Observation of the $B[0 \overline{s}] J/K[0 \overline{S}] K^\pm$ decay

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1007/JHEP07(2014)140</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer-Verlag Berlin Heidelberg</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 25 01:08:53 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/91164</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Observation of the $B^0_s \rightarrow J/\psi K^0_s K^\mp\pi^\mp$ decay

The LHCb collaboration

E-mail: Matthew.Reid@warwick.ac.uk

Abstract: Decays of the form $B^0_{(s)} \rightarrow J/\psi K^0_s h^+ h^\prime -$ ($h^\prime = K, \pi$) are searched for in proton-proton collision data corresponding to an integrated luminosity of 1.0 fb$^{-1}$ recorded with the LHCb detector. The first observation of the $B^0_s \rightarrow J/\psi K^0_s K^\pm\pi^\mp$ decay is reported, with significance in excess of 10 standard deviations. The $B^0 \rightarrow J/\psi K^0_s K^+ K^-$ decay is also observed for the first time. The branching fraction of $B^0 \rightarrow J/\psi K^0_s \pi^+\pi^-$ is determined, to significantly better precision than previous measurements, using $B^0 \rightarrow J/\psi K^0_s$ as a normalisation channel. Branching fractions and upper limits of the other $B^0_{(s)} \rightarrow J/\psi K^0_s h^+ h^\prime -$ modes are determined relative to that of the $B^0 \rightarrow J/\psi K^0_s \pi^+\pi^-$ decay.

Keywords: Hadron-Hadron Scattering, Branching fraction, B physics

ArXiv ePrint: 1405.3219
1 Introduction

All current experimental measurements of CP violation in the quark sector are well described by the Cabibbo-Kobayashi-Maskawa mechanism \cite{1, 2}, which is embedded in the framework of the Standard Model (SM). However, it is known that the size of CP violation in the SM is not sufficient to account for the asymmetry between matter and antimatter observed in the Universe; hence, additional sources of CP violation are being searched for as manifestations of non-SM physics.

The measurement of the phase \(\phi_s \equiv -2 \arg \left(-V_{ts} V_{ub}^*/V_{cs} V_{cb}^* \right) \) associated with \(B_s^0 - \bar{B}_s^0 \) mixing is of fundamental interest (see, e.g., ref. \cite{3} and references therein). To date, only the decays \(B_s^0 \rightarrow J/\psi \phi \) \cite{4–8}, \(B_s^0 \rightarrow J/\psi \pi^+ \pi^- \) \cite{9, 10} and \(B_s^0 \rightarrow \phi \phi \) \cite{11} have been used to measure \(\phi_s \). To maximise the sensitivity to all possible effects of non-SM physics, which might affect preferentially states with certain quantum numbers, it would be useful to study more decay processes. Decay channels involving \(J/\psi \) mesons are well-suited for such studies since the \(J/\psi \rightarrow \mu^+ \mu^- \) decay provides a distinctive experimental signature and allows a good measurement of the secondary vertex position. Observation of the decay \(B_s^0 \rightarrow J/\psi \pi^+ \pi^- \pi^+ \pi^- \), with a significant contribution from the \(J/\psi f_1(1285) \) component, has recently been reported by LHCb \cite{12}. There are several unflavoured mesons, including \(a_1(1260) \), \(f_1(1285) \), \(\eta(1405) \), \(f_1(1420) \) and \(\eta(1475) \), that are known to decay to \(K_S^0 K^± \pi^\mp \) \cite{13}, and that could in principle be produced in \(B_s^0 \) decays together with a \(J/\psi \) meson. If such decays are observed, they could be used in future analyses to search for CP violation.
No measurements exist of the branching fractions of \(B^0_{(s)} \rightarrow J/\psi K^0_S K^\pm \pi^\mp \) decays. The decays \(B^0 \rightarrow J/\psi K^0_S \pi^+ \pi^- \) [14–16] and \(B^0 \rightarrow J/\psi K^0_S K^+ K^- \) [17, 18] have been previously studied, though the measurements of their branching fractions have large uncertainties. In addition to being potential sources of “feed-across” background to \(B^0_{(s)} \rightarrow J/\psi K^0_S K^\pm \pi^\mp \), these decays allow studies of potential exotic charmonia states. For example, the decay chain \(B^+ \rightarrow X(3872)K^+ \) with \(X(3872) \rightarrow J/\psi \pi^+ \pi^- \) has been observed by several experiments [19–21], and it is of interest to investigate if production of the \(X(3872) \) state in \(B^0 \) decays follows the expectation from isospin symmetry. Another reported state, dubbed the \(X(4140) \), has been seen in the decay chain \(B^+ \rightarrow X(4140)K^+ \), \(X(4140) \rightarrow J/\psi \phi \) by some experiments [22–24] but not by others [25], and further experimental studies are needed to understand if the structures in the \(J/\psi \phi \) system in \(B^+ \rightarrow J/\psi \phi K^+ \) decays are of resonant nature. In addition, the relative production of an isoscalar meson in association with a \(J/\psi \) particle in \(B^0 \) and \(B^0_{(s)} \) decays can provide a measurement of the mixing angle between the \(\frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}| \) and \(|s\bar{s}| \) components of the meson’s wavefunction [26–28]. Therefore studies of \(B^0_{(s)} \rightarrow J/\psi K^0_S K^\pm \pi^\mp \) decays may provide further insights into light meson spectroscopy.

In this paper, the first measurements of \(B^0 \) and \(B^0_{(s)} \) meson decays to \(J/\psi K^0_S K^\pm \pi^\mp \) final states are reported. All \(J/\psi K^0_S h^+h^\mp \) final states are included in the analysis, where \(h^{(t)} = K, \pi \). The inclusion of charge-conjugate processes is implied throughout the paper. The \(J/\psi \) and \(K^0_S \) mesons are reconstructed through decays to \(\mu^+ \mu^- \) and \(\pi^+ \pi^- \) final states, respectively. The analysis strategy is to reconstruct the \(B \) meson decays with minimal bias on their phase-space to retain all possible resonant contributions in the relevant invariant mass distributions. If contributions from broad resonances overlap, an amplitude analysis will be necessary to resolve them. Such a study would require a dedicated analysis to follow the exploratory work reported here.

This paper is organised as follows. An introduction to the LHCb detector and the data sample used in the analysis is given in section 2, followed by an overview of the analysis procedure in section 3. The selection algorithms and fit procedure are described in sections 4 and 5, respectively. In section 6 the phase-space distributions of the decay modes with significant signals are shown. Sources of systematic uncertainty are discussed in section 7 and the results are presented together with a summary in section 8.

2 The LHCb detector

The analysis is based on a data sample corresponding to an integrated luminosity of 1.0 fb\(^{-1}\) of \(pp \) collisions at centre-of-mass energy \(\sqrt{s} = 7 \) TeV recorded with the LHCb detector at CERN. The LHCb detector [29] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \), designed for the study of particles containing \(b \) or \(c \) quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the \(pp \) interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [30] placed downstream of the magnet. The combined tracking system provides a momentum measurement with relative uncertainty that varies from 0.4% at low momentum to 0.6% at 100 GeV/c, and impact pa-
rameter resolution of 20 µm for tracks with large transverse momentum, \(p_T \). Different types of charged hadrons are distinguished by information from two ring-imaging Cherenkov detectors [31]. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [32].

The trigger [33] consists of hardware and software stages. The events selected for this analysis are triggered at the hardware stage by a single muon candidate with \(p_T > 1.48 \) GeV/c or a pair of muon candidates with \(p_T \) product greater than \((1.296 \text{ GeV/c})^2\). In the software trigger, events are initially required to have either two oppositely charged muon candidates with combined mass above \(2.7 \text{ GeV/c}^2\), or at least one muon candidate or one track with \(p_T > 1.8 \) GeV/c with impact parameter greater than 100 µm with respect to all pp interaction vertices (PVs). In the subsequent stage, only events containing \(J/\psi \to \mu^+\mu^- \) decays that are significantly displaced from the PVs are retained.

Simulated events are used to study the detector response to signal decays and to investigate potential sources of background. In the simulation, pp collisions are generated using PYTHIA [34] with a specific LHCb configuration [35]. Decays of hadronic particles are described byEvtGen [36], in which final state radiation is generated using PHOTOS [37]. The interaction of the generated particles with the detector and its response are implemented using the Geant4 toolkit [38, 39] as described in ref. [40].

3 Analysis overview

The main objective of the analysis is to measure the relative branching fractions of the \(B_0(S) \to J/\psi K_0^0 h^+ h^{(t)}- \) decays. Since the most precise previous measurement of any of these branching fractions is \(B(B_0 \to J/\psi K^0 \pi^+\pi^-) = (10.3 \pm 3.3 \pm 1.5) \times 10^{-4} \) [14], where the first uncertainty is statistical and the second is systematic, conversion of relative to absolute branching fractions would introduce large uncertainties. To alleviate this, a measurement of the branching fraction of \(B_0 \to J/\psi K_0^0 \pi^+\pi^- \) relative to that of \(B_0 \to J/\psi K_S^0 \) is also performed. For this measurement the optimisation of the selection criteria is performed based on simulation, whereas for the \(B_0(S) \to J/\psi K_S^0 h^+ h^{(t)}- \) relative branching fraction measurements, the optimisation procedure uses data. The two sets of requirements are referred to as “simulation-based” and “data-based” throughout the paper. The use of two sets of requirements is to avoid bias in the measurements, since the selection requirements for the yield of the numerator in each branching fraction ratio are optimised on independent samples. Furthermore, the regions of the invariant mass distributions potentially containing previously unobserved decays were not inspected until after all analysis procedures were established.

The relative branching fractions are determined from

\[
\frac{B(B^0 \to J/\psi K_0^0 \pi^+\pi^-)}{B(B^0 \to J/\psi K_S^0)} = \frac{\epsilon_{B^0 \to J/\psi K_0^0}}{\epsilon_{B^0 \to J/\psi K_S^0}} \frac{N_{B^0 \to J/\psi K_0^0 \pi^+\pi^-}}{N_{B^0 \to J/\psi K_S^0}},
\]

(3.1)
where ϵ represents the total efficiency, including effects from acceptance, trigger, reconstruction, and selection and particle identification requirements. The relative efficiencies are determined from samples of simulated events, generated with either a phase-space distribution for previously unobserved decay modes, or including known contributions from resonant structures. The relevant ratio of fragmentation fractions, denoted f_d/f_q, is either trivially equal to unity or is taken from previous measurements, $f_d/f_q = 0.259 \pm 0.015$ [41–43]. The measured numbers N of decays for each channel are determined from fits to the appropriate invariant mass spectra. To determine the ratios in eq. (3.2), a simultaneous fit to all $J/\psi K^0_S h^+ h^0 \pi^-$ final states is used to account for possible feed-across coming from kaon-pion misidentification. The contribution from $\psi(2S)$ decays to the $J/\psi K^0_S \pi^+ \pi^-$ final state is vetoed, and the veto is inverted to determine the relative branching fraction for $B^0 \to \psi(2S) K^0_S$ using a relation similar to that of eq. (3.1). In eq. (3.2) effects due to the width difference between mass eigenstates in the B^0_S system [44] are neglected, since the final states in $B^0 \to J/\psi K^0_S h^+ h^0 \pi^-$ decays are expected to be CP mixtures. (The quantity determined using eq. (3.2) is the time-integrated branching fraction.)

The long lifetime of K^0_S mesons and the large boost of particles produced in LHC pp collisions causes a significant fraction of K^0_S decays to occur outside the VELO detector. Following refs. [45–49], two categories are considered: “long”, where both tracks from the $K^0_S \to \pi^+ \pi^-$ decay products contain hits in the VELO, and “downstream”, where neither does. The long candidates have better momentum and vertex resolution, so different selection requirements are imposed for candidates in the two K^0_S decay categories, and the ratios given in eqs. (3.1) and (3.2) are determined independently for each. These are then combined and the absolute branching fractions obtained by multiplying by the relevant normalisation factor. Upper limits are set for modes where no significant signal is observed.

In addition, the phase-space is inspected for resonant contributions from either exotic or conventional states in channels where significant signals are seen. The presence or absence of resonances could guide future analyses. However, no attempt is made to determine the relative production rates of the different possible contributions.

4 Selection requirements

After a set of preselection requirements to allow B candidates to be formed, additional criteria are imposed based on the output of a recursive algorithm designed to optimise the signal significance for $B^0_{(s)} \to J/\psi K^0_S h^+ h^0 \pi^-$ decays. For the measurement of the ratio of $B^0 \to J/\psi K^0_S \pi^+ \pi^-$ and $B^0 \to J/\psi K^0_S$ branching fractions, the same requirements are also applied to $B^0 \to J/\psi K^0_S$ candidates, with the exception of those on variables that are related to the two extra pions in the numerator final state.

To optimise the simulation-based selection, used only for the determination of the relative branching fraction of $B^0 \to J/\psi K^0_S \pi^+ \pi^-$ and $B^0 \to J/\psi K^0_S$ decays, the algorithm is applied to simulated signal events and to background events in the data. These background
events are taken from invariant mass sideband regions that are not otherwise used in the analysis. For the tuning of the data-based selection, used for the relative branching fraction measurements of $B^0(s) \rightarrow J/\psi K^0_s h^+ h'^-$ decays, the properties of the $B^0 \rightarrow J/\psi K^0_s \pi^+ \pi^-$ decays in data are used instead of simulation, since a highly pure signal can be isolated with loose requirements. Since the amount of background varies depending on whether each of h and h' is a pion or kaon, different requirements are imposed for each final state. For both simulation- and data-based selections, different sets of requirements are obtained for long and downstream categories.

In the preselection, the $J/\psi \rightarrow \mu^+ \mu^-$ decay is reconstructed from two oppositely charged tracks with hits in the VELO, the tracking stations and the muon chambers. The tracks are required to have $p_T > 500$ MeV/c, to be positively identified as muons [50], to form a common vertex with $\chi^2 < 16$, and to have an invariant mass within ± 80 MeV/c^2 of the known J/ψ mass [13].

The $K^0_s \rightarrow \pi^+ \pi^-$ decay is reconstructed from pairs of tracks with opposite charge, each with momentum greater than 2 GeV/c, that form a common vertex with $\chi^2 < 20$. The mass of the pion pair must be within ± 30 MeV/c^2 of the known K^0_s mass [13]. When considering the pair under the hypothesis that one of the tracks is a misidentified proton, the invariant mass for candidates in the long (downstream) K^0_s category must differ by more than 10 MeV/c^2 (25 MeV/c^2) from the known Λ baryon mass [13].

Candidates for the pions and kaons coming directly from the B decay (referred to as “bachelor” tracks) are selected if they have impact parameter χ^2_{IP}, defined as the difference in χ^2 of the primary pp interaction vertex reconstructed with and without the considered particle, greater than 4 and $p_T > 250$ MeV/c. They must have momentum less than 100 GeV/c to allow reliable particle identification, and must not be identified as muons. Kaons, pions and protons are distinguished using the difference in the natural logarithm of the likelihoods (DLL) obtained from the particle identification subdetectors under the different mass hypotheses for each track [31]. Bachelor pions are selected with the requirements DLL$_{K\pi} < 0$ and DLL$_{p\pi} < 10$, while kaons must satisfy DLL$_{K\pi} > 2$ and DLL$_{pK} < 10$. The particle identification efficiencies, determined from control samples of $D^0 \rightarrow K^- \pi^+$ decays reweighted to match the kinematic properties of the signal, are found to range from around 73% for $B^0(s) \rightarrow J/\psi K^0_s \pi^+ \pi^-$ to around 93% for $B^0(s) \rightarrow J/\psi K^0_s K^+ K^-$ decays. The bachelor candidates are required to form a vertex with $\chi^2 < 10$.

The B candidates are reconstructed using a kinematic fit [51] to their decay products, including the requirements that the B meson is produced at a PV and that the J/ψ and K^0_s decay products combine to the known masses of those mesons [13]. Candidates with invariant mass values between 5180 and 5500 MeV/c^2 are retained for the fits to determine the signal yields described in section 5.

The recursive algorithm tunes requirements on a number of variables that are found to discriminate between signal and background and that are not strongly correlated. The most powerful variables are found to be the significance of the separation of the K^0_s vertex from the PV for the long category and the B candidate χ^2_{IP}. The other variables are the following: the B, J/ψ and K^0_s candidates’ vertex χ^2 p-values; the J/ψ and K^0_s candidates’ and the bachelor tracks’ χ^2_{IP} values; the separation of the J/ψ vertex from the PV divided
by its uncertainty; the angle between the B momentum vector and the vector from the PV to the B decay vertex; and the B candidate p_T. These variables are found to be only weakly correlated with the B candidate mass or the position in the phase-space of the decay. For the simulation-based selection, the efficiency of the requirements relative to those made during preselection is around 50%. For the data-based selection the corresponding value is between around 40% for $B^{0}_{(s)} \rightarrow J/\psi K^{0}_{S}\pi^{+}\pi^{-}$ and around 55% for $B^{0}_{(s)} \rightarrow J/\psi K^{0}_{S}K^{+}K^{-}$ decays, where the background is low due to the particle identification requirements and the narrow signal peak. The efficiency of the requirement that the B meson decay products lie within the detector acceptance also depends on the final state, ranging from around 10% for $B^{0}_{(s)} \rightarrow J/\psi K^{0}_{S}\pi^{+}\pi^{-}$ to almost 15% for $B^{0}_{(s)} \rightarrow J/\psi K^{0}_{S}K^{+}K^{-}$ decays.

Backgrounds may arise from decays of b baryons. In addition to decay modes where the K^{0}_{S} meson is replaced by a Λ baryon, which are removed by the veto described above, there may be decays such as $\Lambda^{0}_{b} \rightarrow J/\psi K^{0}_{S}p\pi^{-}$, which have the same final state as the signal under consideration except that a kaon or pion is replaced by a proton. There is currently no measurement of such decays that could enable the level of potential background to be assessed, though the yields observed in the $\Lambda^{0}_{b} \rightarrow J/\psi p\pi^{-}$ channel [52, 53] suggest that it may not be negligible. Therefore, this background is vetoed by recalculating the candidate mass under the appropriate mass hypothesis for the final state particles and removing candidates that lie within $\pm 25 \text{MeV}/c^{2}$ of the known Λ^{0}_{b} mass [13].

In the $J/\psi K^{0}_{S}\pi^{+}\pi^{-}$ final state, the $\pi^{+}\pi^{-}$ system could potentially arise from a K^{0}_{S} meson that decays close to the B candidate vertex. This background is removed by requiring that the $\pi^{+}\pi^{-}$ invariant mass is more than $25 \text{MeV}/c^{2}$ from the known K^{0}_{S} mass [13]. In addition, in $B^{0} \rightarrow J/\psi K^{0}_{S}\pi^{+}\pi^{-}$ decays, there is a known contribution from the decay chain $B^{0} \rightarrow \psi(2S)K^{0}_{S}, \psi(2S) \rightarrow J/\psi \pi^{+}\pi^{-}$. There could potentially be a similar contribution in the B^{0}_{s} decay to the same final state. Such decays are removed from the sample by vetoing candidates with invariant masses of the $J/\psi \pi^{+}\pi^{-}$ system within $\pm 15 \text{MeV}/c^{2}$ of the known $\psi(2S)$ mass [13].

In around 2% of events retained after all criteria are applied, more than one candidate is selected. A pseudorandom algorithm is used to select only a single candidate from these events.

5 Determination of signal yields

After all selection requirements are applied, the only sources of candidates in the selected invariant mass ranges are expected to be signal decays, feed-across from $B^{0}_{(s)} \rightarrow J/\psi K^{0}_{S}h^{+}h^{(t)}- \quad \text{decays with kaon-pion misidentification, and combinatorial background.}$ The suppression to negligible levels of other potential sources of background, such as b baryon decays, is confirmed with simulation. For each mode, the ratios of yields under the correct particle identification hypothesis and as feed-across are found to be at the few percent level from the kaon and pion control samples from $D^{0} \rightarrow K^{-}\pi^{+}$ decays reweighted to the appropriate kinematic distributions. The feed-across contribution can therefore be neglected in the fit to the $J/\psi K^{0}_{S}\pi^{+}\pi^{-}$ final state, as is done in the fit to the candidates passing the simulation-based selection, shown in figure 1.
Figure 1. Invariant mass distributions of (left) long and (right) downstream $B^0 \rightarrow J/\psi K^{0}\pi^+\pi^-$ candidates with simulation-based selection, with fit projections overlaid. The solid line shows the total fit result, while the dashed line shows the signal component and the dot-dashed line shows the combinatorial background. The B^0_s region is not examined in these fits.

The signal shape is parametrised in the same way for all $B^{0(s)} \rightarrow J/\psi K^{0}_{s}h^+h^-$ and $B^{0(s)} \rightarrow J/\psi K^{0}_s$ decays, and follows the approach used in ref. [46]. Namely, the signal is described with the sum of two Crystal Ball functions [54] with common mean and independent tails on opposite sides of the peak. This shape is found to give an accurate description of simulated signal decays. In the fit to data, the tail parameters are fixed according to values determined from simulation. The mean and the widths as well as the relative normalisation of the two Crystal Ball functions are allowed to vary freely in the fit to data. The B^0_s region is excluded from the fit to candidates passing the simulation-based selection in the $J/\psi K^{0}\pi^+\pi^-$ final state. In the fit to the $J/\psi K^{0}_s$ candidates, shown in figure 2, a B^0_s component is included with shape identical to that for the B^0 decays except with mean value shifted by the known value of the B^0_s–B^0 mass difference [13].

The signal yields are obtained from extended unbinned maximum likelihood fits to the mass distributions of the reconstructed candidates. Independent fits are carried out for candidates in the long and downstream categories. In addition to the signal components, an exponential function is included to describe the combinatorial background with both yield and slope parameter allowed to vary freely. The results of the fits to the $J/\psi K^{0}_s\pi^+\pi^-$ and $J/\psi K^{0}_s$ invariant mass distributions are summarised in table 1. The ratio of $B^{0(s)} \rightarrow J/\psi K^{0}_s$ and $B^0 \rightarrow J/\psi K^{0}_s$ yields is consistent with that found in a dedicated study of those channels [46]. Also included in table 1 are the results of fits to the $B^{0(s)} \rightarrow J/\psi K^{0}_s\pi^+\pi^-$ sample with the $\psi(2S)$ veto inverted to select candidates consistent with $B^{0(s)} \rightarrow \psi(2S)K^{0}_s$ decays, shown in figure 3. These fits provide a consistency check of the analysis procedures, since the measured ratio of the $B^0 \rightarrow \psi(2S)K^{0}_s$ and $B^0 \rightarrow J/\psi K^{0}_s$ branching fractions can be compared to its known value [13]. For consistency with the fit to $B^{0(s)} \rightarrow J/\psi K^{0}_s\pi^+\pi^-$ candidates, the B^0_s region is not examined in these fits.

The fit to the sample selected with data-based criteria is similar to that for the sample selected with simulation-based criteria, but with some important differences. Signal shapes are included for both B^0 and B^0_s decays to each of the final states considered. The signal components are described with the same sum of two Crystal Ball functions as used in the fits.
Figure 2. Invariant mass distributions of (left) long and (right) downstream $B_{(s)}^0 \rightarrow J/\psi K_s^0$ candidates with simulation-based selection, with fit projections overlaid. The solid line shows the total fit result, while the dashed line shows the signal component and the dot-dashed line shows the combinatorial background.

<table>
<thead>
<tr>
<th>$B_{(s)}^0 \rightarrow J/\psi K_s^0 \pi^+\pi^-$</th>
<th>$B_{(s)}^0 \rightarrow J/\psi K_s^0$</th>
<th>$B_{(s)}^0 \rightarrow \psi(2S)K_s^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td>downstream</td>
<td>long</td>
</tr>
<tr>
<td>N_{B^0}</td>
<td>269 ± 18</td>
<td>483 ± 26</td>
</tr>
<tr>
<td>$N_{B^0_s}$</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1. Yields determined from the fits to the $B_{(s)}^0 \rightarrow J/\psi K_s^0 \pi^+\pi^-$, $B_{(s)}^0 \rightarrow J/\psi K_s^0$ and $B_{(s)}^0 \rightarrow \psi(2S)K_s^0$ samples with simulation-based selection.

Figure 3. Invariant mass distributions of (left) long and (right) downstream $B^0 \rightarrow \psi(2S)K_s^0$ candidates with simulation-based selection, with fit projections overlaid. The solid line shows the total fit result, while the dashed line shows the signal component and the dot-dashed line shows the combinatorial background. The B^0_s region is not examined in these fits.
to the sample selected with simulation-based criteria, with tail parameters fixed according to values determined from simulation. For each final state, the shape of the B_s^0 component is identical to that for the B^0 decays, with mean value shifted by the known value of the B^0_s-B^0 mass difference [13]. To reduce the number of freely varying parameters in the fit, the relative widths of the signal shapes in the final states with long and downstream K^0_S candidates are constrained to be identical for all signal components. The combinatorial background is modelled as a linear function, rather than the exponential model used in the fits to the samples obtained from the simulation-based selection. The use of the linear shape is found to make the fit more stable in channels with low background yields, such as $B^0_{(s)} \rightarrow J/\psi K^0_S \pi^+ \pi^-$, and it is preferable to use the same shape for all channels in the simultaneous fit. The linear function has independent parameters in each final state. A single extended unbinned maximum likelihood fit is performed for the long and downstream categories, with all final states fitted simultaneously. This procedure allows the amount of each feed-across contribution to be constrained according to the observed yields and known misidentification rates. The shapes of the feed-across contributions are described with kernel functions [55] obtained from simulation. All correlations between fitted yields are found to be less than 10% and are neglected when determining the branching fraction ratios.

The results of the fit to the samples obtained with the data-based selection are shown in figure 4 for the $J/\psi K^0_S \pi^+ \pi^-$ hypothesis, in figure 5 for the $J/\psi K^0_S K^\pm \pi^\mp$ hypothesis and in figure 6 for the $J/\psi K^0_S K^+ K^-$ hypothesis. A summary of the fitted yields is given in table 2.

6 Phase-space distributions of signal decays

Clear signals are seen for $B^0 \rightarrow J/\psi K^0_S \pi^+ \pi^-$, $B^0_{(s)} \rightarrow J/\psi K^0_S K^\pm \pi^\mp$ and $B^0 \rightarrow J/\psi K^0_S K^+ K^-$ decays. The significance of each of the signals is discussed in section 8. The distributions of the two- and three-body invariant mass combinations of the signal decay products are examined using the sPlot technique [56] with the B candidate invariant mass as the discriminating variable.

None of the channels show significant structures in any invariant mass combinations involving the J/ψ meson. In $B^0 \rightarrow J/\psi K^0_S \pi^+ \pi^-$ decays the $\psi(2S)$ contribution is vetoed and therefore does not appear in $m(J/\psi \pi^+ \pi^-)$; there is also a small but not significant excess around the $X(3872)$ mass. In the same channel, excesses from $K^*(892)$ and $\rho(770)$ mesons,

<table>
<thead>
<tr>
<th>$B^0_{(s)} \rightarrow J/\psi K^0_S \pi^+ \pi^-$</th>
<th>$B^0_{(s)} \rightarrow J/\psi K^0_S K^\pm \pi^\mp$</th>
<th>$B^0 \rightarrow J/\psi K^0_S K^+ K^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{B^0}</td>
<td>246$^{+17}_{-16}$</td>
<td>471$^{+24}_{-23}$</td>
</tr>
<tr>
<td>$N_{B^0_{(s)}}$</td>
<td>5$^{+4}_{-3}$</td>
<td>9$^{+6}_{-5}$</td>
</tr>
</tbody>
</table>

Table 2. Yields determined from the simultaneous fit to the $B^0_{(s)} \rightarrow J/\psi K^0_S \pi^+ \pi^-$, $B^0_{(s)} \rightarrow J/\psi K^0_S K^\pm \pi^\mp$ and $B^0 \rightarrow J/\psi K^0_S K^+ K^-$ samples with data-based selection.
are seen in $m(K_0^{0}\pi^{\pm})$ and $m(\pi^{+}\pi^{-})$ respectively, and there is an enhancement from the $K_1(1400)$ state in $m(K_0^{0}\pi^{+}\pi^{-})$, as shown in figures 7 and 8. In $B^0_s \rightarrow J/\psi K^0_s K^{\pm}\pi^{\mp}$ decays (figures 9 and 10), excesses from $K^{*}(892)$ resonances are seen in $m(K_0^{0}\pi^{\pm})$ and $m(K^{\pm}\pi^{\mp})$, but no significant narrow structures are seen in $m(K_0^{0}K^{\pm}\pi^{\mp})$. In $B^0 \rightarrow J/\psi K^0_s K^+K^-$ decays (figures 11 and 12), the $\phi(1020)$ state is seen in $m(K^{+}K^{-})$, but no other narrow structures are evident in any combination.

7 Systematic uncertainties

Systematic uncertainties arise from possible inaccuracies in the determination of the yields, and imprecision of the knowledge of the efficiencies and fragmentation fractions that enter eq. (3.1) and eq. (3.2). These contributions are summarised in tables 3 and 4 for measurements with the simulation-based and data-based selection, respectively. Total systematic uncertainties are obtained by addition in quadrature.

The systematic uncertainties on the yields are estimated by (i) varying all fixed fit parameters within their uncertainties; (ii) replacing the double Crystal Ball shape that describes the signal with a double Gaussian function; (iii) scaling the relative width of
Figure 5. Invariant mass distributions of (left) long and (right) downstream $B^0\rightarrow J/\psi K^0 S\pi^\pm\pi^\mp$ candidates, with data-based selection, shown with (top) linear and (bottom) logarithmic y-axis scales, with fit projections overlaid. The solid line shows the total fit result, while the dashed and dotted lines show the B^0 and B^0_s signal components, respectively, the long-dashed line shows the feed-across contribution and the dot-dashed line shows the combinatorial background.

<table>
<thead>
<tr>
<th>Source</th>
<th>Total Efficiency</th>
<th>Normalisation sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield</td>
<td>systematic</td>
</tr>
<tr>
<td>long</td>
<td>$B(B^0\rightarrow J/\psi K^0 S\pi^+\pi^-)$</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>$B(B^0\rightarrow \psi(2S)K^0_S)$</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>$B(B^0\rightarrow J/\psi K^0 S\pi^+\pi^-)$</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>$B(B^0\rightarrow \psi(2S)K^0_S)$</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 3. Systematic uncertainties (%) for the relative branching fraction measurements with $B^0\rightarrow J/\psi K^0_S$ as normalisation channel, given separately for long and downstream categories. The total systematic uncertainty is the sum in quadrature of all contributions.
the B_s^0 and B^0 peaks according to the available phase-space for the decays; (iv) replacing
the function that describes the combinatorial background with a second-order polynomial
shape. The changes in the fitted yields are assigned as the corresponding uncertainties.
In addition, for channels where both signal and background yields are low, a small bias
(less than 20% of the statistical uncertainty) on the signal yield is observed in samples
of pseudoexperiments. To have a coherent treatment of all channels, each fitted yield is
corrected for the bias, and the uncertainty on the bias combined in quadrature with half
the correction is assigned as a systematic uncertainty.

One source of systematic uncertainty that affects the relative efficiencies arises from the
particle identification requirements. This is estimated by applying the method to determine
the efficiency from control samples of $D^0 \to K^- \pi^+$ decays to simulated signal events, and
comparing the result to the true value. The systematic uncertainty due to the variation of
the efficiency over the phase-space is evaluated by reweighting the simulated samples for
each signal decay to match the main features of the distributions seen in data (see section
6). However, this method can only be applied for the channels where significant signals are
observed: $B^0 \to J/\psi K_s^0 \pi^+ \pi^-, B^0 \to J/\psi K_s^0 K^\pm \pi^\mp$ and $B^0 \to J/\psi K_s^0 K^+ K^-$. For the
other decay channels the root-mean-square variation of the efficiency over the phase-space

Figure 6. Invariant mass distributions of (left) long and (right) downstream $B_s^0 \to J/\psi K_s^0 K^+ K^-$
candidates, with data-based selection, shown with (top) linear and (bottom) logarithmic y-axis
scales, with fit projections overlaid. The solid line shows the total fit result, while the dashed and
dotted lines show the B^0 and B_s^0 signal components, respectively, and the dot-dashed line shows
the combinatorial background.
Figure 7. Background-subtracted distributions of the possible two-body invariant mass combinations in $B^0 \to J/\psi K^0_{S}\pi^+\pi^-$ decays. Contributions from the $\rho(770)^0$ and $K^*(892)^\pm$ mesons are seen in the $m(\pi^+\pi^-)$ and $m(K^0_{S}\pi^\pm)$ distributions, respectively.

<table>
<thead>
<tr>
<th>Source</th>
<th>Total</th>
<th>Fragmentation</th>
<th>Normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yields</td>
<td>Efficiencies</td>
<td>systematic fractions</td>
</tr>
<tr>
<td>$B(B^0 \to J/\psi K^0_0 K^+ K^-)$</td>
<td>12.7</td>
<td>31.0</td>
<td>33.5</td>
</tr>
<tr>
<td>$B(B^0 \to J/\psi K^0_0 K^+ K^-)$</td>
<td>2.9</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>16.5</td>
<td>33.2</td>
<td>37.0</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>1.1</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>39.0</td>
<td>33.2</td>
<td>51.2</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>7.6</td>
<td>27.6</td>
<td>28.6</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>3.2</td>
<td>6.5</td>
<td>7.3</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>17.3</td>
<td>30.1</td>
<td>34.7</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>0.9</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>$B(B^0_s \to J/\psi K^0_0 K^+ K^-)$</td>
<td>18.0</td>
<td>36.7</td>
<td>40.9</td>
</tr>
</tbody>
</table>

Table 4. Systematic uncertainties (%) for the relative branching fraction measurements with $B^0 \to J/\psi K^0_0 \pi^+\pi^-$ as normalisation channel, given separately for long and downstream categories. The total systematic uncertainty is the sum in quadrature of all contributions.
Figure 8. Background-subtracted distributions of the possible three-body invariant mass combinations in $B^0 \rightarrow J/\psi K^0_S \pi^+ \pi^-$ decays. An enhancement from the $K_1(1400)$ state are seen in the $m(K^0_S \pi^+ \pi^-)$ distribution.

is obtained by binning the simulated events in each invariant mass combination, and this value is assigned as the associated uncertainty. There is also a small uncertainty arising from the limited simulation sample sizes.

The effective lifetimes of B^0_S meson decays depend on the CP-admixture of the final state [57]. Since the selection efficiency depends on decay time, this in principle leads to a source of uncertainty in the measurement. The scale of the efficiency variation is $\pm 4\%$ for the extreme ranges of possible effective lifetime distributions. Although knowledge of the exact composition of CP-even and CP-odd states requires either a detailed amplitude analysis or a measurement of the effective lifetime, all of the $J/\psi K^0_S h^+ h^-(t)$ final states are expected to be approximately equal admixtures. Therefore, no systematic uncertainty is assigned due to the assumption that the effective lifetime is given by $1/\Gamma_s$, where Γ_s is the mean width of the two B^0_S mass eigenstates [58]. The decay time distribution observed in data is consistent with that obtained in a sample simulated with lifetime $1/\Gamma_s$, verifying that this is a reasonable assumption.

For the relative branching fraction measurement of $B^0 \rightarrow J/\psi K^0_S \pi^+ \pi^-$ to $B^0 \rightarrow J/\psi K^0_S$, there are two more tracks in the former channel than the latter. Therefore additional small systematic uncertainties arise due to the limited knowledge of the track reconstruction and trigger efficiencies. Uncertainty on the ratio of fragmentation fractions f_s/f_d affects the measurement of the B^0_S decay branching fractions relative to that of
Figure 9. Background-subtracted distributions of the possible two-body invariant mass combinations in $B^0_s \to J/\psi K^0S\pi^\pm\pi^\mp$ decays. Contributions from the $K^*(892)^0$ and $K^*(892)^\pm$ mesons are seen in the $m(K^{\pm}\pi^\mp)$ and $m(K^0_S\pi^\pm)$ distributions, respectively.

$B^0 \to J/\psi K^0S\pi^+\pi^-$. Finally, for each relative branching fraction measurement the statistical uncertainty on the normalisation channel also contributes. To allow a straightforward evaluation of the absolute branching fractions of the modes studied with the data-based selection, this source is treated separately.

8 Results and conclusions

Results are obtained separately for the relative branching fractions in the long and downstream categories and then combined. The combinations are performed using the full
likelihood functions, though the uncertainties are symmetrised for presentation of the results. Possible correlations between systematic uncertainties in the different categories, due to the fit model, particle identification efficiencies and f_s/f_d, are accounted for in the combinations. All pairs of results in long and downstream categories are consistent within 2.5 standard deviations (σ). The signal significances are obtained from the change in likelihood when the signal yields are fixed to zero. Systematic uncertainties that affect the yield are accounted for in the calculation by smearing the likelihood with a Gaussian function of appropriate width. The significances are summarised in table 5. Since the significances of the $B^0 \rightarrow J/\psi K^0 S K^+\pi^-$ and $B^{0*} \rightarrow J/\psi K^0 S K^+\pi^-$ signals exceed 5 σ, these results constitute the first observations of those decays.

The results from the simulation-based selection are

$$\frac{\mathcal{B}(B^0 \rightarrow J/\psi K^0 S \pi^+\pi^-)}{\mathcal{B}(B^0 \rightarrow J/\psi K^0 S)} = 0.493 \pm 0.034\text{ (stat)} \pm 0.027\text{ (syst)},$$

and

$$\frac{\mathcal{B}(B^0 \rightarrow \psi(2S)K^0_S) \times \mathcal{B}(\psi(2S) \rightarrow J/\psi \pi^+\pi^-)}{\mathcal{B}(B^0 \rightarrow J/\psi K^0_S)} = 0.183 \pm 0.027\text{ (stat)} \pm 0.015\text{ (syst)},$$

where the first uncertainties are statistical and the second systematic. The measurement of $\mathcal{B}(B^0 \rightarrow J/\psi K^0 S \pi^+\pi^-)$ excludes the contribution from $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ decays. These results are converted to absolute branching fraction measurements using known values of
Figure 11. Background-subtracted distributions of the possible two-body invariant mass combinations in $B^0 \rightarrow J/\psi K^0_S K^+ K^-$ decays. The $\phi(1020)$ resonance is clearly seen in the $m(K^+ K^-)$ distribution.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Significance (σ)</th>
<th>long</th>
<th>downstream</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow J/\psi K^0_S K^{\pm} \pi^{\mp}$</td>
<td>0.8</td>
<td>2.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi K_0^0 K^+ K^-$</td>
<td>6.2</td>
<td>5.1</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>$B^0_s \rightarrow J/\psi K^0_S \pi^{\pm}$</td>
<td>2.3</td>
<td>1.9</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>$B^0_s \rightarrow J/\psi K^0_S K^{\pm} \pi^{\mp}$</td>
<td>17.9</td>
<td>25.8</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>$B^0_s \rightarrow J/\psi K^0_S K^+ K^-$</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Significances (σ) for previously unobserved channels obtained from the fits to the samples with data-based selection. The values quoted for long and downstream categories include only statistical effects, while the combined results include systematic uncertainties.
Figure 12. Background-subtracted distributions of the possible three-body invariant mass combinations in $B^0 \to J/\psi K^0 S K^+ K^-$ decays. No clear signatures of narrow resonances are observed.

the other branching fractions involved in the ratios [13]. For consistency with the standard convention, the results for the absolute branching fractions are multiplied by a factor of two to obtain values corresponding to a K^0, instead of K^0_S, meson in the final state, giving

$$B(B^0 \to J/\psi K^0 \pi^+ \pi^-) = (43.0 \pm 3.0 \text{ (stat)} \pm 3.3 \text{ (syst)} \pm 1.6 \text{ (PDG)}) \times 10^{-5},$$

$$B(B^0 \to \psi(2S) K^0) = (4.7 \pm 0.7 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 0.6 \text{ (PDG)}) \times 10^{-4},$$

where the last uncertainty is from knowledge of the normalisation branching fractions. These results are consistent with previous measurements [13] and, in the case of the former, significantly more precise.

The results from the data-based selection are

$$\frac{B(B^0 \to J/\psi K^0 S K^+ \pi^+)}{B(B^0 \to J/\psi K^0_S \pi^+ \pi^-)} = 0.026 \pm 0.012 \text{ (stat)} \pm 0.007 \text{ (syst)} \pm 0.001 \text{ (norm)},$$

< 0.048 at 90% CL,
< 0.055 at 95% CL,

$$\frac{B(B^0 \to J/\psi K^0 S K^+ K^-)}{B(B^0 \to J/\psi K^0_S \pi^+ \pi^-)} = 0.047 \pm 0.010 \text{ (stat)} \pm 0.004 \text{ (syst)} \pm 0.002 \text{ (norm)},$$

$$\frac{B(B^0 \to J/\psi K^0 S \pi^+ \pi^-)}{B(B^0 \to J/\psi K^0_S \pi^+ \pi^-)} = 0.054 \pm 0.031 \text{ (stat)} \pm 0.020 \text{ (syst)} \pm 0.003 (f_s/f_d) \pm 0.004 \text{ (norm)},$$

< 0.10 at 90% CL,
< 0.12 at 95% CL,
\[
\frac{\mathcal{B}(B^0_s \to J/\psi K^0_s K^+\pi^\mp)}{\mathcal{B}(B^0 \to J/\psi K^0_s \pi^+\pi^-)} = 2.12 \pm 0.15 \text{ (stat)} \pm 0.14 \text{ (syst)} \pm 0.08 (f_s/f_d) \pm 0.08 \text{ (norm)},
\]
\[
\frac{\mathcal{B}(B^0 \to J/\psi K^0_s K^+K^-)}{\mathcal{B}(B^0 \to J/\psi K^0_s \pi^+\pi^-)} = 0.011 \pm 0.020 \text{ (stat)} \pm 0.006 \text{ (syst)} \pm 0.001 (f_s/f_d) \pm 0.001 \text{ (norm)},
\]
\[
< 0.027 \text{ at } 90\% \text{ CL},
\]
\[
< 0.033 \text{ at } 95\% \text{ CL},
\]
where the uncertainties due to \(f_s/f_d \) and the size of the \(B^0 \to J/\psi K^0_s \pi^+\pi^- \) normalisation sample are quoted separately. Upper limits, obtained from integrating the likelihood in the positive region, are quoted at both 90\% and 95\% confidence level (CL) for all channels with combined significance less than 3\(\sigma \).

These results are converted to absolute branching fraction measurements by multiplying by the value of the normalisation channel branching fraction determined with the simulation-based selection. In this process, the statistical uncertainty of the \(B^0 \to J/\psi K^0_s \pi^+\pi^- \) yield is taken to be 100\% correlated between the samples with simulation-based and data-based selection, since differences are small enough to be neglected. The results are
\[
\mathcal{B}(B^0 \to J/\psi \sqrt{K}^0 K^+\pi^-) = (11 \pm 5 \text{ (stat)} \pm 3 \text{ (syst)} \pm 1 \text{ (PDG)}) \times 10^{-6},
\]
\[
< 21 \times 10^{-6} \text{ at } 90\% \text{ CL},
\]
\[
< 24 \times 10^{-6} \text{ at } 95\% \text{ CL},
\]
\[
\mathcal{B}(B^0 \to J/\psi K^0_s K^+K^-) = (20.2 \pm 4.3 \text{ (stat)} \pm 1.7 \text{ (syst)} \pm 0.8 \text{ (PDG)}) \times 10^{-6},
\]
\[
\mathcal{B}(B^0_s \to J/\psi \sqrt{K}^0 \pi^+\pi^-) = (2.4 \pm 1.4 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.1 (f_s/f_d) \pm 0.1 \text{ (PDG)}) \times 10^{-5},
\]
\[
< 4.4 \times 10^{-5} \text{ at } 90\% \text{ CL},
\]
\[
< 5.0 \times 10^{-5} \text{ at } 95\% \text{ CL},
\]
\[
\mathcal{B}(B^0_s \to J/\psi \sqrt{K}^0 K^+\pi^-) = (91 \pm 6 \text{ (stat)} \pm 6 \text{ (syst)} \pm 3 (f_s/f_d) \pm 3 \text{ (PDG)}) \times 10^{-5},
\]
\[
\mathcal{B}(B^0 \to J/\psi \sqrt{K}^0 K^+K^-) = (5 \pm 9 \text{ (stat)} \pm 2 \text{ (syst)} \pm 1 (f_s/f_d)) \times 10^{-6},
\]
\[
< 12 \times 10^{-6} \text{ at } 90\% \text{ CL},
\]
\[
< 14 \times 10^{-6} \text{ at } 95\% \text{ CL},
\]
where the contribution from the PDG uncertainty to the last result is negligible. The expression \(\mathcal{B}(B^0_{(s)} \to J/\psi \sqrt{K}^0 K^+\pi^-) \) denotes the sum of the branching fractions for \(B^0_{(s)} \to J/\psi K^0_s K^-\pi^+ \) and \(B^0_{(s)} \to J/\psi \sqrt{K}^0 K^+\pi^- \) decays. In all results the strangeness of the produced neutral kaon is assumed to be that which is least suppressed in the SM.

In summary, using a data sample corresponding to an integrated luminosity of 1.0 fb\(^{-1}\) of \(pp \) collisions at centre-of-mass energy \(\sqrt{s} = 7 \) TeV recorded with the LHCb detector at CERN, searches for the decay modes \(B^0_{(s)} \to J/\psi K^0_s h^+h^- \) have been performed. The most precise measurement to date of the \(B^0 \to J/\psi K^0_s \pi^+\pi^- \) branching fraction and the first observations of the \(B^0 \to J/\psi K^0_s K^+K^- \) and \(B^0_s \to J/\psi K^0_s K^+\pi^- \) decays are reported. The first limits on the branching fractions of \(B^0_s \to J/\psi K^0_s \pi^+\pi^- \), \(B^0 \to J/\psi K^0_s K^+\pi^- \) and \(B^0_s \to J/\psi K^0_s K^+K^- \) decays are set. Inspection of the phase-space distributions of the decays with significant signals does not reveal any potentially exotic narrow structure,
nor is any significant excess from a narrow resonance seen in the $K^0_S K^\pm \pi^\mp$ invariant mass distribution in $B^0_s \to J/\psi K^0_S K^\pm \pi^\mp$ decays. Further studies will be needed to investigate the underlying dynamics of these channels, and to understand whether they can in future be used for CP violation studies.

Acknowledgments

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC and the Royal Society (United Kingdom); NSF (U.S.A.). We also acknowledge the support received from EPLANET, Marie Curie Actions and the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[6] ATLAS collaboration, *Time-dependent angular analysis of the decay $B^0_s \to J/\psi \phi$ and extraction of $\Delta \Gamma_s$ and the CP-violating weak phase ϕ_s by ATLAS*, JHEP **12** (2012) 072 [arXiv:1208.0672] [inSPIRE].

[8] LHCb collaboration, Measurement of CP-violation and the B_s^0 meson decay width difference with $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays, *Phys. Rev. D* **87** (2013) 112010 [arXiv:1304.2600] [SPIRE]

[12] LHCb collaboration, Observation of $B_s^0 \to J/\psi f_1(1285)$ decays and measurement of the $f_1(1285)$ mixing angle, *Phys. Rev. Lett.* **112** (2014) 091802 [arXiv:1310.2145] [SPIRE]

[14] CDF collaboration, T. Affolder et al., A study of $B^0 \to J/\psi K(\leftrightarrow)0\pi^+\pi^-$ decays with the Collider Detector at Fermilab, *Phys. Rev. Lett.* **88** (2002) 071801 [hep-ex/0108022] [SPIRE]

[16] Belle collaboration, S. Choi et al., Bounds on the width, mass difference and other properties of $X(3872) \to \pi^+\pi^-J/\psi$ decays, *Phys. Rev. D* **84** (2011) 052004 [arXiv:1107.0163] [SPIRE]

[17] Babar collaboration, B. Aubert et al., Rare B decays into states containing a J/ψ meson and a meson with $s\bar{s}$ quark content, *Phys. Rev. Lett.* **91** (2003) 071801 [hep-ex/0304014] [SPIRE]

[23] D0 collaboration, V.M. Abazov et al., Search for the $X(4140)$ state in $B^+ \to J/\psi\phi K^+$ decays with the $D0$ detector, *Phys. Rev. D* **89** (2014) 012004 [arXiv:1309.6580] [SPIRE]

[29] LHCb collaboration, *The LHCb Detector at the LHC*, 2008 JINST 3 S08005 [insPIRE]

[47] LHCb collaboration, Study of $B^0_{(s)} \rightarrow K^0_S h^+ h^-$ decays with first observation of $B^0_{s} \rightarrow K^0_S K^{\pm} \pi^{\mp}$ and $B^0_{s} \rightarrow K^0_S \pi^{\pm} \pi^{-}$, JHEP 10 (2013) 143 [arXiv:1307.7648] [INSP]

[48] LHCb collaboration, Searches for Λ^0_b and Ξ^0_b decays to $K^0_S p\pi^-$ and $K^0_S pK^-$ final states with first observation of the $\Lambda^0_b \rightarrow K^0_S p\pi^-$ decay, JHEP 04 (2014) 087 [arXiv:1402.0770] [INSP]

[49] LHCb collaboration, Differential branching fractions and isospin asymmetries of $B \rightarrow K^{(*)} \mu^+ \mu^-$ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSP]

[53] LHCb collaboration, Precision measurement of the ratio of the Λ^0_b to B^0 lifetimes, Phys. Lett. B 734 (2014) 122 [arXiv:1402.6242] [INSP]

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia

Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia

Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia

Institute for High Energy Physics (IHEP), Protvino, Russia

Universitat de Barcelona, Barcelona, Spain

Universidad de Santiago de Compostela, Santiago de Compostela, Spain

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Physik-Institut, Universität Zürich, Zürich, Switzerland

Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands

NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

University of Birmingham, Birmingham, United Kingdom

H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Warwick, Coventry, United Kingdom

STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

Imperial College London, London, United Kingdom

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

Department of Physics, University of Oxford, Oxford, United Kingdom

Massachusetts Institute of Technology, Cambridge, MA, United States

University of Cincinnati, Cincinnati, OH, United States

University of Maryland, College Park, MD, United States

Syracuse University, Syracuse, NY, United States

Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3

Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11

National Research Centre Kurchatov Institute, Moscow, Russia, associated to 31

Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 36

KVI - University of Groningen, Groningen, The Netherlands, associated to 41

Celal Bayar University, Manisa, Turkey, associated to 38

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil

b P.N. Lebeden Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
c Università di Bari, Bari, Italy
d Università di Bologna, Bologna, Italy
e Università di Catania, Catania, Italy
f Università di Ferrara, Ferrara, Italy
g Università di Firenze, Firenze, Italy

– 27 –
Università di Urbino, Urbino, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
Università della Basilicata, Potenza, Italy
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Università degli Studi di Milano, Milano, Italy