat{\mathbf{g}} \) gadget first computes a (not uniformly random) encoding of \(a \odot b \) represented by the \(k \times k \) matrix \(\widehat{B} \). Next, \(\widehat{B} \) is “randomized” with the matrix \(\mathbf{S} \), resulting in \(\widehat{U} \). Since eventually \(\widehat{\mathbf{g}} \) has to output a uniform encoding of \(a \odot b \) with length \(k \), we compress the “rows” of \(\widehat{U} \) by decoding to obtain \(\mathbf{q} \).

The transformation increases the size of each multiplication gate by a factor of \(\mathbb{O}(k^2) \) and the rest of the circuit by a factor of \(\mathbb{O}(k) \), where the constants hidden in \(\mathbb{O}((\cdot)) \) are small.

Incidentally, observe in Figure 3 that because every gadget other than \(\text{encoder} \) or \(\text{decoder} \) ends with a masking by an output of \(\mathcal{O} \),\(^7\) and wire bundles do not fan-out (instead, they go through the \(\text{copy} \) gadget), each wire bundle between two gadgets does not cleanly generalize to the case of transformations not necessarily based on linear encodings.

\(^6\)These values are all parameterized by \(k \), and thus, for ease of notation, we omit \(k \).

\(^7\)One can instead define the basic gadgets as not including this masking with \(\mathcal{O} \), and instead place a \(\text{mask} \) gate on every wire. The resulting transformation is similar. However, this does not cleanly generalize to the case of transformations not necessarily based on linear encodings.
memory
stateful circuits we proceed as outlined in section 3.1, namely, we encode the initial
functions equivalent to state. This masking is necessary to guarantee security as will be discussed later.

Transformation of stateful circuits. To augment the transformation to handle stateful circuits we proceed as outlined in section 3.1, namely, we encode the initial memory m_0 by $\tilde{m}_0 \leftarrow \text{Enc}(m_0)$ and use $|\tilde{m}_0|$ memory cells to store the result. Each such bundle of k memory cells is followed by the mask gadget to rerandomize the state. This masking is necessary to guarantee security as will be discussed later.

In the following lemma we show that our transformation outputs circuits that are functionally equivalent to C. The security proof is given in section 4 within our general framework to analyze security of encoding-based circuit transformations.
LEMMA 3.4 (soundness of TR_C). The circuit transformation TR_C is sound.

Proof. Since we encode the input, do a gate-by-gate transformation, and then decode the output, it suffices to prove that our gate gadgets work correctly on encoded values (recall that r is the decoding vector).

\oplus : For $\hat{c} = a \oplus b \oplus \hat{a}$, with \hat{a} being an encoding of 0, we get by linearity that

$\text{Dec}(\hat{c}) = a \oplus b$.

\circ : $\text{Dec}(\hat{c}) = r^T (q \oplus \hat{q}) = r^T ((B \oplus \hat{S}) r \oplus \hat{a}) = r^T ((a b^T \oplus \hat{S}) r \oplus \hat{a}) = (r^T a^T b^T r) \oplus (r^T \hat{S}) r \oplus r^T \hat{a} = ab \oplus 0^N r \oplus 0 = ab$.

$\odot, \overline{\text{copy}}, \text{const}_a, \text{mask}$ and \hat{S}: Similar to \odot, by linearity. \qed

3.3. Circuit transformations resilient to noisy leakage. So far, Ishai, Sahai, and Wagner [24] discussed leakage classes that consider probing attacks, and we discussed those that are constrained in terms of their computational power and output length (section 3.2). In this section, we consider the noisy leakage model, and present a transformation TR_N that makes arbitrary Boolean circuits resilient to leakage that consists of the values of all the wires in the circuit, except that each bit is flipped with some probability $p \in (0, 1/2]$.\footnote{Notice that similarly to section 3.2 we can generalize the class of circuits that we can transform (i.e., to circuits that do computation over an arbitrary field K) and the class of noisy leakage that we can tolerate. For ease of description we omit the details here.}

Noisy leakage. For some noise parameter $p \in (0, 1/2]$ the single tolerated leakage function is $L = \{N_p\}$, where N_p is probabilistic, and is defined as follows: let B_p be the binomial distribution with parameter p which outputs 1 with probability p and 0 otherwise. Then, for some input $x \in \{0, 1\}^*$ we have $N_p(x) = x \oplus \overline{b}$, where each bit b_i is drawn independently from the distribution B_p.

Ideally, we would hope that the circuit transformation from the previous section provides security against noisy leakage as well. Indeed, since Theorem 3.3 is very general, we could just plug in N_p for L, and get “some” N_p resilience for our circuit transformation TR_C. The security, however, would rely on the additional assumption that Π_{parity} is $N_p \circ \text{SHALLOW}(3, O(k^2))$-leakage-indistinguishable, and it is not clear what such an assumption would mean in a setting where N_p reveals all its inputs perturbed by independent binomial noise (recall that $\text{SHALLOW}(3, O(k^2))$ describes the difference between the class of leakages that is tolerated by Π_{parity} and the transformed circuit).

Furthermore, by inspection of our construction it turns out that TR_C is not particularly tailored to protect against noisy leakages. Indeed, TR_C remains “secure” for very large noise p, but this is not what we want. In practice, we are typically interested in what happens for low noise and, unfortunately, we can show that in such a case there is an explicit attack against the transformation TR_C (as well as against the transformation of [24]).

An attack with noisy leakages. Specifically, the attack is against the construction of the multiplication gadget \odot in Figure 3. The gadget takes as input two encodings \vec{a} and \vec{b} and first computes the k^2 bits $\{a_i \odot b_j : i, j \in [k]\}$. Consider the first k bits $(a_1 \odot b_1, \ldots, a_1 \odot b_k)$. If $a_1 = 0$, then all these bits are 0, whereas if $a_1 = 1$, then roughly half of them are 1. Given such disparity, using error correction, the adversary can determine whether a_1 is 0 or 1, even if he is given a noisy version of these k bits. Proceeding in a similar way, he can reconstruct all the bits a_i, and thus the input bit a itself. The fundamental reason why this attack works is that the construction of the \odot gadget in Figure 3 does not use its input in a local way, namely, it accesses the input bits a large number of times.
To avoid this attack we propose a new circuit transformation TR_N. TR_N uses as underlying encoding scheme the parity encoding and proceeds in the same way as the transformation TR_C from section 3.2 (cf. Figure 3), except for the construction of the multiplication gadget \mathcal{O}. This new construction of the multiplication gadget avoids the attack outlined above, and is constructed using a new opaque gate that we call \mathcal{Q} (in addition to the opaque gate \mathcal{O}). We stress that the opaque gate \mathcal{Q} inherits the main characteristics of the opaque gate \mathcal{O} in that it is *stateless*, and *independent of the computation*. In other words, \mathcal{Q} simply produces samples from a fixed distribution.

Before we give the specification of the opaque gate \mathcal{Q} and the construction of the new \mathcal{O} gadget, let us state our main theorem that deals with noisy leakages. Note that, in contrast to Theorem 3.3, this theorem deals with a much more restricted leakage class, but, as a result, obtains statistical, rather than computational, indistinguishability.

Theorem 3.5. Recall that k is the security parameter. Let $p \in (0, 1/2]$, $q > 0$, and the leakage function \mathcal{N}_p be defined as above. There exists a circuit transformation TR_N that is $(\mathcal{N}_p, \tau_A, \tau_S, \tau_D = \infty, q, \epsilon)$-secure for any τ_A, for some $\tau_S = \tau_A + qsO(k^2)$, and

$$
\epsilon \leq (q + 1)(n + (2k + 3)3)(\exp(-64kp^6) + \exp(-15kp^5) + \exp(-k/512)),
$$

where s is the number of gates in C and n is the size of the state of C. The transformation increases the size of each multiplication gate by a factor of $O(k^2)$ and the rest of the circuit by a factor of $O(k)$. Note that for fixed ϵ, $k = O(p^{-6} \log 1/p)$.

We prove this theorem in a similar way to Theorem 3.3. Namely, we base the security of TR_N on the indistinguishability of the underlying parity encoding scheme Π_{parity}. As it turns out (which will be discussed in section 4.1), the parity encoding scheme is information-theoretic \mathcal{N}_p leakage indistinguishable (note that this is the reason why in the above theorem we can eliminate to explicitly condition on the leakage indistinguishability of Π_{parity}). For the details of the proof, we defer to the next section.

Similar to TR_C, the transformation TR_N increases the size of each multiplication gate by a factor of $O(k^2)$ and the rest of the circuit by a factor of $O(k)$. Notice that in contrast to the circuit transformation TR_C, our circuit transformation for noisy leakages requires leak-free gates of size $O(k^2)$. All constants hidden in $O(\cdot)$ notation are small.

The new opaque gate \mathcal{Q}. The opaque gate \mathcal{Q} is probabilistic, takes no inputs, and outputs $2k^2 + 1$ bits. It operates in the following way: sample $2k$ uniformly random 0-encodings $\tilde{r}^{(1)}, \ldots, \tilde{r}^{(k)}$ and $\tilde{s}^{(1)}, \ldots, \tilde{s}^{(k)}$. Let \tilde{R} and \tilde{S} be the following two $k \times k$ matrices:

$$
\tilde{R} = \begin{pmatrix}
\tilde{r}^{(1)} \\
\vdots \\
\bigoplus_{j \in [1,k]} \tilde{r}^{(j)} \\
\vdots \\
\bigoplus_{j \in [1,k]} \tilde{r}^{(j)}
\end{pmatrix}
$$

and

$$
\tilde{S} = \begin{pmatrix}
\tilde{s}^{(1)} \\
\vdots \\
\bigoplus_{j \in [1,k]} \tilde{s}^{(j)} \\
\vdots \\
\bigoplus_{j \in [1,k]} \tilde{s}^{(j)}
\end{pmatrix}.
$$

Let us denote by $\tilde{R} \bigcirc \tilde{S}$ the sum of the componentwise product, i.e., $\bigoplus_{i,j \in [1,k]} R_{i,j} \bigcirc S_{i,j}$. Then the output of the opaque gate \mathcal{Q} is the tuple

$$
(\tilde{r}^{(1)}, \ldots, \tilde{r}^{(k)}, \tilde{s}^{(1)}, \ldots, \tilde{s}^{(k)}, \tilde{R} \bigcirc \tilde{S}^T)
$$

© 2014 the Authors
Subgadget \(\hat{q} \leftarrow \text{mult}(a, b) \):

- Compute \(2k^2 + 1 \) bits with \(Q \):
 \((\hat{r}^{(1)}, \ldots, \hat{r}^{(k)}, \hat{s}^{(1)}, \ldots, \hat{s}^{(k)}, u) \leftarrow Q \).
- Let \(\hat{a}^{(0)} = \hat{a} \) and \(\hat{b}^{(0)} = \hat{b} \). Compute for \(i \in [k] \):
 \(\hat{a}^{(i)} = \hat{a}^{(i-1)} \oplus \hat{r}^{(i)} \) and \(\hat{b}^{(i)} = \hat{b}^{(i-1)} \oplus \hat{s}^{(i)} \)
 (using \(O(k^2) \) \(\oplus \) gates).
- Let \(\hat{A} = (\hat{a}^{(i)})_{i \in [1,k]} \) and \(\hat{B} = (\hat{b}^{(i)})_{i \in [1,k]} \).
- Compute \(z^{(j)} = A_{1,1} \oplus B_{1,1} \oplus u \) and
 \(z^{(j)} = A_{i,j} \oplus B_{j,1} \)
 (using \(O(k^2) \) \(\odot \) gates).
- For \(i \in [k] \):
 \(\hat{q}^{(i)} \leftarrow Q \) (using \(O(k) \) opaque gates \(\mathcal{O} \)).
- Compute \(\hat{q}^{(i)} = \hat{z}^{(i)} \oplus \hat{a}^{(i)} \); let \(\hat{q} = (\hat{q}^{(1)}, \ldots, \hat{q}^{(k)}) \)
 (using \(O(k^2) \) \(\oplus \) gates).

Subgadget \(\hat{c} \leftarrow \text{compress}(\hat{q}) \):

- Let \(\hat{q} = (\hat{q}^{(1)}, \ldots, \hat{q}^{(k)}) \), with \(\hat{q}^{(i)} \in \{0,1\}^k \).
- \(\hat{c} = \hat{q}^{(1)} \oplus \cdots \oplus \hat{q}^{(k)} \) (using \(O(k) \) \(\oplus \) gadgets).

Transformation \(c = a \odot b \Rightarrow \hat{c} \leftarrow \hat{a} \hat{b} \):

- \(\hat{q} \leftarrow \text{mult}(\hat{a}, \hat{b}) \)
 (using \(O(k^2) \) standard gates and \(O(k) \) \(\mathcal{O} \) gates and one \(Q \) gate).
- \(\hat{c} \leftarrow \text{compress}(\hat{q}) \)
 (using \(O(k^2) \) \(\oplus \) gates and \(O(k) \) \(\mathcal{O} \) gates).

Fig. 5. Gadget \(\otimes \) in the circuit transformation \(TR_N \) and its subgadgets \(\text{mult} \) and \(\text{compress} \). The constants hidden in the \(Q \)-Notation are small.

Unlike the case for \(\mathcal{O} \) described in section 3.2, we do not know how to sample the distribution produced by \(Q \) in constant depth.

The new multiplication gadget \(\hat{\odot} \). The operation of the multiplication gadget \(\hat{\odot} \) proceeds in two stages:

- The first stage uses a subgadget \(\hat{\text{mult}} \) that takes as input two encodings \(\hat{a} = (a_1, \ldots, a_k) \) and \(\hat{b} = (b_1, \ldots, b_k) \) of \(a \) and \(b \) (resp.), and outputs a \(k^2 \) long encoding \(\hat{q} = (q_1, \ldots, q_{k^2}) \) of \(a \odot b \).
- The second stage “compresses” this longer encoding into an encoding \(\hat{c} = (c_1, \ldots, c_k) \), using a gadget \(\text{compress} \).

We describe these two stages and their costs in more detail in Figure 5. Notice that \(\hat{\odot} \) is carefully constructed to prevent the attack outlined above. Crucially, this requires that the inputs, \(\hat{a} \) and \(\hat{b} \), are not used too often. We achieve this by generating \(k \) copies of \(\hat{a} \) and \(\hat{b} \) as \(\hat{a}^{(i)} = \hat{a}^{(i-1)} \oplus \hat{r}^{(i)} \) and \(\hat{b}^{(i)} = \hat{b}^{(i-1)} \oplus \hat{s}^{(i)} \) with \(\hat{r}^{(i)}, \hat{s}^{(i)} \leftarrow \text{Enc}(0) \). Next, \(\hat{A} = (\hat{a}^{(i)})_i \) and \(\hat{B} = (\hat{b}^{(i)})_i \) are used to compute the \(k^2 \) long encoding \(\hat{q} = (q_1, \ldots, q_{k^2}) \) of \(a \odot b \). For this to be correct we need the value \(u \) that is output by \(Q \). Unfortunately, it is not clear how to compute \(u \) in clear as, e.g., \(\hat{r}^{(1)} \) and \(\hat{s}^{(1)} \) are used \(k \) times in the computation of \(u \).

The transformation of the other gates, i.e., of \(\oplus, \odot, \text{const}, \text{mask}, \) and \(\text{copy} \), is done as in the transformation \(TR_C \) and is omitted in Figure 5.

In the following lemma we prove the correctness of our circuit transformation \(TR_N \). The security proof follows our general approach and will be presented in the next section.

Lemma 3.6 (soundness of \(TR_N \)). The circuit transformation \(TR_N \) is sound.

Proof. Since the only difference between \(TR_N \) and \(TR_C \) is the transformation of the \(\odot \) gate, we focus on the correctness of \(\hat{\odot} \). Let \(\hat{R} \) and \(\hat{S} \) be the matrices defined above, and let \(\hat{A} \) be a matrix whose rows are \(k \) copies of the vector \(\hat{a} \), and \(\hat{B} \) be a matrix whose rows are \(k \) copies of the vector \(\hat{b} \). First, a simple calculation shows that

\[
\hat{A} \hat{S}^T = \bigoplus_{i \in [k]} \left[a_i \odot \left(\bigoplus_{j \in [k]} s^{(j)} \oplus \cdots \oplus s^{(j)} \right) \right] = 0,
\]

(3.2)

\[
\hat{R} \hat{B}^T = 0,
\]

(3.3)

© 2014 the Authors
and
\[
\hat{A} \odot \hat{B}^T = \bigoplus_{i,j} a^{(i)}_j \odot b^{(j)}_i = \left(\bigoplus_i a_i \right) \odot \left(\bigoplus_j b_j \right) = a \odot b.
\]

We now establish the correctness of the \(\hat{\circ}\) gadget by the following computation:
\[
\bigoplus_{i,j \in [1,k]} q^{(i)}_j = \bigoplus_{i,j \in [1,k]} \left[w^{(i)}_j \oplus u \oplus (\hat{A} \oplus \hat{R}) \odot (\hat{B} \oplus \hat{S})^T \right]
\]
\[
= u \oplus \hat{A} \odot \hat{B}^T \oplus \hat{A} \odot \hat{S}^T \oplus \hat{R} \odot \hat{S}^T \oplus \hat{R} \odot \hat{B}^T
\]
\[
= u \oplus \hat{A} \odot \hat{B}^T \oplus \hat{R} \odot \hat{S}^T \quad \text{(by (3.2) and (3.3))}
\]
\[
= \hat{A} \odot \hat{B}^T \quad \text{(since } \hat{R} \odot \hat{S}^T = u, \text{ by definition)}
\]
\[
= a \odot b \quad \text{(by (3.4))}
\]

4. Proof of security. Before we outline the security proof and introduce our technical tools, we first discuss useful properties of the parity encoding \(\Pi_{\text{parity}}\). This will allow us to prove security for concrete function classes, namely, for \(\mathcal{AC}^0\) and \(\mathcal{N}_p\) noisy leakages.

4.1. Leakage indistinguishability of the parity encoding \(\Pi_{\text{parity}}\). We show leakage indistinguishability of the \(\Pi_{\text{parity}}\) encoding against multibit range \(\mathcal{AC}^0\) functions and noisy leakages \(\mathcal{N}_p\) (for \(p \in (0,1/2)\)).

\(\mathcal{AC}^0\) leakage indistinguishability of \(\Pi_{\text{parity}}\). The decoding function of the \(\Pi_{\text{parity}}\) encoding is exactly the parity function, which is hard for \(\mathcal{AC}^0\). This observation enables us to prove \(\mathcal{AC}^0\) leakage indistinguishability of \(\Pi_{\text{parity}}\).

Recall that \(\mathcal{C}(d,s,\lambda)\) denotes the class of AND-OR-NOT unlimited fan-in circuits with depth \(d\), size \(s\), and \(\lambda\) bits of output. If we translate the classical result of Hastad [22] (as cited in [27, Corollary 1]) to our definition of leakage indistinguishability, we get that the parity encoding is \((\mathcal{C}(d,2^{k^{1/d}},1),\infty,2^{-k^{1/4}})\)-leakage-indistinguishable for any constant \(d\). In other words, this protects against \(\mathcal{AC}^0\) circuits that output 1 bit. Using the result of Dubrov and Ishai [9, Theorem 3.4], we get the following corollary that later will be applied to show security of \(\mathcal{TR}_C\) against multibit \(\mathcal{AC}^0\) leakages (cf. section 5).

Proposition 4.1 (\(\mathcal{AC}^0\) leakage indistinguishability of \(\Pi_{\text{parity}}\)). For any \(0 < \delta < 1\) and \(d \in \mathbb{N}_{>1}\) the parity encoding \(\Pi_{\text{parity}}\) is \((\mathcal{C}(d,\exp(O(k(1-\delta)^{1/d})),k^2),\infty,\exp(-\Omega(k(1-\delta)/d)))\)-leakage-indistinguishable.\(^9\)

\(\mathcal{N}_p\) leakage indistinguishability of \(\Pi_{\text{parity}}\). In this paragraph we prove some useful properties of the parity encoding \(\Pi_{\text{parity}}\) for \(\mathcal{N}_p\) leakages, which leads into Proposition 4.4 showing that \(\Pi_{\text{parity}}\) has \(\mathcal{N}_p\) leakage indistinguishability (for \(p \in (0,1/2)\)).

We first present a simple version of the information-theoretic XOR lemma.

Lemma 4.2 (XOR lemma [18, 43]). Let \(X_0\) and \(X_1\) be two distributions. For any \(k \in \mathbb{N}_{>0}\) and \(b \in \{0,1\}\) we define the distributions
\[
\overline{X}_b = (X_{b_1},\ldots,X_{b_k}) \text{ with } b_1 \oplus \cdots \oplus b_k = b.
\]
If \(\Delta(X_0;X_1) \leq \epsilon\), then \(\Delta(\overline{X}_0,\overline{X}_1) \leq \epsilon^k\).

\(^9\)An even better result is obtained if one restricts \(d\) to \(d = 1\); in that case, the \(\epsilon\) parameter gets reduced to \(\exp(-\Omega(k - k^4 \log k))\).
The above lemma can be used to show that $\text{Enc}(0)$ is indistinguishable from $\text{Enc}(1)$ by noisy leakage. However, if the same share of an encoding appears on multiple wires, and each wire leaks with independent noise, the noise can cancel out, making it easier for the adversary to distinguish. Thus, we now show a technical lemma that bounds the statistical distance of ℓ copies of $\mathcal{N}_p(\text{Enc}(0))$ from ℓ copies of $\mathcal{N}_p(\text{Enc}(1))$.

Lemma 4.3. For any constant ℓ, vectors $\vec{c}_1, \ldots, \vec{c}_\ell \in \{0, 1\}^k$, and $b \in \{0, 1\}$, we have $\Delta(D_0, D_1) \leq (1 - (2p)^\ell)^k$ with

\[
D_b := D_b(\vec{c}_1, \ldots, \vec{c}_\ell) = \left(\mathcal{N}_p(\vec{e} \oplus \vec{c}_1), \ldots, \mathcal{N}_p(\vec{e} \oplus \vec{c}_\ell)\right) \quad \vec{e} \leftarrow \text{Enc}(b).
\]

Proof. Since the vectors \vec{c}_i are known, it suffices to show that

\[
\Delta(D_0(0, \ldots, 0), D_1(0, \ldots, 0)) \leq (1 - (2p)^\ell)^k.
\]

That is, given ℓ copies of an encoding \vec{e} perturbed by independent binomial noise drawn from \mathcal{N}_p, it is (information theoretically) hard to distinguish whether \vec{e} is an encoding of 0 or an encoding of 1.

Towards showing this, first consider the ith coordinate of the encoding \vec{e} perturbed by ℓ independent noise terms from \mathcal{N}_p, i.e., consider the distribution

\[
D'_i = (e_i + \eta_{i,1}, \ldots, e_i + \eta_{i,\ell}),
\]

where each $\eta_{i,j}$ is drawn independently from the binomial distribution B_p. The statistical distance between D'_0 and D'_1 is at most $1 - (2p)^\ell$ by an elementary calculation. By applying the XOR lemma (cf. Lemma 4.2) we get

\[
\Delta(D_0, D_1) \leq \Delta(D'_0, D'_1)^k \leq (1 - (2p)^\ell)^k,
\]

which concludes the proof. \qed

Of course, the situation in the actual transformed circuit won’t be as simple as in Lemma 4.3; we will not have just multiple copies of the wires, but wires that depend in predictable ways on other wires. Intuitively, noise cancellation will not be a problem if a single wire doesn’t influence too many other wires, and hence its value is not leaked too many times with independent noise. To formalize this constraint, we introduce the function class $\text{LOCAL}(\ell)$. For some $\ell, m, n \in \mathbb{N}$, a function $f : \{0, 1\}^{mk} \rightarrow \{0, 1\}^n$ with inputs $\vec{x}_1, \ldots, \vec{x}_m \in \{0, 1\}^k$ is said to be in $\text{LOCAL}(\ell)$ if the following holds for each $i \in [1, m]$:

- For any fixed $m - 1$ inputs $\vec{x}_1, \ldots, \vec{x}_{i-1}, \vec{x}_{i+1}, \ldots, \vec{x}_m$, all but at most $k\ell$ output bits of the function $f(\vec{x}_1, \ldots, \vec{x}_m)$ (as a function of x_i) are constant (i.e., do not depend on x_i); the remaining output bits are computed as $\vec{x}_i \oplus \vec{d}$ for some constant \vec{d}.

The identity function, for instance, is in $\text{LOCAL}(1)$, while a function that outputs ℓ copies of its inputs is in $\text{LOCAL}(\ell)$.

Informally, the proposition below says that an adversary that picks q times functions $f \in \mathcal{N}_p \circ \text{LOCAL}(\ell)$ obtains nothing more than $q\ell$ noisy copies of the target encoding (essentially $\mathcal{N}_p \circ \text{LOCAL}(\ell)$ takes as input an encoding and outputs ℓ noisy copies). To sum it up, we get the following proposition.

Proposition 4.4 (noisy leakage indistinguishability of Π_{parity}). For any $p \in (0, 1/2]$ and any constant $\ell, q \in \mathbb{N}_{\geq 1}$ the parity encoding Π_{parity} is q-adaptive ($\mathcal{N}_p \circ \text{LOCAL}(\ell), \infty, (1 - (2p)^\ell)^k$)-leakage-indistinguishable.
In particular, \(\Pi_{\text{parity}} \) is \((N_p, \infty, (1 - 2p)^k) \)-leakage-indistinguishable (since \(N_p \circ \text{LOCAL}(1) = N_p \) outputs a single noisy copy of its input).

The proof follows immediately from the definition of locality and Lemma 4.3 and is omitted.

4.2. Outline of the proof techniques.

Notation. By \(\mathcal{W}_C(x) \) we denote a distribution of wire assignments (recall that a wire assignment of a circuit \(C \) is a string in \(K^n \), where each element represents a value on a wire of \(C \) that is induced when a circuit \(C \) is being evaluated on an input \(x \) (in particular, if \(C \) is deterministic, then \(\mathcal{W}_C(x) \) has only one element in its support). We use \(\mathcal{W}_C(x|y) \) to denote the same distribution conditioned on the fact that the output of \(C(x) \) was \(y \).

In order to show security of our transformation according to Definition 3.1 (see section 3), we need to build a simulator that comes up with an indistinguishable environment for arbitrary adversaries \(A \). This simulation must provide answers to \(A \)'s leakage queries \(f \in \mathcal{L} \), which will be done as follows. For a leakage query \(f \in \mathcal{L} \), the simulator comes up with an assignment of all the internal wires of \(\hat{C} \) that is consistent with the inputs and outputs of the circuit. This assignment is fed into \(f \) and the simulator returns the result to \(A \).

The computation of the wire assignment is quite simple: wire bundles that are between two gadgets will be assigned random values, and the internals of the gadgets will be simulated to be consistent with those random values (note that this will imply that the simulated outputs of \(C \) (and \(Q \) used within gadgets will no longer be encodings of \(0 \)). The wires that are used to encode the inputs of \(\hat{C} \) (in the encoder gadget) and decode the outputs (in the decoder gadget) will be simulated honestly, because the simulator knows its inputs and its outputs. The difficult part is showing that \(A \) cannot distinguish the real wire distribution from the simulated one when its access to the wire values is limited by functions available in the class \(\mathcal{L} \).

A mental experiment—security proof with leak-free gadgets. Conceptually, proving this indistinguishability proceeds in two steps. First, consider a mental experiment where each gadget in the transformed circuit \(\hat{C} \) is perfectly opaque. Namely, the only wires that the adversary \(A \) can “see” (via the leakage function \(f \)) are the external wires of the gadgets that connect the output of a gadget to the input of another gadget (these are exactly the wires that carry encodings of the values in the circuit \(C \)). The internals of the gadgets are off-limits to \(A \). Once in this (imaginary) world, we use the first key property of our gadget transformations presented in Figures 3 and 5, which is captured by the following definition.

Definition 4.5 (rerandomizing). Let \(C \) be a stateless circuit with \(n_1 \) inputs, and no encoder or decoder gates. Let \(\hat{C} \) be the corresponding transformed circuit. We say that \(\hat{C} \) is rerandomizing if, for any fixed input \((x_1, x_2, \ldots, x_{n_1}) \) and its encoded input \(X \in \text{Enc}(x_1, x_2, \ldots, x_{n_1}) \), the encoded output \(\hat{C}(X) \) is distributed like \(\text{Enc}(C(x_1, x_2, \ldots, x_{n_1})) \), i.e., independently of the particular encoding \(X \).

This definition applies, in particular, to single-gadget circuits. In section 4.3 (for \(TR_C \)) and section 4.4 (for \(TR_N \)), we show that all our gadgets are rerandomizing, i.e., the gadget’s encoded output is uniformly distributed and independent from the gadget’s encoded input. For a circuit \(\hat{C} \) composed of such gadgets, this implies that wire bundles external to gadgets are distributed like \((\tilde{w}_1', \ldots, \tilde{w}_m') \), where the \(\tilde{w}_i' \leftarrow \text{Enc}(w_i) \) are random and independent encodings of the values \(w_1, \ldots, w_m \) on the wires in \(C \). In the mental experiment this observation suffices to simulate wire assignments without getting noticed by adversaries equipped with leakages in \(\mathcal{L} \). More precisely,
the simulator (who does not know the real w_i's as they may depend on the secret state) uses an independent random vector \vec{w}_i' for the external wire bundles. By the leakage indistinguishability of the encoding scheme, such a change in the distribution will not get noticed by the adversary. By a hybrid argument, the same holds for a vector of independent encodings of m values as well.

Reduction. Before we declare victory (in this imaginary world), let us look a little more carefully at the hybrid argument. At each hybrid step, we will prove indistinguishability by a reduction to the security of the underlying encoding scheme. In other words, we will show by reduction that if A equipped with functions from L can distinguish two hybrid wire distributions, then some adversary A_{Π}, equipped with functions from L_{Π}, can distinguish two encodings. Given a target encoding, our reduction will need to fake the remaining wires of the circuit in a consistent way and give them as input to the function from L (notice that functions from L expect as input a full wire assignment for \hat{C}).

Efficient reduction for computationally weak leakages. If A specifies a leakage function $f \in L$ for \hat{C}, then A_{Π} will specify its own leakage function $f_{\Pi} \in L_{\Pi}$ for the target encoding and return its result to A. Since A_{Π} has only access to its target encoding via f_{Π}, f_{Π} has to fake (in a way that will look real to f and A) all the wires of \hat{C} before it can invoke f. At the same time, f_{Π} should not be much more complex than f, because our result is more meaningful when the difference between the power of L_{Π} and the power of L is small (recall that in Theorem 3.3 the difference between L and L_{Π} was described by $\text{SHALLOW}(3, O(k^2))$). The main trick is for A_{Π} to hard-wire as much as possible into f_{Π}, so that when f_{Π} observes the encoding, it has to do very little work before it can invoke f. In fact, in this imaginary situation, all the remaining wires of the hybrid wire distribution can be hardwired into f_{Π} because of the rerandomizing property (i.e., the encodings are independent), so f_{Π} has to simply invoke f on its input wires and hardwired values.

Local reduction for noisy leakages. To show security against noisy leakages, we show a reduction to the security of the underlying encoding scheme, similarly to the computationally weak case. In contrast to the computationally weak leakages, where the reduction needs to be as weak as the leakage function, we have no such constraint in the noisy case. However, the reduction should not get to see any wire too many times, because repeated observations of a noisy wire reduce the amount of uncertainty about the true value of the wire. Thus, from a single target encoding, we will fake the wire assignment of \hat{C} by using the target encoding as little as possible before feeding it into the noisy leakage function N_p. (We will call such reductions “local”; see section 4.1.) We ensure this by choosing most of the wires in \hat{C} independently of the target encoding. In fact, in our imaginary world in each hybrid the target encoding is only used once for w_i' while all the other wires are independent. Since in such a case the adversary only gets a single noisy copy of the target encoding, by the N_p leakage indistinguishability of the parity encoding (cf. Proposition 4.4), she will not be able to tell apart two consecutive hybrid distributions.

The real world—gadgets may leak. The second step in the proof is to move from the mental experiment to the real world, where the internals of the gadgets also leak. Unlike in the mental experiment, where the values of all wire bundles were independent, values of wires inside a gadget are correlated to its input and output wire bundles. Thus, they cannot be hardwired. Nor can they be efficiently (or locally) computed, because the complexity of the gadgets is too high. Instead, they will be simulated efficiently (or locally) in a way that is leakage indistinguishable.
The simulation will take, as input, a gadget’s input X and its output Y. Because our circuits are randomized, the simulation will be randomized, as well. The trick to getting an efficient (or local) simulator is to pick the randomness ahead of time, and then hard-wire as many wire values into the simulator as possible without knowing X and Y. Thus, we define a “reconstructor” as a family of functions (one for each value of the randomness); the functions themselves will need to be very efficient (or local). However, the cost of sampling a function from such a family is incurred not inside the simulated leakage function, but rather by the simulated adversary, and thus it does not have to be efficient (or local), but merely polynomial time.

Definition 4.6 (reconstructor). Let \hat{C} be a (transformed) stateless circuit. We say that a pair of strings (X,Y) is plausible for \hat{C} if \hat{C} might output Y on input X, i.e., if $\Pr[\hat{C}(X) = Y] > 0$.

Consider a distribution $\text{REC}_{\hat{C}}$ over the functions whose input is a plausible pair (X,Y), and whose output is an assignment to the wires of \hat{C}. Define $\text{REC}_{\hat{C}}(X,Y)$ as the distribution obtained by sampling a function $R_{\hat{C}}$ from $\text{REC}_{\hat{C}}$ and computing $R_{\hat{C}}(X,Y)$. Such a distribution is called an $(\mathcal{L}, \tau, \epsilon)$-reconstructor for \hat{C} if for any plausible (X,Y), the following two wire assignment distribution are $(\mathcal{L}, \tau, \epsilon)$-leakage-indistinguishable:

- $W_{\hat{C}}(X|Y)$,
- $\text{REC}_{\hat{C}}(X,Y)$.

If the support of the distribution $\text{REC}_{\hat{C}}$ is in some set of functions \mathcal{R}, we say that \hat{C} is $(\mathcal{L}, \tau, \epsilon)$-reconstructible by \mathcal{R}.

Intuitively, if a circuit \hat{C} is \mathcal{L}-reconstructible in \mathcal{R}, then a random function in \mathcal{R}, given \hat{C}’s encoded inputs X and outputs Y, can compute a wire assignment for \hat{C} that is \mathcal{L}-leakage-indistinguishable from \hat{C}’s real wire distribution (conditioned on the inputs being X and the outputs being Y). Putting it differently, reconstructibility of \hat{C} allows us to simulate \hat{C}’s internals from just knowing its inputs and outputs.

On a high level, in the simulation we replace each gadget with its reconstructor in addition to replacing connecting wire bundles, i.e., the wires that go between gadgets, with random encodings. The proof that the simulation is indistinguishable requires first doing a hybrid argument over gadgets as they are replaced by reconstructors one by one, and then modifying the hybrid argument over the wire bundles (replacing them by random encodings) as described above. In the hybrid argument over the wire bundles, we can hard-wire values for every wire in the circuit except the gadgets connected to the challenge encoding. Simulating the internals of these gadgets will be done using the reconstructor. We show that all gadgets in \hat{C} have either very efficient reconstructors (for the gadgets of TR_C refer to section 4.3), or reconstructors that make very little use of their inputs (for the gadgets of TR_N refer to section 4.4). We then show that (efficient or local) reconstructibility composes, which allows us to efficiently (or locally) reconstruct the internals of a complete circuit \hat{C} given only its inputs. Formally such composition is proven in Lemma 4.15 (cf. section 4.5).

To conclude the proof we rely on the reconstructibility of \hat{C} to show security of the transformation according to Definition 3.1. Informally, the simulator replaces the secret state by random encodings and lets the reconstructors of the gadgets compute the internals of \hat{C} in a way that is consistent with the random state and the inputs and outputs of \hat{C}. Again, we rely on the efficiency (or locality) of the reconstructors to keep our reductions as tight as possible.
A cautionary remark on our proofs. The proofs that we present in the next sections are technical and require a careful bookkeeping of the involved parameters, in particular, of the relation between the leakage classes \mathcal{L}_H and \mathcal{L}. This is necessary, if we want to make meaningful security statements about low-complexity leakages such as circuits of low depth. In particular, we require that the reduction can be evaluated by low-depth circuits: if we start with some low-depth leakage \mathcal{L}_H, and lose too much in the reduction, then \mathcal{L} will become the empty set and no meaningful security statement can be made. Surprisingly, we show that our reductions are very efficient (namely, they can be computed by depth-3 circuits), even though they may have to “fake” computations carried out by deep and complex circuits.

Reader’s guide to the security proof. For readers only interested in the high-level concept, we give the following reading guide. In section 4.3 we present reconstructors for the gadgets of TR_C. We advise reading Lemma 4.7 as it gives a simple application of efficient reconstructors. The main technical parts of section 4.3 are Lemmas 4.11 and 4.12. In section 4.4 we present reconstructors for TR_N. A simple example of a local reconstructor is given in Lemma 4.13. The main technical part is Lemma 4.14, whose proof is moved to Appendix B. In section 4.5 we show that reconstructors compose. The outline from the last pages highlighted the main ideas of such a composition. Finally, in section 4.6 we discuss security of stateful circuits in Lemma 4.19 whose proof may safely be skipped. The proofs of the main Theorems 3.3 and 3.5 only sum up parameters and do not make use of any interesting new techniques.

4.3. Single-gadgets reconstructors for TR_C. We show in this section that all single-gate gadgets from Figure 3 of the transformation TR_C have efficient reconstructors and are rerandomizing. The rerandomizing property follows immediately from the fact that every gadget’s output is, as the last step of the gadget, masked by the output of \mathcal{O}. Therefore, in the following we focus on showing the existence of efficient reconstructors. Efficiency is described by the circuit class $\text{SHALLOW}(d, s)$. If a reconstructor is in $\text{SHALLOW}(d, s)$, then it can be computed by circuits of depth d and size s. We are particular interested in keeping d small as later we want to talk about AC^0 reductions (i.e., reductions that can be computed by constant-depth circuits).

We show first existence of reconstructors for the simple gadgets of TR_C, namely, for $\text{copy}, \text{mask}, \text{const}_\alpha, \hat{\$}, \hat{\oplus}, \text{and } \check{\oplus}$. Except for the $\check{\oplus}$ reconstructor the proofs are moved to Appendix A.

Lemma 4.7 ($\hat{\oplus}$ and $\hat{\oplus}$ gadgets of TR_C are reconstructible). The $\hat{\oplus}$ and $\check{\oplus}$ gadgets are $(\mathcal{L}, \infty, 0)$-reconstructible by $\text{SHALLOW}(2, O(k))$ for any \mathcal{L} (where k is the security parameter).

Proof. We will do the proof for $\hat{\oplus}$; the proof for $\check{\oplus}$ is similar. The reconstructor $\text{REC}_{\hat{\oplus}}$ is the distribution whose only support is the following circuit $R_{\hat{\oplus}}$. On inputs (X, Y), where $X = (\vec{a}, \vec{b})$ (i.e., the desired input of the $\hat{\oplus}$ gate) and $Y = (\vec{c})$ (i.e., its desired output), $R_{\hat{\oplus}}$ assigns the wires of $\hat{\oplus}$ to $\vec{q} = \vec{a} \oplus \vec{b}$ and $\vec{d} = \vec{c} \odot \vec{q}$.

If X, Y are chosen as in the definition of a reconstructor (i.e., they are plausible), then the resulting output of $R_{\hat{\oplus}}(X, Y)$ is identically distributed to the wire distribution $\mathcal{W}_{\hat{\oplus}}(X|Y)$, since in both cases \vec{d} takes the only possible consistent value $\vec{d} = \vec{c} \odot \vec{q}$. Notice that $R_{\hat{\oplus}}$ can be computed by a circuit of depth 2 because on inputs X, Y it first will compute $\vec{q} = \vec{a} \oplus \vec{b}$ and based on that $\vec{d} = \vec{c} \odot \vec{q}$. The \oplus and \odot gates above operate only on single field elements, so $R_{\hat{\oplus}}$ requires $O(k)$ size.

Lemma 4.8 ($\hat{\$}$ of TR_C is reconstructible). The $\hat{\$}$ gadget is $(\mathcal{L}, \infty, 0)$-reconstructible by $\text{SHALLOW}(0, O(k))$ for any \mathcal{L}.
Lemma 4.9 (copy, mask, and const_α of TR_C are reconstructible). The copy gadget, the mask gadget, and, for every α ∈ K, the const_α gadget are (L, ∞, 0)-reconstructible by SHALLOW(1, O(k)), for any L.

We are now going to prove the reconstructibility of the ⊙ gadget. For our result to be more meaningful it is of vital importance that our simulation is efficient. Presenting such an efficient simulator for the ⊙ gadget, is the main technical difficulty of this section, since ⊙ is a deep, complex circuit. But before we present our shallow simulator in Lemma 4.11, we first prove a simple technical lemma which relates two leakage-indistinguishability statements using a “shallow” wire simulator f_S.

Lemma 4.10. Let W_0, W'_0 be distributions over K^n for some n > 0. Let F be a distribution over n-input functions in some class L. For f_S ← F define the following distributions:

\[W_1 ≡ f_S(W_0) \quad \text{and} \quad W'_1 ≡ f_S(W'_0). \]

Let L_0 be a class of leakage functions and let ε_0 > 0, τ_0 > 0. If W_0 and W'_0 are (L_0, τ_0, ε_0)-leakage-indistinguishable, then W_1 and W'_1 are (L_1, τ_1, ε_1)-leakage-indistinguishable. Here, for any L_1 that satisfies L_1 ◦ L ⊆ L_0, ε_0 = ε_1, and τ_0 − τ_1 is the time needed to sample from F.

Proof. We show by contradiction that for all adversaries A_1 running in time at most τ_1

\[|\Pr[A_1^{Eval_1(W_1, \cdot)} = 1] − \Pr[A_1^{Eval_1(W'_1, \cdot)} = 1]| \leq \epsilon_1, \]

where Eval_1 can be queried once by A_1 with a leakage function f_1 ∈ L_1, where L_1 satisfies L_1 ◦ L ⊆ L_0.

Suppose for contradiction that (4.2) is violated for some (L_1, τ_1)-adversary A_1, then we construct an (L_0, τ_0)-adversary A_0 that breaks the leakage indistinguishability of the distributions W_0 and W'_0. The adversary A_0 will invoke A_1 as a subroutine, answering A_1’s leakage query and eventually outputting whatever A_1 outputs (see Figure 6). To answer the leakage query f_1 ∈ L_1, the adversary A_0 will use its own oracle Eval_0. The difficulty is that Eval_0 evaluates a leakage function f_0 ∈ L_0 on a sample either from W_0 or W'_0, whereas A_1 produces a query f_1 to be evaluated on a (possibly much larger) wire assignment sampled from W_1 or W'_1.

In our case, these will be wire assignments to a circuit with n wires. Notice that this can also just be a single encoding.
We address this by using a function f_S, drawn from the distribution F, that takes as input a single “challenge” that is either sampled from W_0 or W'_0 and outputs a full wire assignment from either W_1 or W'_1, respectively. To recap, A_0 lets A_1 choose $f_1 \in L_1$, and draws a function f_S from F. It then queries Eval_0 on $f_0 = f_1 \circ f_S$ and forwards the answer back to A_1. Finally, if A_1 returns a bit b, then A_0 outputs b as its own guess.

To analyze the distinguishing advantage of A_0, consider the following two cases:

\[
\begin{align*}
\Pr[\hat{A}_0^{\text{eval}}(W_0) = 1] &= \Pr[\hat{A}_1^{\text{eval}}(f_S(W_0)) = 1] \quad (4.1) \\
\Pr[\hat{A}_0^{\text{eval}}(W'_0) = 1] &= \Pr[\hat{A}_1^{\text{eval}}(f_S(W'_0)) = 1] \quad (4.1)
\end{align*}
\]

By taking the difference and with (4.2) we get

\[
|\Pr[\hat{A}_0^{\text{eval}}(W_0) = 1] - \Pr[\hat{A}_0^{\text{eval}}(W'_0) = 1]| \leq \epsilon_1,
\]

which yields that $\epsilon_0 = \epsilon_1$. Observe also that $f_0 \in \mathcal{L}_0$ (i.e., the reduction does not lose much in the leakage function’s power): since $f_S \in \mathcal{L}$ indeed we have that $f_0 = f_1 \circ f_S \in \mathcal{L}_1 \circ \mathcal{L} \subseteq \mathcal{L}_0$. Finally, note that the only extra time A_0 spends (i.e., $\tau_0 - \tau_1$) is the time required to sample from the distribution F.

Let us now show that the \odot gadget is reconstructible by shallow circuits. The lemma below describes the reconstructor for \odot and gives the high-level idea of the proof; the technical details are moved to Lemma 4.12.

Lemma 4.11 (\odot of TR_C is reconstructible). Let \mathcal{L}_Π be a class of leakage functions and let $\tau > 0, \epsilon > 0$. If Π is $(\mathcal{L}_\Pi, \tau, \epsilon$)-leakage-indistinguishable, then the \odot gadget is $(\mathcal{L}, \tau - O(k^2), k\epsilon)$-reconstructible by $\text{SHALLOW}(2, O(k^2))$ for any \mathcal{L} that satisfies $\mathcal{L} \circ \text{SHALLOW}(3, O(k^2)) \subseteq \mathcal{L}_\Pi$ (and if $K = \text{GF}(2)$, then $\mathcal{L} \circ \text{SHALLOW}(2, O(k^2)) \subseteq \mathcal{L}_\Pi$).

Proof of Lemma 4.11. We first describe the reconstructor REC_{\odot} for \odot gadgets, and then prove that it is indistinguishable from a wire assignment of a real evaluation of \odot conditioned on plausible inputs X and outputs Y.

R_{\odot} sampled from the reconstructor REC_{\odot} takes as inputs plausible values (X, Y), where $X = (\vec{a}, \vec{b})$ (i.e., the desired input of the \odot gate) and $Y = (\vec{c})$ (i.e., its desired output) and is defined as follows.

1. Sample \vec{U} uniformly from $\mathcal{K}^{k \times k}$ and compute the values on the wires in the subsequent decoding subcircuits for the computation of \vec{q}. (Note that this procedure need not be in low depth, because it is done as part of sampling R_{\odot}, rather than by R_{\odot} itself.) Hard-wire the results as R_{\odot}'s outputs.

2. On input X, R_{\odot} computes the matrix $\vec{B} = (a_i \odot b_j)_{i,j \in [1,k]}$ and outputs it as the part of the wire assignment.

3. R_{\odot} computes online $\vec{S} = \vec{B} \oplus \vec{U}$ and $\vec{\sigma} = \vec{e} \odot \vec{q}$ (i.e., once using \vec{B} that depends on input X and once using the input $Y = \vec{c}$).

Circuits sampled from REC_{\odot} have size $O(k^2)$ (because they need to compute matrices \vec{B} and \vec{S}) and depth 2, because \vec{S} is computed from \vec{B}, that in turn has been computed from the inputs.

It remains to show that if X, Y are chosen as in the definition of reconstructors, then $R_{\odot}(X, Y)$ and $W_{\odot}(X|Y)$ are $(\mathcal{L}, \tau - O(k^2), k\epsilon)$-leakage-indistinguishable. The reconstructor from above differs from the real wires assignment in that \vec{U} is a random matrix (instead of being $\vec{B} \oplus \vec{S}$, where \vec{S} is a matrix whose columns decode to 0). In the following we will show that one can replace the matrix \vec{S} by a matrix sampled uniformly at random from $\mathcal{K}^{k \times k}$. Since \vec{U} is computed as $\vec{B} \oplus \vec{S}$ (i.e., for random \vec{S}
the matrix \vec{U} is random as required by the reconstructor distribution) this will give us the desired property of reconstructibility and concludes the proof.

We prove that \vec{S} can be replaced by a random matrix using a hybrid argument. We define hybrid distributions $W^k_{\circ}(X|Y)$ ($\ell \in [0,k]$) as $W^k_{\circ}(X|Y)$, except that for the first ℓ columns of \vec{S} the elements are drawn uniformly from \mathcal{K}. It is easy to see that the 0th hybrid uses matrix \vec{S} as defined in our construction and the kth hybrid distributions uses a matrix \vec{S} drawn uniformly at random. We show the leakage indistinguishability between two consecutive hybrids by a reduction to the encoding leakage indistinguishability. More precisely, we will show that for all $\ell \in [1,k]$ and all plausible X,Y, $W^{\ell-1}_{\circ}(X|Y)$ and $W^\ell_{\circ}(X|Y)$ are $(\mathcal{L}, \tau - O(k^2), \epsilon)$-leakage-indistinguishable.

To this end in the next technical lemma, we show for any $\ell \in [1,k]$ and any X the existence of a distribution F^ℓ of functions in $\text{SHALLOW}(3, O(k^2))$ samplable in time $O(k^2)$ that take as input a single encoding and map it either to $W^{\ell-1}_{\circ}(X|Y)$ or $W^\ell_{\circ}(X|Y)$, depending on whether the given encoding was an encoding of 0 or of a random value. By applying Lemma 4.10 to Lemma 4.12 below (setting $W_0 = \text{Enc}(0), W_0 = \text{Enc}(\cdot)$) we get that $W^{\ell-1}_{\circ}(X|Y)$ and $W^\ell_{\circ}(X|Y)$ are $(\mathcal{L}, \tau - O(k^2), \epsilon)$-leakage-indistinguishable, where $\mathcal{L} \circ \text{SHALLOW}(3, O(k^2)) \subseteq \mathcal{L}_2$. Using the triangle inequality we get, together with the k hybrids, that $W^\circ_{\mathcal{L}}(X|Y)$ and $R^\circ_{\mathcal{L}}(X|Y)$ are $(\mathcal{L}, \tau - O(k^2), k\epsilon)$-leakage-indistinguishable, if Π is $(\mathcal{L}_2, \tau, \epsilon)$-leakage-indistinguishable. This concludes the proof.

The following technical lemma proves the existence of the distribution F^ℓ used above in Lemma 4.11 and may be skipped by the reader.

Lemma 4.12. For any $\ell \in [1,k]$ and any plausible $X = (\vec{a}, \vec{b}), Y = (\vec{c})$, there exists a distribution F^ℓ over functions in $\text{SHALLOW}(3, O(k^2))$ (if $\mathcal{K} = \text{GF}(2)$ then $\text{SHALLOW}(2, O(k^2))$) that take as input a single encoding and output a wire assignment for \circ, such that for $f_S \leftarrow F^\ell$

\[
\begin{align*}
W^{\ell-1}_{\circ}(X|Y) &\equiv f_S(\text{Enc}(0)), \\
W^\ell_{\circ}(X|Y) &\equiv f_S(\text{Enc}(\cdot)).
\end{align*}
\]

Proof. $f_S \leftarrow F^\ell$ given an encoding \vec{e} as input shall output a full wire assignment of \circ, with \vec{e} embedded into the ℓth column of \vec{S}, and with the correct distribution on the remaining wire values. This guarantees that if the target encoding \vec{e} is drawn uniformly and independently from $\text{Enc}(0)$ then $f_S(\vec{e})$ is distributed identically to the hybrid wire distribution $W^{\ell-1}_{\circ}(X|Y)$. On the other hand, if \vec{e} is drawn uniformly and independently from $\text{Enc}(\cdot)$, then $f_S(\vec{e})$ is distributed identically to $W^\ell_{\circ}(X|Y)$.

The difficulty is that f_S must have small (constant) depth, but needs to output a wire assignment for the deep circuit \circ. We solve this problem by hard-wiring most of the resulting wire assignment directly into f_S. The only parts of the wire assignment that cannot be hardwired are those that depend on the input \vec{e}, but fortunately, they can be easily computed (indeed, this was the main goal in designing the \circ gadget).

Concretely, the distribution F^ℓ is defined by drawing f_S as follows.

1. From given $X = (\vec{a}, \vec{b})$ compute consistently the matrix $\vec{B} = (a_i b_j)_{i,j \in [1,k]}$ and hard-wire $\vec{a}, \vec{b}, \vec{B}$ into f_S.
2. Most columns of \vec{S} are hardwired into f_S: left of the ℓth column they are drawn at random, and right of the ℓth column they are drawn from $\text{Enc}(0)$. Only the ℓth column depends on the input and is filled with the challenge encoding \vec{e}.
3. Using \vec{B} and \vec{S} hard-wire all elements of $\vec{U} = \vec{B} \oplus \vec{S}$ into f_S except for the ℓth column. For the ℓth column, f_S computes on input \vec{c}, for each $i \in [1,k]$, the value $U_{i,\ell} = B_{i,\ell} \oplus e_i$.

4. Consider, for $i \in [1,k]$ the decoding subcircuits in \vec{S} that compute \vec{q} with values from \vec{U}. In each subcircuit the wires carry the linear combination of $\{U_{ij}\}$, plus possibly a constant. If this linear combination does not depend on $U_{i,\ell}$ (i.e., the input to f_S), then precompute this wire and hard-wire the result into f_S. On the other hand, if it does depend on $U_{i,\ell} = B_{i,\ell} \oplus e_i$, then precompute the partial linear combination except the term that depends on e_i and hard-wire the result into the description of f_S. On input \vec{c}, f_S computes the missing outputs by \oplus-ing the partial linear combination with the missing term (which is e_i times a constant).

5. With fixed Y and \vec{q} from the previous step compute $\vec{o} = Y \ominus \vec{q}$ and output it. Let us first consider the outputs of f_S that are independent of \vec{c}. In $W_{\vec{S}}^{k-1}(X|Y)$ and $W_{\vec{S}}^\ell(X|Y)$ the first $\ell-1$ columns in \vec{S} are independently and uniformly drawn from $\text{Enc}(\cdot)$, whereas the last $k-\ell-1$ columns are sampled from $\text{Enc}(0)$. The other hardwired outputs that do not depend on \vec{c}, are computed honestly from X,Y, and \vec{S}, thus with respect to only these values, $W_{\vec{S}}^{k-1}(X|Y)$, $W_{\vec{S}}^\ell(X|Y)$, and the outputs of f_S are identically distributed. If on the other hand an output of f_S depends on \vec{c} we distinguish two cases.

1. $\vec{c} \leftarrow \text{Enc}(0)$: this means the ℓth column of \vec{S} is assigned an encoding drawn from $\text{Enc}(0)$. Together with the observation that all remaining wires are computed honestly using \vec{S} and \vec{B}, we get that $f_S(\text{Enc}(0))$ and $W_{\vec{S}}^{k-1}(X|Y)$ are distributed identically.

2. $\vec{c} \leftarrow \text{Enc}(\cdot)$: here, the ℓth column of \vec{S} is assigned a random value in K^k. With the same observation as above we get that $f_S(\text{Enc}(\cdot))$ and $W_{\vec{S}}^{\ell}(X|Y)$ are distributed identically.

It is clear that functions from F^k can be sampled in time $O(k^2)$. It remains to show that they can indeed be computed by shallow circuits. The input to f_S is used to adjust the ℓth column of \vec{U}, which requires a circuit of depth 1 and size k. Additionally, adjusting the values in the subcircuits for the computation of \vec{q} requires computation of depth 2 (for the computation of e_i times a constant and \ominus-ing it) and $O(k)$ size. Finally, once \vec{q} is evaluated, f_S needs to compute \vec{o} which increases the depth by 1. Overall, we get circuits of size $O(k^2)$ and depth 3. In the case of $\text{GF}(2)$, there is no need to multiply e_i by a constant, so the depth is only 2. □

4.4. Single gadgets reconstructor for TR_N. In this section, we prove that the gadgets of TR_N from Figure 5 are rerandomizing and reconstructible. We only present statements and proofs for reconstructibility of the \vec{S} and \vec{Q} gadgets; for the simpler gadgets, the reconstructor are the same as in the previous section; it is easy to see that those are all within $\text{LOCAL}(3)$.

Gadgets of TR_N are rerandomizing. By inspection of our gadgets, it is easy to see that they satisfy the rerandomizing property; similarly to the gadgets of TR_C, the reason is that the output of each gadget is masked with the output of the opaque gate O.

Gadgets of TR_N are reconstructible. On a high level, the reconstructor for the gadgets of TR_N follow the reconstructor constructions from section 4.3. The main difference is that in the noisy case, we are not concerned about the computational efficiency of the reconstructor, but rather the number of times the reconstructor's output depends on its input bits. That is, given the encoded inputs and outputs of a gadget,
the reconstructor has to simulate the internals in a way that looks indistinguishable (from the real wire distribution) to noisy leakage \(N_p \). Since the gadget’s internal wires depend on its encoded inputs and outputs, the reconstructor will need to use them to compute the remaining wires of the gadget. We say that a reconstructor operates \textit{locally} if it does not have to use its inputs (i.e., the encoded inputs and outputs of the gadgets) too often, which essentially means that for a large gadget most of its internal wires are independent of the encoded inputs and outputs and, hence, can be hardwired into the reconstructor. Because local functions computed on \(\text{Enc}(0) \) and \(\text{Enc}(1) \) are indistinguishable through \(N_p \), our reconstructor will work.

We show that the gadgets of \(\text{TR}_N \) exhibit such a locality property. In particular, we prove that to reconstruct the \(\oplus \) gadget, the reconstructor needs to use its inputs only 3 times, and can hard-wire the remaining wires. We show similar locality for the large \(\oplus \) gadget.

\textbf{Importance of locality.} One may ask why locality of reconstruction is such an important property in the presence of noisy leakage \(N_p \). To explain this, let us go back to the outline of the security proof from section 4.2. To show security of \(\text{TR}_N \) according to Definition 3.1, we need to build a simulator \(S \) that answers the adversary’s leakage queries \(N_p \). Since \(S \) does not know the circuit’s secret state, it will use random encodings instead. We show by reduction to the leakage indistinguishability of \(\Pi_{\text{parity}} \) that such a change in the wire distribution (namely, replacing the real secret state with random encodings) will not get noticed by the adversary. To this end, we put the target encoding in the secret state and let the reconstructor for \(\hat{C} \) (that we will construct in the next section by composition from reconstructors of single gadgets) simulate all of \(\hat{C}’ \)s internals. If the reconstructor for \(\hat{C} \) works in a local way, i.e., most of the wires in \(\hat{C} \) are independent of the target encoding, then by Proposition 4.4 the statistical distance between the wire distribution using the correct state and the simulated distribution using random encodings is small. To formally describe such locality, we use the function class \(\text{LOCAL}(\ell) \) formally described in section 4.1. We remind the reader that functions in \(\text{LOCAL}(\ell) \) allow each input bit to affect at most \(\ell \) output bits.

\textbf{Formal statements.} Let us first describe reconstructibility of the \(\oplus \) gadget.

\textsc{Lemma 4.13 (\(\oplus \) gadgets of \(\text{TR}_N \) are reconstructible).} \textit{The \(\oplus \) gadget is \((\mathcal{L}, \infty, 0)\)-reconstructible by \(\text{LOCAL}(3) \) for any \(\mathcal{L} \).}

\textit{Proof.} The reconstructor \(\text{REC}_\oplus \) is the distribution whose only support is the following circuit \(R_\oplus \). On inputs \((X, Y)\), where \(X = (\vec{a}, \vec{b}) \) and \(Y = (\vec{c}) \), \(R_\oplus \) assigns the wires of \(\oplus \) to \(\vec{q} = \vec{a} \oplus \vec{b} \) and \(\vec{\sigma} = \vec{c} \oplus \vec{q} \).

If \(X, Y \) are chosen as in the definition of a reconstructor (i.e., they are plausible inputs), then the resulting output of \(R_\oplus(X, Y) \) is distributed as the real wire distribution \(W_\oplus(X|Y) \), since in both cases \(\vec{\sigma} \) takes the only possible consistent value \(\vec{\sigma} = \vec{c} \oplus \vec{q} \).

It remains to show that \(R_\oplus \) is in \(\text{LOCAL}(3) \). We must show that for each input \(\vec{a}, \vec{b}, \vec{c} \) (when the remaining inputs are fixed) the output of the reconstructor is either a fixed constant or can be written as the free input plus a constant vector. For input \(\vec{a} \) the inputs \(\vec{b} \) and \(\vec{c} \) are fixed constants and, hence, the output of \(R_\oplus \) is constant except \((\vec{a}, \vec{q} := \vec{a} \oplus \vec{b}, \vec{\sigma} := \vec{a} \oplus (\vec{b} \oplus \vec{c})) \). The same analysis works for \(\vec{b} \). For \(\vec{c} \) observe that \(\vec{a} \) and \(\vec{b} \) are fixed and all outputs are constant except \((\vec{c}, \vec{c} \oplus \vec{q}) \). Hence, we get that \(R_\oplus \in \text{LOCAL}(3) \).

The above lemma works for arbitrary leakage classes \(\mathcal{L} \). Later, we set \(\mathcal{L} = N_p \) to get reconstruction for \(\oplus \) that is resilient to noisy leakages.

© 2014 the Authors
The reconstructibility of \(\hat{\varnothing} \) is significantly more complicated. Indeed, we will only fully establish it in the next section, when we show composability of reconstructors, \(\hat{\varnothing} \) is built from two subgadgets, \(\text{mult} \) and \(\text{compress} \), where \(\text{compress} \) itself is composed of \(\hat{\varnothing} \) gadgets. Hence, to apply composability and show existence of a reconstructor for \(\hat{\varnothing} \) (cf. Lemma 4.17 in section 4.5) it remains to show reconstructibility of \(\text{mult} \). Indeed, showing this is the main technical part of this section and is given in the lemma below, whose proof is moved to Appendix B.

Lemma 4.14 (mult gadgets of TR are reconstructible). For every \(p \in (0, 1/2] \), the \(\text{mult} \) gadget is \((N_p, \infty, \epsilon(k))-\)reconstructible by \(\text{LOCAL}(2) \), where

\[
\epsilon(k) \leq (2k + 1)(\exp(-15kp^5) + \exp(-k/512)).
\]

4.5 Multigadget circuit reconstructors.

In the previous two sections we showed reconstructors for the gadgets used by the transformations \(\text{TR}_C \) and \(\text{TR}_N \). In this section, we are interested in composing such reconstructors to obtain a multigadget circuit reconstructor, i.e., we show the existence of reconstructors for arbitrary complex circuits. To keep our composition lemma below as general as possible, we do not focus on our transformations \(\text{TR}_C \) or \(\text{TR}_N \) but rather prove reconstructor composition for arbitrary encoding-based circuit transformations.

Recall that in an encoding-based circuit transformation each wire \(w \) in the original circuit \(C \) is represented by a wire bundle in \(\hat{C} \), consisting of \(k \) wires \(\bar{w} = (w_1, \ldots, w_k) \), that carry an encoding of \(w \). The gates in \(C \) are replaced gate by gate with so-called gadgets, computing on encoded values. For the detailed description of encoding-based circuit transformations we refer to section 3.1.

In this section, we consider transformed circuits \(\hat{C} \) without \(\text{encoder} \) and \(\text{decoder} \) gadgets, i.e., we assume that \(\hat{C} \)'s inputs are already given in encoded form, and the outputs are not explicitly decoded. The reason for this restriction is that the \(\text{encoder} \) and \(\text{decoder} \) gadgets are by definition not reconstructible, since reconstructors are only defined for gadgets that take encoded values as inputs and output encoded values.

Lemma 4.15 (reconstructor composition for encoding-based circuits). Let \(\Pi = (\text{Enc}, \text{Dec}) \) be any (not necessarily linear) encoding scheme that is \((\mathcal{L}_{\Pi}, \tau_\Pi, \epsilon_\Pi)\)-leakage-indistinguishable for some \(\mathcal{L}_{\Pi}, \tau_\Pi, \epsilon_\Pi \). Let \(\text{TR} \) be an encoding-based circuit transformation and suppose that each corresponding gadget, \(\hat{g} \), is rerandomizing and \((\mathcal{L}_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\hat{g}})\)-reconstructible by \(\mathcal{R}_{\hat{g}} \), for some \(\mathcal{L}_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\hat{g}} \). Then for any stateless circuit \(C \) of size \(s \) with \(n_1 \) inputs, \(n_0 \) outputs, and \(m \) wires, \(\hat{C} \leftarrow \text{TR}(C) \) is rerandomizing and \((\mathcal{L}_{\hat{C}}, \tau_{\hat{C}}, \epsilon_{\hat{C}})\)-reconstructible by \(\mathcal{R}_{\hat{C}} \), for

- any \(\mathcal{L}_{\hat{C}} \) that satisfies \((\mathcal{L}_{\hat{C}} \circ (2 \times \mathcal{R}_{\hat{g}})) \subseteq \mathcal{L}_{\Pi} \) (where \((2 \times \mathcal{R}_{\hat{g}})\) denotes two parallel executions of \(\mathcal{R}_{\hat{g}} \)) and \(\mathcal{L}_{\hat{C}} \subseteq \mathcal{L}_{\hat{g}} \);
- any \(\tau_{\hat{C}} \leq \min(\tau_{\Pi}, \tau_{\hat{g}}) - s\tau_{\text{samp}} \), where \(\tau_{\text{samp}} \) is the maximum time to sample \(R_{\hat{g}} \leftarrow \text{REC}_{\hat{g}} \) for all gadgets \(\hat{g} \);\(^{11}\)
- some \(\epsilon_{\hat{C}} \leq m\epsilon_\Pi + s\epsilon_{\hat{g}} \);
- \(\mathcal{R}_{\hat{C}} \subseteq (n_1 + n_0) \times \mathcal{R}_{\hat{g}} \); moreover, if \(\mathcal{R}_{\hat{g}} \subseteq \text{LOCAL}(\ell) \), then also \(\mathcal{R}_{\hat{C}} \subseteq \text{LOCAL}(\ell) \).

Before we give the proof, let us discuss an interpretation of the important parameters. To apply the lemma we require

- a \(\mathcal{L}_{\Pi} \)-leakage-indistinguishable encoding scheme, and
- that all gadgets in \(\hat{C} \) are \(\mathcal{L}_{\hat{g}} \)-reconstructible by \(\mathcal{R}_{\hat{g}} \).

If that is given, then by the composition lemma it is guaranteed that \(\hat{C} \leftarrow \text{TR}(C) \) is \(\mathcal{L}_{\hat{C}} \)-reconstructible for any class \(\mathcal{L}_{\hat{C}} \) that satisfies

\(^{11}\)For simplicity we assume that \(\tau_{\text{samp}} \) is larger than the maximal time to compute gadgets \(\hat{g} \).
gadgets are rerandomizing, and the randomness used in each gadget is independent. Because they can be easily satisfied by adding a gadget cannot be simultaneously first and last. They are without loss of generality, assumptions ensure that a first gadget has no connecting wires going into it and that the gadgets have to be at least \(L_{\hat{g}}\)-reconstructible.

Proof of Lemma 4.15. Let \(\hat{C}\) be the transformed circuit, with inputs denoted \(X = (\hat{x}_1, \ldots, \hat{x}_n)\) and outputs denoted \(Y = (\hat{y}_1, \ldots, \hat{y}_m)\). Let first gadgets denote the set of topologically first gadgets in \(\hat{C}\), and let last gadgets denote the set of topologically last gadgets in \(\hat{C}\). The wires that go between gadgets (i.e., not directly connected to \(X\) or \(Y\), and not part of the innards of some gadget) are called connecting wires. (We will assume, in order to simplify the proof, that for every two-input gadget, either both inputs are connected to \(X\), or both inputs are connected to internal wires. Moreover, we will assume that no gadget is connected to both \(X\) and \(Y\). These assumptions ensure that a first gadget has no connecting wires going into it and that a gadget cannot be simultaneously first and last. They are without loss of generality, because they can be easily satisfied by adding copy gates to the inputs as needed.)

The fact that \(\hat{C}\) is rerandomizing follows immediately from the fact that the last gadgets are rerandomizing, and the randomness used in each gadget is independent.

The reconstructor \(R_C\) is a distribution over circuits \(R_{\hat{C}}\) with inputs \((X, Y)\). We define \(R_{\hat{C}}\), with \(R_C \leftarrow R_{\hat{C}}\), for input \((X, Y)\) that is plausible for \(\hat{C}\), as follows.

1. For each \(\hat{g}\) gadget in \(\hat{C}\), sample \(R_{\hat{g}} \leftarrow R_{\hat{C}}\).
2. For each connecting wire bundle, sample a random encoding of a random field element, i.e., \(\hat{v} \leftarrow \text{Enc}(v)\) with \(v \leftarrow K\).
3. For each gadget \(\hat{g}\) in \(\hat{C}\) except for the first gadgets and last gadgets, pre-compute \(R_{\hat{g}}(U, V)\) and hardwire the result into \(R_{\hat{C}}\). Here, \(U\) (resp., \(V\)) are the encodings assigned above to the wire bundles that are the inputs (resp., outputs) of \(\hat{g}\).
4. On input \((X, Y)\) the reconstructor \(R_{\hat{C}}\) computes the reconstructors of all the first and last gadgets. For the first gadgets, the input wire bundles are given in \(X\) and the outputs have been hardwired above. Similarly, for the last gadgets, the inputs have been hardwired and the outputs are given in \(Y\).

We now analyze the class of the reconstructor \(R_{\hat{C}}\). For a circuit \(C\) with \(n_1\) inputs and \(n_O\) outputs, \(R_C \leftarrow R_{\hat{C}}\) on inputs \((X, Y)\) only needs to compute \(n_1 + n_O\) reconstructors (for the first gadgets and last gadgets). Hence, \(R_{\hat{C}}\) lies in \((n_1 + n_O) \times R_{\hat{g}}\) as claimed in the statement. Moreover, each input of \(R_{\hat{C}}\) is used only in a single gadget reconstructor, and thus locality provided by gadget reconstructor is preserved by \(R_{\hat{C}}\).

It remains to show that for any plausible input/output pair \((X, Y)\), \(R_{\hat{C}}(X, Y)\) is \((L_{\hat{C}}, r_{\hat{C}}, \epsilon_{\hat{C}})\)-leakage-indistinguishable from \(W_{\hat{C}}(X|Y)\). The proof is by a hybrid argument, outlined as follows. First, we replace all gadgets in \(\hat{C}\) by their corresponding reconstructors. Then, we replace all connecting wire bundles with random encodings of random values, keeping the innards of gadgets consistent with these random encodings.

We first prove that we can replace each gadget in \(\hat{C}\) with an appropriate gadget reconstructor keeping the connecting wires consistent. We will use the following notation. Let \(\{\hat{g}_i\} \) for \(i \in [1, s]\) denote the gadgets in \(\hat{C}\). Drawing a wire assignment from the distribution \(W_{\hat{C}}(X|Y)\) of the real circuit, we denote its elements as follows. For the \(i^{th}\) gadget \(\hat{g}_i\) in \(\hat{C}\), \(U_i\) are its inputs and \(V_i\) are its outputs (these are iden-
We define iteratively the following hybrid wire assignment distributions:

$$\mathcal{W}_C^0 : \mathcal{W}_C(X|Y).$$

$$\mathcal{W}_C^i (i \in [1, s]):$$ same as $$\mathcal{W}_C^{i-1}$$ except that the assignment to the wires inside $$\hat{g}_i$$ is replaced by $$R_{\hat{g}_i}(U_i, V_i)$$ with $$R_{\hat{g}_i} \leftarrow \text{REC}_{\hat{g}_i}$$.

The following claim shows that $$\mathcal{W}_C^{n-1}$$ and $$\mathcal{W}_C^n$$ are $$(\mathcal{L}_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\hat{g}})$$-leakage-indistinguishable for all $$i \in [1, s]$$. More precisely, we make the following claim.

Claim 1. For any $$i \in [1, s]$$, if $$\hat{g}_i$$ is $$(\mathcal{L}_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\hat{g}})$$-reconstructible, then the distributions $$\mathcal{W}_C^{i-1}$$ and $$\mathcal{W}_C^i$$ are $$(\mathcal{L}_{\hat{g}}, \tau_{\hat{g}} - s\tau_{\text{samp}}, \epsilon_{\hat{g}})$$-leakage-indistinguishable.

Proof. For any $$i \in [1, s]$$ we use Lemma 4.10 with the following mapping: $$\mathcal{W}_1 = \mathcal{W}_C^{i-1}$$, $$\mathcal{W}_0 = \mathcal{W}_C^i$$, and $$\mathcal{W}_0 = \mathcal{W}_{\hat{g}_i}(U_i|V_i)$$, $$\mathcal{W}_0 = \text{REC}_{\hat{g}_i}(U_i, V_i)$$. To apply Lemma 4.10, we need to define the distribution $$F$$, where $$f_S \leftarrow F$$:

1. for all $$j \geq i + 1$$ sample from $$\mathcal{W}_{\hat{g}_i}(U_j|V_j)$$ and hard-wire the result into the description of $$f_S$$;
2. for all $$j \leq i - 1$$ run $$\text{REC}_{\hat{g}_i}(U_j, V_j)$$ to obtain a valid wire assignment for that part of the circuit. Hard-wire the result into the description of $$f_S$$;
3. for the part of the wire assignment that represents $$\hat{g}_i$$, $$f_S$$ just outputs its input.

Note that $$f_S$$ takes as long to sample as the time required to either compute or reconstruct the $$s - 1$$ gadgets, which, in our case is upper bounded by $$\tau_{\text{samp}}$$. It is easy to see that for its input $$f_S$$ is the identity function (it just outputs its inputs together with hardwired values). Moreover, if $$f_S$$ takes as input a sample from $$\mathcal{W}_{\hat{g}_i}(U_i|V_i)$$ then its output is distributed as $$\mathcal{W}_C^{i-1}$$. On the other hand if the input is $$R_{\hat{g}_i}(U_i, V_i)$$, then $$f_S$$’s output is identically distributed to $$\mathcal{W}_C^i$$. These facts, combined with Lemma 4.10 and the fact that $$\mathcal{W}_0$$ and $$\mathcal{W}_0$$ are $$(\mathcal{L}_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\hat{g}})$$-leakage-indistinguishable, show that $$\mathcal{W}_1 = \mathcal{W}_C^{i-1}$$ and $$\mathcal{W}_1 = \mathcal{W}_C^i$$ are $$(\mathcal{L}_{\hat{g}}, \tau_{\hat{g}} - s\tau_{\text{samp}}, \epsilon_{\hat{g}})$$-leakage-indistinguishable. This concludes the claim. \[\square\]

Next, we show that we can replace the connecting wire bundles in $$\hat{C}$$ with random encodings. Associate each bundle of connecting wires with integer $$i \in [1, m]$$ and denote the encoding carried by this bundle by $$\vec{v}_i$$. Denote by $$\vec{g}_i^-$$ the gadget that has $$\vec{v}_i$$ as an output wire bundle, and by $$\vec{g}_i^+$$ the gadget that has $$\vec{v}_i$$ as input (see Figure 7). We define iteratively the following hybrid wire assignment distributions:
\(W^i_C \) with \(i \in [s+1, s+m] \): same as \(W^{i-1}_C \) except that \(\tilde{v}_i \) is replaced with a random encoding \(\tilde{v}_i' \leftarrow \text{Enc}() \) (and the internal wires in \(\tilde{g}_i^- \) and \(\tilde{g}_i^+ \) are adjusted accordingly, as the wire bundles are given as inputs to the reconstructors of \(\tilde{g}_i^- \) and \(\tilde{g}_i^+ \)).

Intuitively, \(W^i_C \) is the wire assignment distribution that results from running, for each gadget in \(C \), its corresponding reconstructor using honestly computed connecting wires. Then, in \(W^i_C \) for \(i = s+1, \ldots, s+m \), we replace step by step the honest encodings at the connecting wires with random encodings. These random encodings no longer correctly capture the computation of the circuit, but are still leakage indistinguishable. The final distribution, \(W^{s+m}_C \), is identical to \(\text{REC}_C(X, Y) \).

We next prove a claim stating that for all \(i \in [s+1, s+m] \) the distributions \(W^{i-1}_C \) and \(W^i_C \) are \((\mathcal{L}_W, \tau_W, \epsilon_W)\)-leakage-indistinguishable.

Claim 2. Let \(\mathcal{L}_\Pi \) be some class of leakage functions and let \(\tau_\Pi > 0, \epsilon_\Pi > 0 \). If \(\Pi \) is \((\mathcal{L}_\Pi, \tau_\Pi, \epsilon_\Pi)\)-leakage-indistinguishable, then for all \(i \in [s+1, s+m] \) the distributions \(W^{i-1}_C \) and \(W^i_C \) are \((\mathcal{L}_W, \tau_W, \epsilon_W)\)-leakage-indistinguishable with \(\epsilon_W = \epsilon_\Pi, \tau_W = \tau_\Pi - s_{\tau\text{amp}}, \) and any \(\mathcal{L}_W \) that satisfies \((\mathcal{L}_W \circ (2 \times R_\beta)) \subseteq \mathcal{L}_\Pi \).

Proof. To prove this statement for any \(i \in [s+1, s+m] \), we apply Lemma 4.10 with the following assignment for the distributions: \(W_i = W^{i-1}_C, W'_i = W^i_C \) and \(W_0 = \text{Enc}(v_i), W'_0 = \text{Enc}(v'_i) \) with \(v'_i \leftarrow \mathcal{P} \). Furthermore, we define the distribution \(F \), with \(f_S \leftarrow F \) that takes as input a single encoding \(\bar{c} \).

1. Sample the values for all the connecting wire bundles except \(\tilde{v}_i \) according to \(W^{i-1}_C \) (which is the same as \(W^{i-1}_C \) for those wire bundles).
2. For each gadget \(\tilde{g} \) in \(C \) except \(\tilde{g}_i^- \) and \(\tilde{g}_i^+ \), pick a reconstructor from the appropriate reconstructor distribution \(\text{REC}_{\beta} \leftarrow \text{REC}_\beta \) and run \(\text{REC}_{\beta}(U, V) \), where \((U, V) \) are the sampled values for the input and output wire bundles of \(\tilde{g} \).
 The resulting wire assignments for each gadget are hardwired into \(f_S \).
3. Pick and hard-wire reconstructors \(\text{REC}_{\tilde{g}_i^-} \leftarrow \text{REC}_{\tilde{g}_i^-} \) and \(\text{REC}_{\tilde{g}_i^+} \leftarrow \text{REC}_{\tilde{g}_i^+} \) and wire their descriptions into \(f_S \).
 On input \(\bar{c} \), run on-line the reconstructors \(\text{REC}_{\tilde{g}_i^-} \) and \(\text{REC}_{\tilde{g}_i^+} \), using as their inputs and outputs the wire bundles already sampled and \(\tilde{v}_i \) set to \(\bar{c} \).
 Output their resulting wire assignments together with the hardwired wire assignments for all the other gadget reconstructors from the previous steps.

We claim that

\[
W^{i-1}_C \equiv f_S(\bar{c}), \text{ if } \bar{c} \leftarrow \text{Enc}(v_i),
\]
\[
W^i_C \equiv f_S(\bar{c}), \text{ if } \bar{c} \leftarrow \text{Enc}(v'_i).
\]

Indeed, in either case, all the wires internal to gadgets are computed according to reconstructors, and the connecting wire bundles except \(\tilde{v}_i \) are sampled identically in the two distributions. If \(\bar{c} \leftarrow \text{Enc}(v_i) \) then, because all the gadgets are rerandomizing, the joint distribution of \(\bar{c} \) together with all the other wires is indeed \(W^{i-1}_C \) (note that this is the only place where we use the fact that the gadgets are rerandomizing, but the use of this fact here is crucial: if \(\text{Enc}(v_i) \) was correlated with some other connecting wire bundle, we could not hard-wire that bundle into \(f_S \), because it would not be known until \(\bar{c} \) was given).

Sampling \(f_S \leftarrow F \) takes \(s_{\tau\text{amp}} \) time, because that is the time required to sample the reconstructors. Let us now analyze the complexity of \(f_S \). Since most of the wire assignments are hardwired in advance into \(f_S \), on input \(\bar{c} f_S \) only needs to run \(\tilde{g}_i^- \) and
Thus, we get that functions $f_S \leftarrow F$ can be computed in $2 \times R_{\hat{g}}$. If we now apply Lemma 4.10 with the fact that W_0 and W_0' are $(L_\Pi, \tau_\Pi, \epsilon_{\Pi})$-leakage-indistinguishable, we get that $W_1 = W_0^{l-1}$ and $W_1' = W_0'$ are $(L_W, \tau_W, \epsilon_{\Pi})$-leakage-indistinguishable for

\[\tau_W = \tau_\Pi - s\tau_{\text{samp}}; \]

- for any class of functions L_W that satisfies $L_\Pi \supseteq (L_W \circ (2 \times R_{\hat{g}}))$, and
- $\epsilon_W = \epsilon_\Pi$.

This concludes the proof of the claim. \(\square\)

Putting now the results from Claims 1 and 2 together and setting $L_{\hat{g}} = L_{\hat{g}}'$ and $L_W = L_{\hat{g}}$, we get that $W_1 = W_1'$, $W_2 = W_{\hat{g}}(X|Y)$ and $W_2^{s+m} = \text{RE}_{\hat{g}}(X, Y)$ are $(L_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\Pi})$-leakage-indistinguishable. Here, $\tau_{\hat{g}} = \min(\tau_\Pi, \tau_\hat{g}) - s\tau_{\text{samp}}$ and

\[(4.5) \]

\[\epsilon_{\hat{g}} = m\epsilon_\Pi + s\epsilon_{\hat{g}}. \]

This concludes the proof of Lemma 4.15. \(\square\)

Below we give applications of our general composition lemma by showing that circuits transformed by TR$_C$ and TR$_N$ are reconstructible.

Reconstructibility of $\hat{g} \leftarrow \text{TR}_C(C)$. We establish composition of the single gadget reconstructors presented in section 4.3 in the corollary below. Since its proof merely adds up parameters, we move its formal version to Appendix C and give here only a simple sketch.

Corollary 4.16 (reconstructor for $\hat{g} \leftarrow \text{TR}_C(C)$). Let L_Π be some set of leakage functions and $\epsilon_\Pi > 0, \tau_\Pi > 0$. Let Π be the underlying encoding scheme of TR_C with Π being $(L_\Pi, \tau_\Pi, \epsilon_\Pi)$-leakage-indistinguishable. Let C be a stateless circuit of size s, with n_1 inputs and n_0 outputs. Then the transformed circuit $\hat{g} \leftarrow \text{TR}_C(C)$ is rerandomizing and $(L_{\hat{g}}, \tau_{\hat{g}}, \epsilon_{\Pi})$-reconstructible by SHALLOW$(2, (n_1 + n_0)O(k^2))$.

Here, we have $\epsilon_{\hat{g}} = \epsilon_\Pi s(k + 2)$, $\tau_{\hat{g}} = \tau_\Pi - O(sk^2)$, and $L_{\hat{g}}$ satisfies $L_\Pi \subseteq L_{\hat{g}} \circ \text{SHALLOW}(3, O(k^2))$ (for $K = GF(2)$, $L_\Pi = L_{\hat{g}} \circ \text{SHALLOW}(2, O(k^2))$).

Proof (sketch). At a high level the proof is simple. Since TR_C is an encoding-based circuit transformation, and all gadgets used by TR_C are rerandomizing and reconstructible, Lemma 4.15 from above establishes the corollary. In the formal proof in Appendix C we rigorously analyze the parameters which establish the above corollary. \(\square\)

Reconstructibility of $\hat{g} \leftarrow \text{TR}_N(C)$. Before we show reconstructibility of composed circuits $\hat{g} \leftarrow \text{TR}_N(C)$ we present a reconstructor for \hat{g} of TR$_N$. We do this by viewing \hat{g} as a circuit composed of $\hat{+}$ and $\hat{\text{mult}}$ gadgets, for which we have shown reconstructibility in the last section. Then we apply the composition lemma, which gives us a reconstructor for \hat{g}. The proof of the lemma below and of Corollary 4.18 can be found in Appendix C.

Lemma 4.17. For every $p \in (0, \frac{1}{2})$, the $\hat{+}$ gadget is $(N_p, \infty, \epsilon_\hat{+})$-reconstructible by LOCAL(3), where $\epsilon_\hat{+}(k) \leq (2k + 1)(\exp(-64kp^6) + \exp(-15kp^8) + \exp(-k/512))$.

We establish reconstructibility of transformed circuits $\hat{g} \leftarrow \text{TR}_N(C)$.

Corollary 4.18 (reconstructor for $\hat{g} \leftarrow \text{TR}_N(C)$). Let $L_{\hat{g}} = N_p$ for some $p \in (0, 1/2]$. Let C be a stateless circuit of size s, with n_1 inputs and n_0 outputs. Then the transformed circuit $\hat{g} \leftarrow \text{TR}_N(C)$ is rerandomizing and $(N_p, \infty, \epsilon_{\hat{g}}(k))$-reconstructible by LOCAL(3) with $\epsilon_{\hat{g}}(k) \leq s(2k + 3)(\exp(-64kp^6) + \exp(-15kp^8) + \exp(-k/512))$.

In Lemma 4.15 and the two corollaries above we considered only the stateless case, and proved that it is simulatable by a special simulator called “reconstructor.” In the next section, we will use this special simulator to provide a simulator that proves security of stateful circuits directly according to Definition 3.1.

© 2014 the Authors
4.6. Security of full circuit transformation. To prove security of the full transformation according to Definition 3.1 we need to consider stateful circuits. Stateful circuits have memory and are run and observed multiple times. In contrast, so far we have only considered stateless circuits that have no persistent state and are observed once. The main challenge in the stateful setting is the following. Note that memory has input wires (used at the end of round \(i\) to store the state \(\hat{m}_i\)) and output wires (used at the beginning of round \(i\) to retrieve \(\hat{m}_i\)), and therefore the adversary can obtain leakage related to memory twice. This problem is exacerbated by adaptivity, which allows the adversary to choose a leakage function for round \(i\) that depends on the results of round \(i - 1\). Thus, the ultimate information obtained by the adversary about \(\hat{m}_i\) is considerably more complex than can be computed by any two fixed functions from \(L\).

We address these difficulties in the proof of the following lemma.

Lemma 4.19. Let \(\tau_H > 0, \epsilon_H > 0\), let \(L_H\) be some class of leakage functions, and let \(TR\) be an encoding-based circuit transformation with underlying encoding scheme \(H\). Let \(C\) be an arbitrary (stateful) circuit with \(n\) memory gates, \(s\) other gates (not counting dummy encoder and decoder gates), and \(m\) wires connecting those \(s\) gates. Let \(\hat{C} \leftarrow TR(C)\) be its transformation. Suppose all gadgets in \(\hat{C}\), except encoder and decoder, are rerandomizing and \((L, \tau, \epsilon)\)-reconstructible by \(R\) for some \(L, \tau, \epsilon\). Suppose also that \(H\) is \((L, \tau, \epsilon)\)-leakage-indistinguishable and \(2\)-adaptive \((L, \tau, \epsilon)\)-leakage-indistinguishable. Then \(TR\) is \((L, \tau, \epsilon)\)-secure for

- any \(\tau_A\) and \(\tau_D\) satisfying \(\tau_A + \tau_D \leq \min(\tau_H, \tau_{2H}) - q\epsilon_{\text{samp}}\), where \(\epsilon_{\text{samp}}\) is the time to sample\(^{12}\) \(R\) \(\leftarrow \text{REC}_{\hat{g}}\),
- some \(\epsilon \leq \tau_A + q\epsilon_{\text{samp}}\),
- some \(\epsilon \leq q\epsilon_{\hat{g}, T}\),
- any \(\epsilon\) that satisfies \((L \circ (2 \times R_{\hat{g}})) \subseteq L_H\), \((L \circ R_{\hat{g}}) \subseteq L_{2H}\), and \(L \subseteq L_{\hat{g}}\).

Before starting with the proof, we discuss an interpretation of the important parameters. To apply the lemma we require

- that all gadgets in \(\hat{C}\) (except encoder and decoder) are \(L_{\hat{g}}\)-reconstructible and
- the underlying encoding scheme \(H\) is \(L_H\)-leakage-indistinguishable and \(2\)-adaptive \(L_{2H}\)-leakage-indistinguishable.

If that is given, then by the above lemma, the encoding-based circuit transformation \(TR\) is \(L\)-secure for any class \(L\) that satisfies

- \((L \circ (2 \times R_{\hat{g}})) \subseteq L_H\), where \((2 \times R_{\hat{g}})\) denotes parallel execution of \(R_{\hat{g}}\) (which is the function class in which the gadget reconstructors lie),
- \((L \circ R_{\hat{g}}) \subseteq L_{2H}\),
- \(L \subseteq L_{\hat{g}}\).

Stated differently, if we want \(TR\) to be \(L\)-secure for some \(L\), then we need an encoding scheme that is secure against functions from \((L \circ (2 \times R_{\hat{g}}))\) for a single query, functions from \((L \circ R_{\hat{g}})\) (which is a smaller class) for two queries; we also need that all gadgets \(\hat{g}\) in \(\hat{C}\) (except encoder and decoder) are at least \(L\)-reconstructible. Before we instantiate the above lemma to show security of our transformations \(TR_C\) and \(TR_N\), we give a high-level outline of the proof (the details of the proof are in Appendix D).

Outline of the proof. Define a circuit \(\hat{C}^*\) as the circuit that computes a single clock cycle of \(\hat{C}\) (recall the notion of clock cycle from the definition of stateful circuits in section 3), without encoding and decoding and without state. Specifically, \(\hat{C}^*\)

\(^{12}\) As in Lemma 4.15, we assume that \(\epsilon_{\text{samp}}\) is larger than the time required to compute gadgets \(\hat{g}\).
is obtained from \hat{C} by removing encoder and decoder gadgets, removing memory, taking the wire bundles that exit the memory and making them part of the input, and taking the wire bundles that enter the memory and making them part of the output.

We can then write one clock cycle of the computation (without input encoding and output decoding) as $(\hat{m}_i, \text{Enc}(y_i)) \leftarrow \hat{C}^*(\hat{m}_{i-1}, \text{Enc}(x_i))$. We know from Lemma 4.15 that \hat{C}^* has a reconstructor.

We need to show that for every q-adaptive $(L, \tau_{\mathcal{A}})$-adversary \mathcal{A}, there exists a simulator \mathcal{S} with only black box access to $C[m_0]$ such that for every stateful circuit $C[m_0]$, the output distributions of \mathcal{A} and \mathcal{S} are computationally close.

The idea of the proof is simple: \mathcal{S} runs \mathcal{A} as a subroutine, simulates its environment, and outputs \mathcal{A}’s result. \mathcal{S} needs to simulate the environment without knowledge of the initial secret state m_0; thus, it has to answer \mathcal{A}’s leakage queries without knowing the secret state. Each such leakage query gets as input the wire assignment of a single clock cycle of \hat{C}. To simulate the wire assignment, we can use the reconstructor for \hat{C}^*, giving it the circuit’s true public inputs and outputs and random values instead of the memory contents. This approach proves security of a single observation. However, extending this argument to many rounds requires some additional care.

Main difficulty of the proof. During computation of

$$(\hat{m}_i, \text{Enc}(y_i)) \leftarrow \hat{C}^*(\hat{m}_{i-1}, \text{Enc}(x_i)),$$

the adversary can pick a leakage function f_i and obtain some knowledge about the secret state \hat{m}_i. Adaptively, based on that knowledge (i.e., on the output y_i and the leakage that may depend on \hat{m}_i), the adversary may pick a leakage function f_{i+1} and get leakage from the execution of $\hat{C}^*(\hat{m}_i, \text{Enc}(x_{i+1}))$. The difficulty is that the leakage from both observations, number i and number $(i + 1)$, may depend on the secret state \hat{m}_i, which is the reason why we require the underlying encoding scheme to be 2-adaptive leakage indistinguishable. (This difficulty does not occur for leakage from prior or subsequent states, or from other wire bundles, essentially because of rerandomization.)

We now give a high-level description of the simulator \mathcal{S}. The formal specification is given in Figure 8 and in Appendix D.
Simulation. \(\mathcal{S} \) needs to answer the adversary’s query \((f_i, x_i) \) for each clock cycle \(1 \leq i \leq q \). \(\mathcal{S} \) generates a simulated wire assignment and then applies \(f_i \) to it. Generation of the simulated wire assignment is done as follows. Since \(\mathcal{S} \) does not know the content of the secret memory (but the wire assignment may depend on it), \(\mathcal{S} \) uses random encodings instead. \(\mathcal{S} \) also uses the public input \(x_i \) and output \(y_i \). Note that \(y_i \) may no longer be the correct output on \(x_i \) if the contents of the memory are changed to random values. So the “correct” wire assignment may not exist. However, a simulated assignment may still be computed: \(\mathcal{S} \) does so by using the reconstructor of the gadgets inside \(\hat{C} \) (except encoder and decoder gadgets, whose wire assignments are computed honestly from \(x_i \) and \(y_i \)).

We need to show that such a simulation is indistinguishable from the adversary’s observations in the real experiment. Like in Lemma 4.15, this is done by a hybrid argument. We first show that instead of the real wire assignment, we can replace all wire bundles with random encodings, and use the gadget reconstructor for the internal wires of each gadget (except encoder and decoder). Notice that these steps are essentially the same as in the proof of Lemma 4.15. We could just directly apply Lemma 4.15 and use the reconstructor for the entire stateless circuit \(\hat{C}^{*} \) rather than for each gadget, but that would give us worse parameters: specifically, the reduction in leakage class would be larger, because the reduction in leakage class depends on the size of the reconstructor.

Next, we consider \(n(q + 1) \) different hybrids, i.e., we make a hybrid argument over the number of observations \(q \) and the size of the secret state \(n \). In each hybrid step, we replace the content of a single encoded memory cell with some random encoding. By the leakage indistinguishability of the underlying encoding scheme \(\Pi \), two consecutive hybrids will be indistinguishable. Notice that this is the place where we require \(\Pi \) to be secure even against 2-adaptive adversaries, since the observation of two consecutive clock cycles will depend on the target encoding.

In Appendix D we give the technical description of the ideas outlined above.

4.7. Proofs of our main theorems: Theorems 3.3 and 3.5.

Proof of Theorem 3.3. The proof of Theorem 3.3 merely puts together the parameters from Lemma 4.11 and Lemma 4.19, and may be skipped by the reader.

In this theorem, we are taking assumed parameters from 2-adaptive leakage indistinguishability and also using them for 1-adaptive leakage indistinguishability (since it is no worse), in order to simplify the theorem statement. So, when applying Lemma 4.19, we use \((L_{2\Pi}, \tau_{2\Pi}, c_{2\Pi}) = (L_{\Pi}, \tau_{\Pi}, c_{\Pi}) \). By definition, \(TR_C \) is an encoding-based circuit transformation for arbitrary circuits \(C \) with size \(s \) and \(n \) memory cells. Since all gates have fan-in at most 2, it has \(m \leq 2s \) wires. Recall from the theorem statement that \(\epsilon_{\Pi} > 0, \tau_{\Pi} > 0 \), and \(L_{\Pi}, L \) are some leakage classes that satisfy \(L \circ \text{SHALLOW}(3, O(k^2)) \subseteq L_{\Pi} \) (replace \(\text{SHALLOW}(3, O(k^2)) \), with \(\text{SHALLOW}(2, O(k^2)) \), in the case of \(\text{GF}(2) \)). Notice, further that as proven in section 4.3 all gadgets in \(\hat{C} \) are rerandomizing and \((L_{\hat{C}}, \tau_{\hat{g}}, \epsilon_{\hat{g}}) \)-reconstructible by \(\text{SHALLOW}(3, O(k^2)) \) (resp., \(\text{SHALLOW}(2, O(k^2)) \) for the case of \(\text{GF}(2) \)) for some parameters \(\tau_{\hat{g}}, \epsilon_{\hat{g}} \). Since our transformation has to work for any circuit we can assume\(^\dag\) that \(C \) is made solely of \(\circ \) gates. By Lemma 4.11, we get then \(\tau_{\hat{g}} = \tau_{\Pi} - O(k^2) \) and \(\epsilon_{\hat{g}} = k\epsilon_{\Pi} \).

We are now ready to apply Lemma 4.19 and get \(\tau_A + \tau_D \leq \min(\tau_{\Pi}, \tau_{\hat{g}}) - qs \tau_{\text{samp}} \). With \(\tau_{\text{samp}} = O(k^2) \) this yields \(\tau_A + \tau_D \leq \tau_{\Pi} - qs \). Similarly, we get \(\tau_s \leq \tau_A + qs \tau_{\text{ samp}} \). Next, we compute the computational distance between the real experiment

\(^\dag\) We can make this assumption because the parameters are worst in this case.
and the simulated experiment:

\[\epsilon = qsc_0 + qm\epsilon_{\Pi} + (q + 1)n\epsilon_{2\Pi} \leq \epsilon_{\Pi}(g + 1)(s(k + 2) + n). \]

This concludes the proof. \(\square \)

Theorem 3.3 relies on the assumption that \(\Pi \) is 2-adaptive leakage indistinguishable. We will eliminate this additional assumption in the next section using circuit lower bounds, and show an unconditional result for \(AC^0 \) leakages.

Proof of Theorem 3.5. The proof of the main theorem for noisy leakages (Theorem 3.5) follows the same line as the proof of Theorem 3.3 above. We use Proposition 4.4 to note that the \(\Pi_{\text{parity}} \) encoding is \((N_p \circ \text{LOCAL}(6), \infty, (1 - (2p)^6)^k) \)-leakage-indistinguishable and 2-adaptive \((N_p \circ \text{LOCAL}(3), \infty, (1 - (2p)^6)^k) \)-leakage-indistinguishable (thus, in this case we can apply Lemma 4.19 with \(\epsilon_{\Pi} = \epsilon_{2\Pi} < \exp(-64kp^6) \), using \(1 - x \leq \exp(-x) \)). Recall from Lemma 4.17 that the gadgets are rerandomizing and \((N_p, \infty, \epsilon_2(k))-\text{reconstructible by LOCAL}(3) \) with \(\epsilon_2 \leq (2k + 1)(\exp(-64kp^6) + \exp(-15kp^5) + \exp(-k/512)) \). Also note that the number \(m \) of internal wires is at most \(2s \), because each gate has fan-in at most two.

Notice that Theorem 5.5, unlike Theorem 3.3, doesn’t need to make computational assumptions about hardness of decoding \(\Pi \). \(\square \)

5. **Instantiation of TRC against \(AC^0 \) leakage.** As mentioned in the last section, Theorem 3.5 doesn’t require computational hardness assumptions, while Theorem 3.3 relies on the assumption that decoding is "hard" for functions in \(L \). Lower bounds on computational tasks are notoriously difficult to prove and, therefore, given our current state of knowledge, applying our results for computationally bounded leakages will, in most cases, require computational assumptions about hardness of decoding for a given class of leakage functions. In this section, however, we highlight a case in which Theorem 3.3 can be applied for an explicit leakage class.

Recall that \(C(d, s, \lambda) \) denotes the class of AND-OR-NOT unlimited fan-in circuits with depth \(d \), size \(s \), and \(\lambda \) bits of output. In Proposition 4.1 (cf. section 4.1) we showed that the parity encoding \(\Pi_{\text{parity}} = (C(d, \exp(O(k^{1-\delta}/d)), k^\delta), \infty, \exp(-\Omega(k^{1-\delta}/d))) \)-leakage-indistinguishable, for any constants \(d \in \mathbb{N}_{>0} \) and \(0 < \delta < 1 \).

If we instantiate TRC with \(\Pi_{\text{parity}} \), then by Theorem 3.3 we almost instantly obtain security against leakages modeled as constant-depth circuits. However, there is one caveat. In Theorem 3.3 we require that \(\Pi_{\text{parity}} \) is 2-adaptive leakage indistinguishable, while Proposition 4.1 only talks about a single observation.

In the following lemma we show generically that a leakage-indistinguishable encoding scheme \(\Pi \) is also secure against 2-adaptive adversaries. We would like to emphasize that the bounds in the lemma are rather bad, since the leakage circuit size and the adversarial running time lose exponentially in \(\lambda \) (i.e., the amount of leakage that we tolerate per observation). However, as it turns out, this loss will not matter much in the application to Corollary 5.2, because the adversary there is information theoretic (and thus has arbitrary running time), and the circuit size loss will be absorbed into the exponent.

The lemma is given specifically for leakage functions modeled by circuits with unlimited fan-in AND and OR gates, such as is the case for \(AC^0 \). The proof is moved to Appendix E.

Lemma 5.1. Let \(D, E \) be two distributions and \(d, s, \tau, \epsilon \geq 0 \) and \(L = C(d, s, \lambda) \). If \(D \) and \(E \) are \((L, \tau, \epsilon)-\text{leakage-indistinguishable} \), then \(D \) and \(E \) are 2-adaptive \((L', 2^{-\lambda\tau}, \epsilon)-\text{leakage-indistinguishable} \), where \(L' = C(d - 2, O(s2^{-\lambda}), \lfloor \lambda/2 \rfloor) \).
We would like to note that we can generalize this lemma in two ways: first, by a similar argument we can prove security against \(p\)-adaptive adversaries. This, however, increases the function’s size exponentially in \(p\) and \(\lambda\). Second, observe that we state this lemma for the special case that the leakage functions are circuits with particular gates. This can be generalized in a straightforward way to other function classes.

We obtain the following corollary by instantiating Theorem 3.3 with the parity encoding, the tolerable leakage functions \(L\) with \(\mathcal{AC}^0\) circuits that output up to \(k^\delta\) bits, and using the above lemma about adaptivity.

Corollary 5.2. Recall that \(k\) is the security parameter. Let \(0 < \delta < 1, 4 < d < 1/\delta - 1\), and \(q\) be some constants. There exists a circuit transformation for circuits over \(\mathcal{K} = \text{GF}(2)\) that is \((L, \tau_A, \tau_S, \tau_D = \infty, q, \epsilon)\)-secure for

- any \(\tau_A\),
- some \(\tau_S \leq \tau_A + q s O(k^2)\), where \(s\) is the number of gates in \(C\),
- some \(\epsilon \leq (q + 1)(s(k + 2) + n) \exp(-\Omega(k^{(1-\delta)/d}))\), where \(n\) is the number of memory gates in \(C\),
- \(L = \mathcal{C}(d - 4, \exp(O(k^{(1-\delta)/d})), [k^\delta/2])\). Notice that this is in \(\mathcal{AC}^0\) since \(d - 4\) is constant.

The transformation increases the size of each multiplication gate by a factor of \(O(k^2)\) and the size of the rest of the circuit by a factor of \(O(k)\).

For example, fixing the relationship \(\delta = 1/(d+2)\), we now figure out what we need to do in order to be resilient to \(\lambda\) bits of leakage computed by an \(\mathcal{AC}^0\) circuit of any depth \(d\) (which, using the notation from the Corollary statement, is \(d=4\)). Since \(\lambda = \lfloor k^{3/2} / 2 \rfloor\), the security parameter \(k\) needs to be at least \((2\lambda)^{d+6}\). The size of the leakage circuit can go up to \(\exp(c_1 k^{1/(d+6)}) > \exp(c_1 \lambda)\); and security (i.e., distinguishing advantage \(\epsilon\)) will be at most \(q s \exp(-c_2 k^{1/(d+6)}) < q s \exp(-c_2 \lambda)\), for some constants \(c_1\) and \(c_2\) (which follow from \(O\) and \(\Omega\) used in Proposition 4.1; they depend on \(d\) and \(\delta\), but the exact dependence is not worked out in [9]). Increasing \(k\) further would allow increasing the size of the leakage circuit, decrease the distinguishing advantage, and allow for more leakage. Unfortunately, because the circuit size would grow in proportion to \(k^2\), the amount of leakage as a fraction of the circuit size would decrease.

We could set \(\delta\) to be smaller, which would lead a higher \(k\) to support the same amount of leakage, which would lead to higher allowable leakage circuit size and lower \(\epsilon\), at the expense of a bigger increase in the transformed circuit size. The trade-off is not easy to quantify, because the constants \(c_1\) and \(c_2\) would also change.

Proof. The parity encoding is \((\mathcal{C}(d, \exp(O(k^{(1-\delta)/d}))), k^\delta, \exp(-\Omega(k^{(1-\delta)/d}))))\)-leakage-indistinguishable (by Proposition 4.1). Lemma 5.1 then shows that the encoding scheme is 2-adaptive \((\mathcal{L}_{2H}, \infty, \epsilon_{2H})\)-leakage-indistinguishable, where

- \(\mathcal{L}_{2H} = \mathcal{C}(d - 2, \exp(O(k^{(1-\delta)/d})), [k^\delta/2])\). Since by assumption \(d < 1/\delta - 1\) we get that \((1 - \delta)/d > \delta\) and therefore

 \[
 \exp(O(k^{(1-\delta)/d} - k^\delta)) = \exp(O(k^{(1-\delta)/d})).
 \]

 Thus, we can simplify \(\mathcal{L}_{2H}\) to \(\mathcal{C}(d - 2, \exp(O(k^{(1-\delta)/d})), [k^\delta/2])\), and

- \(\epsilon_{2H} = \exp(-\Omega(k^{(1-\delta)/d})).\)

We now apply Theorem 3.3 with \(\mathcal{K} = \text{GF}(2)\). To see that the depth of the leakage class goes from \(d-2\) to \(d-4\), we only need to observe that \(\text{SHALLOW}(2, O(k^2))\) can be implemented by depth-2 Boolean circuits (where we don’t count NOT gates and allow sufficient fan-in) by expressing arithmetic gates of fan-in-2 and depth 2 as a constant-size conjunctive or disjunctive normal form.

Improving the security loss. The bounds from Corollary 5.2 imply that asymptotical parity encoding and our transformed circuits can tolerate similar leakage functions.
as long as \(d < 1/\delta - 1 \). This restriction can be eliminated by relaxing the security definition. More precisely, if in Definition 3.1 we restrict the adversary to choose the leakage function \(f_i, i \geq 2 \), adaptively only depending on the output of the leakage functions\(^{14} \) \(f_1, \ldots, f_{i-2} \), then in Theorem 3.3 we will not require that the underlying encoding scheme \(\Pi \) is 2-adaptive leakage indistinguishable. The parameters of the our reduction will then be significantly improved\(^{15} \) for this relaxed security definition.

Appendix A. Proofs omitted from section 4.3.

Proof of Lemma 4.8. The reconstructor \(\text{REC}_\hat{S} \) is the distribution whose only support is the following circuit \(R_\hat{S} \). Given an empty \(X \) (i.e., the desired input of \(\hat{S} \)) and a \(Y = (\hat{y}) \) (i.e., the desired output of \(\hat{S} \)), \(R_\hat{S}(X,Y) \) outputs a wire assignment that simply lets the output of \(\hat{S} \) carry the only consistent value, namely, \(Y \). This is distributed identically to the honest case. \(\square \)

Proof of Lemma 4.9. We will do the proof for the \(\text{copy} \) gadget; the other two are similar. The reconstructor \(\text{REC}_{\text{copy}} \) is the distribution whose only support is a circuit \(R_{\text{copy}} \) that on inputs \((X, Y)\), where \(X = (\hat{a}) \) (i.e., the desired input of the \(\text{copy} \) gate) and \(Y = (\hat{b}, \hat{c}) \) (i.e., its desired output), assigns the wires of \(\text{copy} \) in the only consistent way: \(\hat{o}_a^{\circ} = \hat{b} \circ \hat{a} \) and \(\hat{o}_c^{\circ} = \hat{c} \circ \hat{a} \).

If \(\hat{a}, \hat{b}, \hat{c} \) are chosen as in the definition of a reconstructor (i.e., they are plausible inputs), then the resulting output of \(R_{\text{copy}}(X, Y) \) is identically distributed to the wire distribution \(W_{\text{copy}}(X|Y) \), since in both cases \(\hat{o}_a^{\circ} \) and \(\hat{o}_c^{\circ} \) take the only possible consistent value \(\hat{o}_a^{\circ} = \hat{b} \circ \hat{a} \) and \(\hat{o}_c^{\circ} = \hat{c} \circ \hat{a} \). Notice that \(R_{\text{copy}} \) can be computed by a circuit of depth 1 because on inputs \(\hat{a}, \hat{b}, \hat{c} \) it needs only to compute \(\hat{o}_a^{\circ}, \hat{o}_c^{\circ} \), both requiring a \(\circ \) operation. The size of \(\text{REC}_{\text{copy}} \) is \(O(k) \) for computing the \(2k \circ \) operations. \(\square \)

Appendix B. Proofs omitted from section 4.4. Our goal is to prove Lemma 4.14, i.e., to show a local reconstructor for \(\text{mult} \) gadgets. First, we present a technical lemma (Lemma B.1), which says that an encoding of 0 cannot be distinguished from an encoding of 1 even given access to noisy leakage of several copies of that encoding (offset by fixed vectors), as well as the inner product of that encoding and another vector whose Hamming weight is not too high. This lemma will then be used in a hybrid argument of Lemma 4.14 to show that the reconstructor we build for the \(\text{mult} \) gadget is leakage indistinguishable.

Specifically, Lemma B.1 talks about statistical closeness of the distributions \(D_0 \) and \(D_1 \) defined as follows.

For any constant \(\ell \), any constant vectors \(\vec{c}_1, \ldots, \vec{c}_\ell, \vec{c} \in \{0,1\}^k \), and any \(b \in \{0,1\} \), let

\[
D_b := D_b(p, \ell, \vec{c}_1, \ldots, \vec{c}_\ell, c) = \left(\langle N_p(\vec{c} \oplus \vec{c}_1), \ldots, N_p(\vec{c} \oplus \vec{c}_\ell) \rangle, \langle \vec{c}, \vec{c} \rangle \right)_{\vec{c} \leftarrow \text{Enc}(b)}.
\]

Here, \(\langle \vec{e}, \vec{c} \rangle \) denotes the inner product of \(\vec{e} \) and \(\vec{c} \).

Lemma B.1. Let \(p \in (0,1/2] \) and \(\ell \in \mathbb{N} \) be constants, and let \(\vec{c}_1, \ldots, \vec{c}_\ell \in \{0,1\}^k \) and \(\vec{c} \in \{0,1\}^k \) be \(k \)-bit vectors such that \(\vec{c} \) has Hamming weight at most \(t \) (and all the other \(\vec{c}_i \) are unrestricted). Then, \(\Delta(D_0; D_1) \leq (1 - (2p)^\ell)^{k-t} \).

Proof. We prove this statement based on two claims. Let \(I \) denote the positions where \(\vec{c} = 0 \), and let \(\vec{e}_I \) denote the restriction of \(\vec{e} \) to the positions in \(I \). For every

\(^{14}\) Notice that the choice of \(f_i \) and the input \(x_i \) may still depend on the circuit’s outputs \(y_1, \ldots, y_{i-1} \).

\(^{15}\) Specifically, the exponential security loss in \(\lambda \) that stems from Lemma 5.1 will not be needed, because 2-adaptivity will not be needed.

© 2014 the Authors
\(\vec{e} \in \{0,1\}^t \) and \(b \in \{0,1\} \), define the distribution \(D_{b,\vec{e}} \) as follows. Construct a vector \(\vec{e} \) such that \(\vec{e}_t = \zeta \), and \(\vec{e}_i \) is a random sharing of the bit \(b' = b \oplus (\zeta, 111\ldots11) \). Generate the distribution \(D_b \) using this vector \(\vec{e} \) and the vectors \(\vec{e}_1, \ldots, \vec{e}_t \).

Claim 3. For every \(\zeta \in \{0,1\}^t \) the statistical distance \(\Delta(D_{0,\vec{e}}; D_{1,\vec{e}}) \leq (1 - (2p)^t)^{k-t} \).

Proof. For a fixed \(\zeta \) the last bit of both distributions \(D_{0,\vec{e}} \) and \(D_{1,\vec{e}} \) is fixed to \(\langle \vec{e}, \vec{c} \rangle = (\zeta, 111\ldots11) \). Additionally, in both distributions it fixes \(t \) bits of each \(\vec{e}_i \) to the same string. Hence, what remains are \(k-t \) coordinates in each \(\vec{e}_i \). By definition of the distribution we have that \(\bigoplus_{j \in [t]} e_j = b' \), with \(b' \) defined as \(b \oplus (\zeta, 111\ldots11) \). Notice that this guarantees that \(\bigoplus_{j \in [t]} e_j = b \). Since the only difference between these two distributions are that in each \(\vec{e}_i \), those \(k-t \) coordinates are either a random encoding of \(0 \oplus (\zeta, 111\ldots11) \) or \(1 \oplus (\zeta, 111\ldots11) \) we get \(\Delta(D_{0,\vec{e}}; D_{1,\vec{e}}) \leq (1 - (2p)^t)^{k-t} \) by applying Lemma 4.3. This concludes the proof. \(\square \)

Claim 4. If \(\Delta(D_{0,\vec{e}}; D_{1,\vec{e}}) \leq \epsilon \) for every \(\zeta \in \{0,1\}^t \), then \(\Delta(D_0; D_1) \leq \epsilon \).

Proof. Obviously the distribution \(D_b \) can alternatively be obtained by first sampling a random \(\zeta \), and then producing a sample from \(D_{b,\vec{e}} \). Such a sampling gives us by an elementary calculation

\[
\Delta(D_0; D_1) \leq (\frac{1}{2})^t 2^t \epsilon = \epsilon.
\]

Putting the two claims together we get that \(\Delta(D_0; D_1) \leq (1 - (2p)^t)^{k-t} \), which concludes the proof. \(\square \)

Proof of Lemma 4.14. The internals of the \texttt{mult} gadget consist of the inputs \((\vec{a}, \vec{b})\), the output \(\vec{q} \), and the intermediate values, namely,

\[
(p^{(1)}, \ldots, p^{(k)}, q^{(1)}, \ldots, q^{(k)}, a^{(1)}, \ldots, a^{(k)}, b^{(1)}, \ldots, b^{(k)}, u, w, z).
\]

The reconstructor \(\text{REC}_{\text{mult}}\) for the \texttt{mult} gadget is a distribution over functions \(R_{\text{mult}} \), which for plausible inputs \((X = (\vec{a}, \vec{b}), Y = (\vec{q}))\) proceeds as follows.

1. Set \(a^{(0)} = \vec{a} \) and \(b^{(0)} = \vec{b} \) and choose uniformly random vectors \(a^{(1)}, \ldots, a^{(k)}, b^{(1)}, \ldots, b^{(k)} \). \(\vec{A} = \{a^{(i)}\}_{i \in [1,k]} \) and \(\vec{B} = \{b^{(i)}\}_{i \in [1,k]} \) can be hardwired into the output of \(R_{\text{mult}} \).
2. From \(a^{(0)}, \ldots, a^{(k)}, b^{(0)}, \ldots, b^{(k)} \) compute for \(i \in [1,k] \) \(p^{(i)} = a^{(i-1)} \oplus a^{(i)} \) and \(q^{(i)} = b^{(i-1)} \oplus b^{(i)} \). All \(\{p^{(i)}\}_{i \in [2,k]} \) and \(\{q^{(i)}\}_{i \in [2,k]} \) can be hardwired into the reconstructor. \(p^{(1)} \) is computed from the reconstructor’s input \(a^{(0)} \) and \(q^{(1)} \) from \(b^{(0)} \), respectively.
3. Choose \(u \) uniformly at random and compute from \(\vec{A} = (a^{(i)})_{i \in [1,k]}, (b^{(i)})_{i \in [1,k]} \), and \(u \) the vector \(\vec{z} \). These values can be hardwired into the reconstructor.
4. Compute \(\vec{w} = \vec{z} \oplus \vec{q} \) from the reconstructor’s input \(\vec{q} \).
5. Output \((\vec{a}, \vec{b}, \{p^{(i)}, q^{(i)}, a^{(i)}, b^{(i)}\}_{i = 1}^{k}, u, \vec{q}, \vec{z}, \vec{w})\).

We first discuss the underlying function class of \(\text{REC}_{\text{mult}} \).

Claim 5. The support of \(\text{REC}_{\text{mult}} \) is in \(\text{LOCAL}(2) \).

Proof. We must show that for each input \(\vec{a}, \vec{b}, \vec{q} \) the output of the reconstructor is either a fixed constant or can be written as one of the inputs plus a constant vector. For input \(\vec{a} \) the other inputs \(\vec{b} \) and \(\vec{q} \) are fixed constants and, hence, the output of \(R_{\text{mult}} \) is constant except \((\vec{a}^{(0)} = \vec{a}, \vec{p}^{(1)} = \vec{a} \oplus \vec{a}^{(1)}) \), where \(\vec{a}^{(1)} \) is a constant vector. The same analysis works for \(\vec{b} \) and \(\vec{q} \), which yields that \(R_{\text{mult}} \in \text{LOCAL}(2) \). \(\square \)

It is easy to see that reconstructed wire assignment differs from the wire assignment produced by a real execution of \texttt{mult}. Nevertheless, we show that the output of the reconstructor (on plausible inputs \(\vec{a}, \vec{b}, \vec{q} \)) is \(N_p \) leakage indistinguishable from
the distribution produced during the operation of the \texttt{mux} gadget on inputs \vec{a} and \vec{b}, conditioned on the output being \vec{q}. There are two main differences between the reconstructor distribution and the real wire distribution. First, the vectors $\vec{a}(i)$ and $\vec{b}(i)$ are uniformly random whereas in the real world, they are random encodings of a (resp., b). Second, in the reconstructor distribution, the bit u is uniformly random whereas in the real world, $u = \vec{R} \odot \vec{S}^T$ (where the matrices \vec{R} and \vec{S} are as in section 3.3).

The indistinguishability is shown by a hybrid argument—consider the following $2k + 1$ hybrids.

- **Hybrid H_0:** this is the real distribution, conditioned on plausible values $\vec{a}, \vec{b}, \vec{q}$.

 We will take an alternative view of this distribution, by first sampling the vectors $\vec{a}(i)$ and $\vec{b}(i)$ as random encodings of a and b, respectively, and then defining the vectors $\vec{r}(i)$ and $\vec{s}(i)$ as

 \[
 \vec{r}(i) = \vec{a}(i-1) \oplus \vec{a}(i) \quad \text{and} \quad \vec{s}(i) = \vec{b}(i-1) \oplus \vec{b}(i)
 \]

 exactly as in the real wire distribution. It is easy to see that this is exactly distributed as the real wire assignment (conditioned on the inputs being \vec{a}, \vec{b} and the output being \vec{q}).

- **Hybrid H_{k-1}, for $1 \leq k \leq k$:** H_k is the same as H_{k-1}, except that the vector $\vec{a}(i)$—which is a random encoding of a in H_{k-1}—is replaced with a uniformly random vector. The vector $\vec{r}(i)$ is computed as $\vec{a}(i-1) \oplus \vec{a}(i)$ and the vector $\vec{s}(i)$ is $\vec{a}(i+1) \oplus \vec{a}(i)$. The rest of the values are computed exactly as in the previous hybrids.

- **Hybrid $H_{k+\ell}$, for $1 \leq \ell \leq k$:** $H_{k+\ell}$ is the same as $H_{k+\ell-1}$, except that the vector $\vec{b}(i)$—which is a random encoding of b in $H_{k+\ell-1}$—is replaced with a uniformly random vector. The vector $\vec{s}(i)$ is computed as $\vec{b}(i-1) \oplus \vec{b}(i)$ and $\vec{s}(i+1)$ is $\vec{b}(i+1) \oplus \vec{b}(i)$. The rest of the values are computed exactly as in the previous hybrids.

- **Hybrid H_{2k+1}: H_{2k+1} is the same as H_{2k} except that the bit $u = \vec{R} \odot \vec{S}^T$ is replaced with a uniformly random bit.

We show that the hybrid H_0 (the real distribution) is indistinguishable from the hybrid H_{2k+1} (the output of the reconstructor) in the following three claims.

Claim 6. For every $p \in (0, \frac{1}{2})$ and $1 \leq k \leq k$, the hybrids H_k and H_{k-1} are $(N_p, \infty, \epsilon(k))$-leakage-indistinguishable, where $\epsilon(k) \leq \exp(-15kp^2) + \exp(-k/512)$.

Proof. The only difference between hybrids H_k and H_{k-1} is in the vector $\vec{a}(i)$, and also, some of the other quantities that are computed using $\vec{a}(i)$. Similarly to Lemma 4.12 we define a distribution F^{ℓ} ($\ell \in [1,k]$) over functions f_S that take as input an encoding \vec{e} and embed it at $\vec{a}(i)$. If \vec{e} is an encoding of a then f_S outputs a wire assignment that is distributed as H_{k-1}. If on the other hand f_S takes as input a random encoding then it produces the distribution H_k. In contrast to Lemma 4.12 where we were mainly concerned that f_S is shallow, in this claim we must guarantee that f_S uses its input only a limited number of times. We solve this by hard-wiring most of f_S outputs directly into the function.

For ease of notation below we will denote the vectors $\vec{r}(i)$ as the row vectors of the matrix \vec{R} (notice that these vectors are not visible to the leakage function), i.e.,

\[
\vec{R} = \begin{pmatrix}
\vec{r}(1) \\
\vdots \\
\vec{r}(k)
\end{pmatrix}
= \left(\begin{pmatrix}
\vec{r}(1) \\
\vdots \\
\vec{r}(j) \\
\vdots \\
\oplus_{j \in [1,k]} \vec{r}(j)
\end{pmatrix}\right).
\]
We define the distribution F^ℓ by drawing f_S as follows.

1. Set $\tilde{b}(0) = \tilde{b}$ and sample uniformly at random $\{\tilde{s}_i\}_{i \in [1,k]}$ which are encodings of 0. Compute $\tilde{b}_i = \tilde{b}_{i-1} \oplus \tilde{s}_i$ and hard-wire the results as fixed outputs into f_S. Notice also that $\{\tilde{s}_i\}_{i \in [1,k]}$ allows us to compute (without making use of the inputs) the matrix \tilde{S}.

2. Hard-wire the vectors $\{\tilde{a}(i)\}_{i \neq \ell}$ into f_S: for $i < \ell$, $\tilde{a}(i)$ is a uniformly random k bit string. For $i > \ell$, $\tilde{a}(i)$ is a uniformly random encoding of a. Further, set $\tilde{a}(\ell) = \tilde{a}$ and compute for all $i \notin \{\ell, \ell + 1\}$ the vectors $\tilde{r}(i) = \tilde{a}(i-1) \oplus \tilde{a}(i)$. Hard-wire the result into f_S.

3. For all $i \neq \ell$ compute $\tilde{r}(i)$ as $\tilde{a}(0) \oplus \tilde{a}(i)$. Hard-wire these results into the description of f_S as intermediate values that will later be used to compute u.

4. On input ϵ, f_S sets $\tilde{a}(\ell) = \epsilon$ and computes $\tilde{r}(\ell) = \tilde{a}^{(\ell-1)} \oplus \tilde{a}(\ell)$ and $\tilde{r}^{(\ell+1)} = \tilde{a}^{(\ell)} \oplus \tilde{a}^{(\ell+1)}$. Further compute $\tilde{r}^{(\ell)}$ as $\tilde{a}(0) \oplus \tilde{a}(\ell)$. The vectors $\tilde{r}(\ell)$ and $\tilde{r}^{(\ell+1)}$ will be part of f_S's output. $\tilde{r}^{(\ell)}$ will be used in the next step to compute the bit u.

5. Notice that the whole matrix \tilde{S} and all rows except $\tilde{r}(\ell)$ of \tilde{R} are hard-wired into f_S. To compute u the function f_S computes $u = \tilde{R} \circ \tilde{S}^T$.

6. From $u, \tilde{A}, \tilde{B}, f_S$ computes \tilde{z} and together with \tilde{q} (which is hard-wired into f_S) the vector $\tilde{w} = \tilde{z} \oplus \tilde{q}$.

By inspection of the above it is easy to see that if ϵ is an encoding of a then $\tilde{a}(\ell)$ is an encoding of a. Since all other values are either computed honestly from $\tilde{a}(\ell)$ or are hard-wired (and thus have the correct distribution), we get $f_S(\epsilon) \equiv H_{i-1}$. Similarly if ϵ is a random vector, then $f_S(\epsilon) \equiv H_i$. Let us next bound $\Delta(H_{i-1}; H_i)$.

Most of the outputs of f_S are hard-wired into the function. There are some exceptions. The values computed in step 4, $\tilde{a}(\ell), \tilde{r}(\ell)$, and $\tilde{r}^{(\ell+1)}$, have the form of ϵ plus some constant. In step 5 we compute u, which indirectly depends on ϵ (via $\tilde{r}(\ell)$). Essentially, for all $i \neq \ell$ we can compute the inner product of the ith row of \tilde{R} and the ith column of \tilde{S} “off-line" and hard-wire the result into f_S as an intermediate value. Additionally, $\tilde{r}(\ell)$ can be written as $\tilde{a}(0) \oplus \tilde{a}(\ell)$, where $\tilde{a}(0)$ is a fixed constant. Hence, the inner product of $\tilde{a}(0)$ and the ℓth column of \tilde{S} is a fixed constant as well. We denote the sum of all these fixed inner products as d. What remains is the inner product of $\tilde{a}(\ell) = \epsilon$ and a fixed constant vector \tilde{c} which represents the ℓth column of \tilde{S}. To sum it up we have $u = \langle \epsilon, \tilde{c} \rangle \oplus d$, where ϵ is a uniformly random fixed vector and d some fixed constant.

Finally, in step 6 we compute vectors \tilde{z} and \tilde{w} of length k^2. $k^2 - k$ bits of these vectors can be fixed and are independent of ϵ. For \tilde{z}, these elements have the form $e_i \cap c_i$ for some constant c_i. For \tilde{w}, they are equal to $e_i \cap c_i \oplus q_i$, where q_i are fixed constants. If the bits c_i are all 1 then we have two vectors of the form ϵ plus a constant.

To conclude, in total we have at most 5 outputs of the form ϵ plus a fixed constant vector, and the bit $\langle \epsilon, \tilde{c} \rangle \oplus d$. If we apply a noisy function N_p (for some $p \in (0, 1/2]$) to the outputs of f_S, then conditioned by ϵ having Hamming weight at most $17k/32$, we get with Lemma B.1 that the statistical distance between H_{i-1} and H_i is upper bounded by

$$
(1 - (2p)^5)^{15k/32} \leq \exp(-15kp^5)
$$

(here we are using $(1-x) \leq \exp(-x)$). Since ϵ is a random k bit vector, the probability that its Hamming is greater than $17k/32$ is less than $\exp(-k/512)$ by Hoeffding's
inequality [23]. Thus, we get
\[
\Delta(H_{i-1}, H_i) \leq \Delta(H_{i-1}, H_i|E) \Pr[E] + \Delta(H_{i-1}, H_i|\bar{E}) \Pr[\bar{E}]
\]
\[
< \exp(-15kp^5)(1 - \exp(-k/512)) + 1 \cdot \exp(-k/512)
\]
\[
< \exp(-15kp^5) + \exp(-k/512).
\]

Claim 7. For every \(p \in (0, \frac{1}{2}) \) and \(1 \leq \ell \leq k \), the hybrids \(H_{k+\ell} \) and \(H_{k+\ell-1} \) are \((N_p, \infty, \epsilon(k))-leakage-indistinguishable, where \(\epsilon(k) \leq \exp(-15kp^5) + \exp(-k/512) \).

Proof. The proof follows along the lines of the proof of Claim 6.

Claim 8. For every \(p \in (0, \frac{1}{2}] \), the hybrids \(H_{2k+1} \) and \(H_{2k} \) are \((N_p, \infty, \epsilon(k))-leakage-indistinguishable, where \(\epsilon(k) \leq \exp(-15kp/16) + \exp(-k/512) \).

Proof. The difference between the two hybrids is that in the former, the bit \(u \) is computed as \(\tilde{R} \cap \tilde{S} \), whereas in the latter, it is uniformly random. To show that they are leakage indistinguishable, observe that for every setting of the matrix \(\tilde{S} \) and all the rows of \(\tilde{R} \) except the first, \(u = d \oplus (\tilde{r}^{(1)}, \tilde{c}) \), where \(d \) is a fixed bit that depends on \(\tilde{S} \) and the remaining rows of \(\tilde{R} \), and \(\tilde{c} \) is the first column of \(\tilde{S} \).

Assuming \(\epsilon \) has Hamming weight at least 15k/32 (which it does with probability at least 1 - \(\exp(-k/512) \) by Hoeffding’s inequality [23]), distinguishing \(u \) from random is equivalent to distinguishing the XOR of at least 15k/32 bits of \(\tilde{r}^{(1)} \) from random given \(N_p(\tilde{r}^{(1)}) \). By Lemma 4.3, it cannot be distinguished from random with advantage better than \((1 - 2p)^{15k/32} \leq \exp(-15kp/16) \) (using \((1 - x) \leq \exp(-x)) \).

Putting the three claims together we get that the distribution output by the reconstructor and the real wire distribution are \((N_p, \infty, \epsilon(k))-leakage-indistinguishable where
\[
\epsilon(k) \leq k \cdot (\exp(-15kp^5) + \exp(-k/512))
\]
\[
+ k \cdot (\exp(-15kp^5) + \exp(-k/512)) + \exp(-15kp/16) + \exp(-k/512)
\]
\[
\leq (2k + 1)(\exp(-15kp^5) + \exp(-k/512))
\]
for any constant \(p \in (0, 1/2] \) (because \(15kp/16 \geq 15kp^5 \) for \(p \leq 1/2 \)). This concludes the proof.

Appendix C. Proofs omitted from section 4.5.

Proof of Corollary 4.16. Recall from the corollary statement that \(\epsilon_1 > 0, \tau_1 > 0, \) and \(L_{\Pi}, L_{\tilde{C}} \) are some leakage classes that satisfy \(L_{\tilde{C}} \circ \text{SHALLOW}(3, O(k^2)) \subseteq L_{\Pi} \). By definition, TR\(_C\) is an encoding based circuit transformation, where by section 4.3 all gadgets in \(\tilde{C} \) are rerandomizing and \((L_{\tilde{C}}, \tau_{\tilde{g}}, \epsilon_{\tilde{g}})-reconstructible by \text{SHALLOW}(2, O(k^2)) \) for some parameters \(\tau_{\tilde{g}}, \epsilon_{\tilde{g}} \). Since our transformation has to work for any circuit we can assume without loss of generality\(^{16}\) that \(C \) is made solely of \(\circ \) gates. By Lemma 4.11, we get then \(\tau_{\tilde{g}} = \tau_1 - O(k^2) \) and \(\epsilon_{\tilde{g}} = k\epsilon_1 \).

We are now ready to apply Lemma 4.15 and get
\[
\mathcal{R}_{\tilde{C}} = (n_1 + n_\Omega) \times \mathcal{R}_{\tilde{g}} = (n_1 + n_\Omega) \times \text{SHALLOW}(2, O(k^2)) = \text{SHALLOW}(2, (n_1 + n_\Omega)O(k^2)).
\]

Notice that \((n_1 + n_\Omega) \times \mathcal{R}_{\tilde{g}} \) denotes parallel execution of the reconstructors with different inputs. Further, we have

\(^{16}\) We can make this assumption because the parameters are worst in this case.
\(\tau_{\hat{C}} \leq \min(\tau_{\Pi}, \tau_{\tilde{g}}) - s\tau_{\text{samp}} = \tau_{\Pi} - O(sk^2) \), since all our gadgets have size \(O(k^2) \).

- \(\epsilon_{\hat{C}} \leq s(m\epsilon_{\Pi} + \epsilon_{\tilde{g}}) = s\epsilon_{\Pi}(k + 2) \) (because every gate has fan-in at most two, the number of wires \(m \) is at most \(2s \)).

This concludes the proof.

Proof of Lemma 4.17. We can view \(\circlearrowright \) as a circuit composed of \(k \) \(\hat{\oplus} \) gadgets (from \(\text{compress} \)) and a single \(\text{mult} \) gadget. Hence, the circuit consists of \(s + k + 1 \) gadgets, takes \(n_1 = 2 \) inputs (in encoded form), outputs \(n_0 = 1 \) encodings, and has \(m = 2k - 2 \) wire bundles that connect gadgets. In section 4.4 we showed that \(\circlearrowright \) is \((L, \infty, 0) \)-reconstructible by \(\text{LOCAL}(3) \), for any \(L \), and \(\text{mult} \) is \((N_p, \infty, \epsilon_{\text{mult}}) \)-reconstructible by \(\text{LOCAL}(2) \) with \(\epsilon_{\text{mult}} \leq (2k + 1)(\exp(-15kp^5) + \exp(-k/512)) \).

Further, by Proposition 4.4 the \(\Pi_{\text{parity}} \) encoding is \((N_p \circ \text{LOCAL}(6), \infty, (1 - (2p)^6)^k) \)-leakage indistinguishable. Note that \(1 - (2p)^6 \leq \exp(- (2p)^6) \).

We can put these things together by Lemma 4.15. In fact, because \(\epsilon_{\hat{C}} = 0 \) for all the \(\circlearrowright \) gadgets, we can improve the analysis of Lemma 4.15 (which assumed, for simplicity, that every gadget has the same \(\epsilon \) as the worst gadget): since Claim 1 is applied to \(\text{mult} \) only once, we can replace \(s\epsilon_{\tilde{g}} \) by just \(\epsilon_{\text{mult}} \) in the statement of Lemma 4.15. We therefore get that \(\circlearrowright \) is \((N_p, \infty, \epsilon_{\circlearrowright}) \)-reconstructible by \(\text{LOCAL}(3) \) with

\[
\epsilon_{\circlearrowright} \leq m\epsilon_{\Pi} + \epsilon_{\text{mult}} = (2k - 2) \cdot (1 - (2p)^6)^k + (2k + 1)(\exp(-15kp^5) + \exp(-k/512)) \\
\leq (2k + 1)(\exp(-64kp^6) + \exp(-15kp^5) + \exp(-k/512)).
\]

Notice that the conditions on the leakage classes required by Lemma 4.15 are satisfied. The reason for this is that by our choice of the parameters the \(\Pi_{\text{parity}} \) encoding tolerates leakages from \(2 \times \text{LOCAL}(3) = \text{LOCAL}(6) \), where \(2 \times \text{LOCAL}(3) \) is parallel execution on the same inputs.

Proof sketch of Corollary 4.18. The proof is similar to the proof of Corollary 4.16 and we only provide a sketch here. By definition, \(TR_N \) is an encoding-based circuit transformation, where by section 4.4 all gadgets in \(\hat{C} \) are rerandomizing and \((N_p, \tau_{\tilde{g}}, \epsilon_{\tilde{g}}) \)-rerandomizable by \(\text{LOCAL}(3) \) for some parameters \(\tau_{\tilde{g}}, \epsilon_{\tilde{g}} \). Since our transformation has to work for any circuit we can assume without loss of generality\(^\text{17}\) that \(C \) is made solely of \(\circlearrowright \) gates. By Lemma 4.17, we get then \(\tau_{\tilde{g}} = \infty, L_{\tilde{g}} = N_p \), and \(\epsilon_{\tilde{g}} \leq (2k + 1)(\exp(-64kp^6) + \exp(-15kp^5) + \exp(-k/512)) \).

Further, by Proposition 4.4 the \(\Pi_{\text{parity}} \) encoding is \((L_{\Pi}, \infty, (1 - (2p)^6)^k) \)-leakage indistinguishable for \(L_{\Pi} = N_p \circ \text{LOCAL}(6) \).

We are now ready to apply Lemma 4.15 and get \(R_{\hat{C}} \subseteq \text{LOCAL}(3) \). Further, we have

- \(\tau_{\hat{C}} \leq \infty \),
- \(\epsilon_{\hat{C}} \leq s(2(1 - (2p)^6)^k + (2k + 1)(\exp(-64kp^6) + \exp(-15kp^5) + \exp(-k/512)) \leq s(2k + 3)(\exp(-64kp^6) + \exp(-15kp^5) + \exp(-k/512)) \) (here we use the fact that every gate has fan-in at most two, the number of wires \(m \) is at most \(2s \)).

This concludes the proof.

Appendix D. Proofs omitted from section 4.6.

Proof of Lemma 4.19. Without loss of generality assume that \(\hat{C} \) contains at least one rerandomizing and reconstructible gadget (i.e., \(\hat{C} \) is not the empty circuit). The simulator \(S \) is formally defined in Figure 8. \(S \) does not know the real initial secret state \(m_0 \) but instead uses random encodings \((Z_0, \ldots, Z_\eta) \). Furthermore, \(S \) computes

\(^{17}\)We can make this assumption because the parameters are worst in this case.
the internal wires of \hat{C}^* for each round $i \in [1,q]$ with the reconstructor REC_β of the corresponding gadgets (cf. line 8 in Figure 8). We show in this lemma that S running in experiment $\text{Exp}_\text{TR}^{\text{sim}}$ produces an output that is indistinguishable from A’s output in $\text{Exp}_\text{TR}^{\text{real}}$ (cf. Definition 3.1 in section 3 for the description of these experiments). The proof relies on techniques developed in Lemma 4.15 and uses a hybrid argument with a series of hybrid simulators.

The first hybrid simulators will replace the real wire assignment of \hat{C}^* with wire assignments produced by reconstructors of the gadgets. Then, we replace step by step the elements of the secret state \vec{m}_i and the connecting wires (between the gadgets) with random encodings. Once we have done this replacement, the simulator is as in Figure 8.

More formally, we consider the following series of hybrid simulators.

- Simulators S_1^0, \ldots, S_q^0: for each $i \in [1,q]$, let $j = i \mod q$. We define the simulator S_1^i as S_1^{i-1} except that in the $([i/q] + 1)$th execution, we replace the $(j+1)$th gadget \hat{g} with its reconstructor $R_\beta \leftarrow \text{REC}_\beta$. Notice that S_1^i is essentially the real execution of the original circuit. Notice further that as in Lemma 4.15 the inputs and outputs of the reconstructor are as in the real execution with \hat{g}.

- Simulators S_2^0, \ldots, S_2^q: for each $i \in [1,q]$, we define the simulator S_2^i as S_1^{i-1} except that we replace the ith connecting wire bundle with a random encoding sampled from $\text{Enc}(\cdot)$. Notice that in each of the q executions of \hat{C}^* there are at most m connecting wires.

- Simulators $S_0^0, S_0^1, \ldots, S_0^n, S_1^0, \ldots, S_1^n, S_2^0, \ldots, S_2^n$: S_0^0 is defined as S_1^0;

- S_0^i for $i \in [0,q], j \in [1,n]$: This is as the previous simulator, but where the jth element of the ith state is replaced with a random encoding.

Notice that in the simulation given by S_2^q the simulator essentially replaces the wire assignment of \hat{C}^* with the wire assignment produced by the reconstructor of the stateless circuit \hat{C}^*. Hence, the indistinguishability of the simulations given by S_1^0 and S_2^q follows essentially from Lemma 4.15. We repeat the important parts here to obtain the final parameters for our result.

Before we show indistinguishability of the hybrid simulators, we notice that for ease of notation we omit explicitly specifying the wire assignment for the encoder and decoder gadgets (i.e., W_E and W_D in Figure 8). Indeed, we can easily incorporate them into the simulation, since their inputs and outputs are known to the simulator.

The indistinguishability of the hybrid simulations S_1^{i-1} and S_1^i, follows directly from Claim 1 (see Lemma 4.15 in section 4.5) where it was shown that for transformed stateless circuits we can replace the real wire assignments of gadgets with the wire assignments of reconstructors. This yields that the computational distance between the simulation of S_1^{i-1} and S_1^i is upper bounded by ϵ_β for any (\mathcal{L},τ_A)-adversary and distinguisher running in time τ_D, where $\mathcal{L} \subseteq \mathcal{L}_\beta$ and $\tau_A + \tau_D \leq \tau_\beta - qs_{\text{amp}}$. By applying this result repeatedly over the q rounds and s gates that are evaluated in each round, we get for any (\mathcal{L},τ_A)-adversary A

$$\text{Exp}_\text{TR}^{\text{real}}(A, \mathcal{L}, q, C, m_0, k) \approx_{\tau_D,q,s,\epsilon_\beta} \text{Exp}_\text{TR}^{\text{sim}}(S_1^q, A, q, C, m_0, k).$$

We next need to show that for each $i \in [1,q \cdot m]$ the simulations given by S_2^{i-1} and S_2^i are computationally close. That is, we can show that for each connecting wire
we can replace the real encoding with a random encoding without getting noticed. This was shown in Claim 2 (cf. Lemma 4.15 in section 4.5). More precisely, the computational distance between the simulation of S_{2}^{t-1} and S_{2}^{t} is upper bounded by ϵ_{II} for any (L', τ_{A})-adversary and distinguisher running in time τ_{D}, where $L' \circ (2 \times R_{g}) \subseteq L_{II}$ and $\tau_{A} + \tau_{D} \leq \tau_{II} - qs\tau_{\text{samp}}$. Applying this result repeatedly over the q rounds and m wires for each round, we get for any (L', τ_{A})-adversary A

\begin{equation}
\text{Exp}_{\text{TR}}^{\text{sim}}(S_{2}^{t}, A, q, C, m_{0}, k) \approx_{\tau_{D}, qm - \epsilon_{II}} \text{Exp}_{\text{TR}}^{\text{sim}}(S_{2}^{m}, A, q, C, m_{0}, k).
\end{equation}

Notice that in the simulation of $S_{0,0}$ we replaced the gadgets in all of the q rounds by reconstructors and the encodings on the connecting wires between the gadgets by random encodings. To obtain our final simulation, we show that we can replace step by step the memory by random encodings. We prove this along the lines of Claim 2 in Lemma 4.15. For ease of notation, we identify in the following, $S_{i,0}$ with $S_{i-1,n}$, for $i > 0$.

Claim 9. Suppose Π is 2-adaptive $(L_{2II}, \tau_{2II}, \epsilon_{2II})$-leakage-indistinguishable, A is a q-adaptive (L_{W}, τ_{W})-adversary such that $(L_{W} \circ R_{g}) \subseteq L_{2II}$, where R_{g} is the class of reconstructors for gadgets g, and τ_{D} is the distinguisher running time satisfying $\tau_{W} + \tau_{D} \leq \tau_{II} - qs\tau_{\text{samp}}$. Then for any initial state m_{0} and any $i \in [0, q], j \in [1, n]$

\begin{equation}
\text{Exp}_{\text{TR}}^{\text{sim}}(S_{i,j-1}, A, q, C, m_{0}, k) \approx_{\tau_{D}, \epsilon_{II}} \text{Exp}_{\text{TR}}^{\text{sim}}(S_{i,j}, A, q, C, m_{0}, k).
\end{equation}

Proof. We prove this claim by contradiction. Suppose there exists an adversary A, a distinguisher D, a state m_{0}, and values $i \in [0, q], j \in [1, n]$ such that (D.3) does not hold, then we build a 2-adaptive (L_{2II}, τ_{2II})-adversary A_{II} that distinguishes an encoding of the jth element of m_{i} from a random encoding. Such A_{II} will simulate the environment for A, placing its target encoding as the jth encoding in the ith state. Notice that A_{II} can observe its target encoding twice. This enables the simulator to answer to all of A’s queries (x_{ℓ}, f_{ℓ}) in a consistent way.

We distinguish three cases to answer the query $(f_{\ell}, x_{\ell}), \ell \in [1, q]$, depending on the value of i.

1. **The ℓth observation does not contain the ith state:** For such a query A_{II} knows the secret inputs and outputs (which either is the ith real state or a random encoding) and can compute the answer correctly with the appropriate reconstructor. This simulation is identical to the simulation of $S_{i,j-1}$ (which is identical to $S_{i,j}$ for such queries).

2. **The $\ell = (i + 1)$th observation accesses the ith state as part of the input memory:** A_{II} puts its target encoding at the jth position of the ith state and uses the reconstructor (together with other hard-wired inputs) to compute a wire assignment for \hat{C}^{*}. If the target encoding encodes the element of the real state then the simulation is identical to $S_{i,j-1}$. On the other hand, if it is an encoding of a random value, then the simulation is identical to $S_{i,j}$. The difficulty is that A_{II} has to come up with a wire assignment for \hat{C}^{*} that is consistent with the target encoding. Since the target encoding is only known to the leakage function, this has to be done inside the leakage function. Hence, as part of the leakage function, we run the appropriate reconstructor REC_{g} for the gadget that has the target value as input.

3. **The $\ell = i$th observation accesses the ith state as part of the output:** The analysis is similar to step 2, except that inside the leakage function, we need to use the reconstructor for the gadget that outputs the target encoding.

© 2014 the Authors
A crucial point in the above simulation is that a consistent simulation requires A_0 to query its target oracle twice: once when the ith state is an input to an evaluation of C^* (i.e., in the $(i + 1)$th round), and a second time when it is part of the output (i.e., in the ith round). This is the reason why we need to rely on a 2-adaptive leakage-indistinguishable encoding scheme. For the details we refer the reader to Claim 2 in the proof of Lemma 4.15. □

Applying Claim 9 repeatedly, we obtain

(D.4) $\text{Exp}^{\text{sim}}_{TR}(S^{0,0}, A, q, C, m_0, k) \approx_{\tau_{D,q_{\text{sec3}}+q_{n_{\text{sec2}}}+(q+1)n_{\text{sec2}}}} \text{Exp}_{TR}^{\text{sim}}(S^{0,0}, A, q, C, m_0, k)$.

Note that (D.1), (D.2), and (D.4) hold as long as $\tau_A + \tau_D \leq \min(\tau_{11}, \tau_{21}, \tau_{g}) - qs_{\text{tamp}}$. Combining them and recalling that the simulation given by S^0_0 is identical to the simulation given by S^0, and the simulation given by $S^1_{\text{sec}m}$ is identical to the simulation of $S^{0,0}$, we get

$\text{Exp}_{TR}^{\text{eval}}(A, L, q, C, m_0, k) \approx_{\tau_{D,q_{\text{sec3}}+q_{n_{\text{sec2}}}+(q+1)n_{\text{sec2}}}} \text{Exp}_{TR}^{\text{sim}}(S, q, C, m_0, k)$.

Appendix E. Proofs omitted from section 5.

Proof of Lemma 5.1. Assume for contradiction that D and E are not 2-adaptive (L', $2^{-\lambda \tau}, \epsilon$)-leakage-indistinguishable, then there exists a 2-adaptive (L', $2^{-\lambda \tau}$)-adversary A' that breaks the leakage indistinguishability of C and D with functions from L'. We will build a (L, τ)-adversary A such that

$$|\Pr[A^{\text{Eval}(D,\cdot)} = 1] - \Pr[A^{\text{Eval}(E,\cdot)} = 1]| > \epsilon.$$

A runs A' as a subroutine and has to adaptively answer its 2 leakage queries f_1, f_2, while having only a single query access to its target oracle Eval (i.e., with the function $f \in L$). We will resolve this by letting f simulate the adaptivity, and outputting the results of both leakage queries f_1 and f_2. This will increase the size of the function f exponentially in λ.

A runs in two phases. A learning phase, where it is supposed to learn all possible leakage functions that A' may pick for the second leakage query. Then, a leakage phase, where it builds a leakage function, obtains valid leakage from Eval with just a single query, and finally returns the reply to A'.

The learning phase is pretty simple: A runs A' as a subroutine and gets back f_1. Since A is only allowed to query Eval once, it cannot query Eval with f_1 directly. Instead, it needs to figure out the f_2 that A' will use as its second query for every possible return value $\Lambda \in \{0, 1\}^\lambda$ of f_1. To do so, it rewinds A' 2^λ times, each time giving a different Λ to A' to obtain the function f_2^Λ. (Observe that some values of Λ may be invalid for the leakage function f_1. This might give A' an indication that she is run in a simulated environment; in that case, A' may run forever, but A will stop her after $2^{-\lambda \tau}$ steps.)

Let us now describe the leakage phase. A will build its leakage function f as follows: on input S, f computes $\Lambda_1 = f_1(S)$, $f_2^{\Lambda_1}(S)$, and outputs both values.

The rest of the proof is straightforward: A uses its return from the oracle Eval to answer the two leakage queries f_1, f_2 of A'. Since this is a perfect simulation, we get that if A' can distinguish with advantage more than ϵ, then so can A. Notice that the running time of A is $2^{-\lambda \tau}2^\lambda \approx \tau$.

We need to compute the circuit complexity of f. All 2^λ possible functions of f_2 need to be hardwired into the circuit, but they can be computed in parallel with f_1 (so they increase the size, but not the depth of the circuit). Then, the output of one
of these functions needs to be “selected” according to the output of \(f_1 \). This selection can be done by increasing the depth by 2 (not counting NOT gates) and size \(O(2^\lambda) \) (cf. Figure 9 for the case when \(\lambda = 1 \)). Thus, we get \(\mathcal{L}' = \mathcal{C}(d - 2, O(s2^{-\lambda}), \lceil \lambda/2 \rceil) \) as stated in the lemma.

Acknowledgments. We thank Yuval Ishai for discussion on [24] and pointing out the result in [9]. Thanks also to Ran Raz and Debajyoti Bera for discussions on circuit lower bounds, and Ronen Shaltiel for discussions on alternative constructions. We are grateful to Eric Miles and Emanuele Viola for pointing out that a claim made in a previous version of our paper—namely, that our construction can achieve security against \(\text{ACC}^0[p] \) circuits—required stronger circuit lower bounds than are currently known. We appreciate the detailed and helpful comments made by anonymous referees.

REFERENCES

