Search for new physics in trilepton events and limits on the associated chargino-neutralino production at CDF

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.90.012011</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Dec 21 21:47:18 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/91206</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for new physics in trilepton events and limits on the associated chargino-neutralino production at CDF
We perform a search for new physics using final states consisting of three leptons and a large imbalance in transverse momentum resulting from proton-antiproton collisions at 1.96 TeV center-of-mass energy. We use data corresponding to 5.8 fb$^{-1}$ of integrated luminosity recorded by the CDF II detector at the Tevatron collider. Our main objective is to investigate possible new low-momentum (down to 5 GeV/c) multileptonic final states not investigated by LHC experiments. Relative to previous CDF analyses, we expand the geometric and kinematic coverage of electrons and muons and utilize tau leptons that decay hadronically. Inclusion of tau leptons is particularly important for supersymmetry (SUSY) searches. The results are consistent with standard-model predictions within 1.85σ. By optimizing our event selection to increase sensitivity to the minimal supergravity (mSUGRA) SUSY model, we set limits on the associated production of chargino and next-to-lightest neutralino, the SUSY partners of the electroweak

*Deceased.
aVisitor from University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
bVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
cVisitor from University of California Irvine, Irvine, CA 92697, USA.
dVisitor from Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic.
eVisitor from CERN, CH-1211 Geneva, Switzerland.
fVisitor from Cornell University, Ithaca, NY 14853, USA.
gVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.
hVisitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.
iVisitor from University College Dublin, Dublin 4, Ireland.
jVisitor from ETH, 8092 Zürich, Switzerland.
kVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
lVisitor from Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal.
mVisitor from University of Iowa, Iowa City, IA 52242, USA.
nVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
oVisitor from Kansas State University, Manhattan, KS 66506, USA.
pVisitor from Brookhaven National Laboratory, Upton, NY 11973, USA.
qVisitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.
rVisitor from University of Melbourne, Victoria 3010, Australia.
sVisitor from Muons, Inc., Batavia, IL 60510, USA.
tVisitor from Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan.
uVisitor from National Research Nuclear University, Moscow 115409, Russia.
vVisitor from Northwestern University, Evanston, IL 60208, USA.
wVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.
xVisitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
yVisitor from CNRS-IN2P3, Paris, F-75205, France.
zVisitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
aVisitor from The University of Jordan, Amman 11942, Jordan.
bVisitor from Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.
cVisitor from University of Zürich, 8006 Zürich, Switzerland.
dVisitor from Massachusetts General Hospital, Boston, MA 02114 USA.
eVisitor from Harvard Medical School, Boston, MA 02114 USA.
fVisitor from Hampton University, Hampton, VA 23668, USA.
gVisitor from Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
hVisitor from Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.
Although extremely successful, the standard model (SM) of particles and fields leaves many questions unanswered, including the origin of dark matter, the incorporation of gravity, and the hierarchy between the weak-interaction and Planck energy scales. New physics that would address these issues could be directly discovered in particle topologies that are characterized by low SM background. Such topologies include final states involving three charged leptons (trilepton) in hadron collisions. A trilepton signal is predicted by several new-physics processes, including lepton-flavor-violating tau-lepton decays \cite{1}, heavy-neutrino decays in seesaw models \cite{2}, Higgs-boson decays in proton-antiproton collisions is the associated chargino-neutralino tau-lepton-flavor-violating tau-lepton decays \cite{1}, heavy-leptons \cite{2}, the lightest supersymmetric lepton (\(\tilde{\nu}_l\)) production and the resulting trilepton final state: \(\tilde{\chi}^0_1 \tilde{\chi}^0_2 \rightarrow \ell \ell \tilde{\nu}_l\) followed by, e.g., \(\tilde{\chi}^0_1 \rightarrow \ell \ell \tilde{\nu}_l\) and \(\tilde{\chi}^0_2 \rightarrow \ell \ell \tilde{\nu}_l\) \cite{8}. The lightest chargino \(\tilde{\chi}^+\) and the next-to-lightest neutralino \(\tilde{\chi}^0_2\) are supersymmetric partners of the gauge bosons, \(\ell\) indicates an electron (\(e\)), a muon (\(\mu\)), or tau lepton (\(\tau\)), and \(\chi^0_1\) is the lightest neutralino assumed to be stable and escaping detection, and therefore contributing to the missing transverse momentum. After completing our model-independent search, we optimize our analysis specifically for the associated chargino-neutralino production.

The CDF experiment has previously searched for this signature using data from up to 3.2 fb\(^{-1}\) \cite{9–13} of Run II integrated luminosity. The latest D0 trilepton analysis \cite{14} used 2.3 fb\(^{-1}\) of integrated luminosity. The ATLAS Collaboration has recently published a trilepton + \(E_T\) search using 20.3 fb\(^{-1}\) \cite{15} and the CMS Collaboration has published results using a luminosity of 5 fb\(^{-1}\) \cite{16–18}. We present here an analysis with 5.8 fb\(^{-1}\) of integrated luminosity. This search is significantly improved compared to the previous CDF trilepton searches. We expand the acceptance to cover the forward region of the detector for both electrons and muons, include (as third leptons) tau leptons decaying hadronically, and allow lower momenta for our leptonic candidates (down to 5 GeV/c), within the constraints of the candidate identification and online event-selection (trigger) requirements. Lower (and forward) leptonic momenta allow us to investigate in a model-independent way either the direct decay of new light particles or the chain decay of particles with similar masses. The inclusion of tau leptons is also motivated by the high branching ratio of chargino and neutralino decays to the lightest supersymmetric lepton (\(\tilde{\tau}\)), typically the stau (\(\tilde{\tau}\)), which preferably decays to a tau lepton. CDF has recently published a same-charge two-lepton search for supersymmetry using tau leptons \cite{19}.

CDF II \cite{20} is a multipurpose cylindrical detector with a projective-tower calorimeter geometry and an excellent lepton identification capability. It operated at Fermilab’s Tevatron collider. In CDF’s coordinate system, the positive \(z\) axis is defined by the proton beam direction and the positive \(y\) axis by the vertically upward direction. The detector is approximately symmetric in the \(\eta\) and \(\phi\) directions, where the pseudorapidity \(\eta\) is defined as \(\eta = -\ln[\tan(\theta/2)]\), \(\theta\) is the polar angle with respect to the \(z\) axis, and \(\phi\) is the azimuthal angle.

The momentum \(p\) of charged particles is measured with a tracking system composed of a seven-layer silicon strip detector and a 96-layer drift chamber; both are located inside a solenoid aligned along the beam axis and provide a magnetic field of 1.4 T. The tracking efficiency is nearly 100% in the central region (\(|\eta| < 1\)) and decreases in the forward region (1 < \(|\eta| < 2.8\)). Electrons can be identified in the forward region by using tracks reconstructed using only silicon-tracker information. Electromagnetic and hadronic calorimeters surround the solenoid and measure the energies of collision products up to \(|\eta| = 3.6\). Drift chambers and scintillators are installed outside the hadronic calorimeter to detect muons with \(|\eta| < 1.4\). A pipelined three-level trigger system \cite{21} that combines hardware and software is used for filtering the collision data.

We perform an analysis of trilepton (dielepton + \(e'^{\ell}\) and dimuon + \(\mu'^{\ell}\)) data collected with single high-transverse-momentum \((p_T \approx p \sin \theta > 18 \text{ GeV/c})\) central electron and central muon triggers, respectively. The third object \(e'^{\ell}\) can be an electron, a muon, a tau lepton, or an isolated track (isoTrack). Events where the two highest-in-\(p_T\) leptons are \(e\mu\) or \(\mu\mu\) are included only if the third object

DOI: 10.1103/PhysRevD.90.012011 PACS numbers: 12.60.Jv, 13.85.Qk, 13.85.Rm, 14.80.Ly
is an electron or muon. No requirement is applied on the charge of the leptons. To ensure a uniform trigger response, we require a central electron or central muon with $p_T > 20$ GeV/c. The second and third electron or muon can be detected in either the central or the forward region of the detector and is required to have $p_T > 5$ GeV/c. The additional transverse energy deposited in the calorimeter in a cone of $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.4$ around each electron or muon must be less than 10% of the lepton’s transverse energy, if the lepton has $p_T > 20$ GeV/c. Otherwise, we require that this additional energy is less than 2 GeV. The electrons and muons are required to be separated by $\Delta R > 0.4$ and to have the z coordinate of their tracks at the origin within $|z| < 5$ cm. The average z position of any track pair must be within 4 cm of an interaction vertex (primary vertex). Finally, the leading two electrons and muons must have tracks with an impact parameter (with respect to the primary vertex) less than 0.02 cm, if the tracks are reconstructed including information from the silicon detector, or less than 0.2 cm otherwise. The analysis is restricted to events in which a same-flavor lepton pair with mass (M_{ee} or $M_{\mu\mu}$) above 15 GeV/c^2 is found; the two highest-in-p_T same-flavor leptons that satisfy this mass requirement are the leading lepton pair. We include tau leptons that decay hadronically: they are identified as clusters of particles (jets) that have track and energy properties expected from tau-lepton decays [22]. The isTracks are not required to meet the default electron or muon requirements, but they are required to be isolated from other tracks, i.e., no other tracks with $p_T > 0.4$ GeV/c and with the same z origin as the isoTrack should be present within $\Delta R < 0.4$ around the isoTrack. Although the nonleptonic background to the isoTracks is higher, their inclusion increases the acceptance without decreasing the sensitivity, since they are analyzed separately from the higher-quality lepton candidates. The isolation and topology requirements separate isoTracks and tau-lepton candidates; if the conditions defining both categories are satisfied, we classify the track as a tau candidate. After the above selection, we retain 334 968 ee, 162 127 $\mu\mu$, 687 $ee + \ell^\prime$, 435 $\mu\mu + \ell^\prime$, 2 843 $ee + \text{isoTrack}$, and a 1 560 $\mu\mu + \text{isoTrack}$ events.

We validate the background estimation in both inclusive two-lepton (dilepton) and trilepton final states. The main SM dilepton background is the Drell-Yan (DY) process $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell\ell$. Some electroweak background comes from diboson production (WW, WZ, ZZ, $Wt\bar{t}$) with subsequent leptonic decays. The main hadronic background contributing to the dilepton candidate sample is the production of $W + \text{jets}$, where the W boson decays to a lepton and a jet is misidentified as a lepton (hence referred to as a fake lepton). Finally, top-quark-pair ($t\bar{t}$) decays that result in lepton pairs are also included as background. The main SM trilepton background is contributed by the production of DY dileptons in association with a photon ($DY + \gamma$), in which the photon converts to an electron–positron pair, which, if detected, is almost always reconstructed as a single electron. Some electroweak trilepton background comes from diboson production (WZ, ZZ) with subsequent leptonic decays. The main hadronic background that contributes to the trilepton candidate sample is the production of $DY + \text{jets}$, where a jet is misidentified as a lepton. Finally, $t\bar{t}$ events resulting in three leptons are also included as background.

The DY, $DY + \gamma$, diboson, and $t\bar{t}$ backgrounds are estimated with Monte Carlo (MC) simulation using PYTHIA [23] running with the CTEQ5L [24] parton distribution functions, and the CDF GEANT-based [25] detector simulator. The MC event yields are normalized on an event-by-event basis using theoretical cross sections [determined with next-to-leading order (NLO) quantum-field-theory calculations] [26], event trigger efficiencies, lepton-identification-efficiency corrections (scale factors), and the integrated luminosity corresponding to the CDF data sample.

The hadronic background in the dilepton sample, originated from quantum chromodynamic (QCD) processes, is estimated using CDF data, by selecting events with one identified lepton and applying to every well-reconstructed jet (track) a probability of being misidentified as an electron (muon). Similarly, the QCD background in the trilepton events is estimated by selecting events with two identified leptons of the same flavor and applying to every well-reconstructed jet (track) a probability of being misidentified as an electron or as a tau lepton (muon or isoTrack). The probabilities for a jet to be misidentified as an electron or tau lepton, or for a track to be misidentified as a muon or isoTrack, depend on p_T and on the involved detector element, and they are of the order of 10^{-4} to 10^{-3}. We measure the probabilities using jet-rich CDF data [27].

The main sources of systematic uncertainty on the MC-estimated backgrounds [12] are the theoretical cross sections (an 8% effect on the event yields), the luminosity (6%), the lepton-identification efficiency (2%), the parton distribution functions (2%), and the trigger efficiency (0.5%). The total systematic uncertainty on the expected event yield is $\sim 10\%$. The QCD background systematic uncertainty is $\sim 50\%$ for falsely identified electrons and muons with transverse momentum greater than 20 GeV/c and $\sim 20\%$ for lower transverse momentum. This uncertainty is estimated from the variation in the measurement of the misidentification rates using different jet-rich CDF data sets triggered with varied jet-energy thresholds.

In order to validate our background estimates, we investigate dilepton and trilepton control regions defined by restricting events to specific regions of the multidimensional space determined by the leading-dilepton mass $M_{ee/\mu\mu}$, the missing transverse momentum E_T [28],

012011-5
and the jet multiplicity N_j. For an unbiased selection of events, we avoid looking at the data in the signal region, which is defined as trilepton events with $(15 < M_{\mu\mu} < 76 \text{ GeV}/c^2$ or $M_{ee\mu} > 106 \text{ GeV}/c^2$), $E_T > 15 \text{ GeV}$, and $N_j \leq 1$. We define the control regions by inverting at least one of the signal-region selection requirements. Overall, 24 dilepton and 40 trilepton control regions are used. One of the most critical control regions consists of dilepton events selected as signal but without requiring a third lepton (region A); the trilepton signal region is a subset of region A. We also present here trilepton control regions with only one of the three signal-region requirements inverted: either dilepton mass in the Z boson resonance $(76 < M_{ee\mu} < 106 \text{ GeV}/c^2)$, or $E_T < 10 \text{ GeV}$, or $N_j \geq 2$, which lead to regions B, C, and D respectively. Region A is used to validate all sources of background in the dilepton signal region. Region B is used to validate the diboson background estimates, region C, the DY and fake-lepton backgrounds, and region D, the top-quark background, all in the trilepton subset of the data. The QCD background estimation is validated in the intermediate-mass $(20 < M_{ee\mu} < 76 \text{ GeV}/c^2)$ control region, as well as in the trilepton $(76 < M_{ee\mu} < 106 \text{ GeV}/c^2)$ and high-mass $tt\ell$ control regions. Finally, good agreement between SM expectation and Z-resonance data supports the estimation of efficiencies, scale factors, data-set luminosity, and theoretical cross sections.

Table I shows the expected and observed event yields in these control regions, where good agreement is observed. The same is true for all other control regions [29]. Overall, we observe 260 010 dielectrons and 142 386 dimuons in the Z-resonance region, where we expect 268 670 ± 26 486 and 146 103 ± 14 573 respectively (systematic uncertainties only). Figure 1(a) shows the leading-dilepton mass distribution for the observed $ee\mu\mu + \ell$ events, along with the SM expectation, before the application of the signal-region requirements.

After observing satisfactory agreement between SM expectation and experimental observation in all the control regions, we uncover the data in the signal region. We observe 34 $ee + \ell$, 146 $ee + \text{isoTrack}$, 19 $\mu\mu + \ell$, and 62 $\mu\mu + \text{isoTrack}$ events, whereas the SM expectations are 20 ± 4, 157 ± 28, 13 ± 2, and 70 ± 15 respectively (systematic uncertainties only). Figure 1(b) shows the leading-dilepton mass distribution for $ee + \ell$ and $\mu\mu + \ell$ events in the signal region for SM background, our mSUGRA benchmark point [30] ($m_0 = 60 \text{ GeV}/c^2$, $m_{1/2} = 190 \text{ GeV}/c^2$, $\tan \beta = 3$, $A_0 = 0$, and $\mu > 0$), and observation. A moderate excess of events is observed in the four leading-dilepton mass bins between 30 and 80 GeV/c^2, whose significance is estimated as follows. The probability that an excess of the same or larger size is seen within four consecutive bins (range of $60 \text{ GeV}/c^2$) anywhere in the leading-dilepton mass spectrum of $ee\mu\mu + \ell$, assuming no new physics, corresponds to a p-value of 0.032 (1.85σ). This probability is determined with the use of pseudoexperiments that take into account the statistical and systematic uncertainties of the actual experiment and their correlations across channels. In the fakes-dominated $ee\mu\mu + \text{isoTrack}$ signal region, results are more consistent with the SM (p-value = 0.56).

These results are used to set limits on the associated chargino-neutralino production rates and exclude part of the ($m_{\tilde{g}}$ vs $m_{\tilde{\chi}}$) space, which is investigated with a
SEARCH FOR NEW PHYSICS IN TRILEPTON EVENTS

mSUGRA parameter scan that varies m_0 and $m_{1/2}$ and fixes the other parameters at the benchmark values. For the chargino-neutralino upper cross-section limits, we simulate SUSY events with corresponding gaugino masses $m_{\tilde{\chi}_1^\pm} = 97$–$200$ GeV/c^2 and $m_{\tilde{\nu}_1^\pm} = 55$–$108$ GeV/c^2. The SUSY MC events are produced and normalized in the same manner as the background-MC events and are characterized by the same sources and sizes of systematic uncertainty. The CDF acceptance for the trilepton SUSY signal is $\sim 2\%$.

To increase sensitivity to a SUSY signal, we optimize the selection separately for each mSUGRA spectrum point using the ratio between the SUSY-signal strength and the uncertainty on the SM-background prediction as figure of merit. In the optimization process we treat all trilepton channels separately. The resulting optimal requirements include the $E_T > 25$ GeV criterion and the kinematic constraint $M_{ee/\mu\mu} < m_{\tilde{\chi}_1^\pm} - m_{\tilde{\nu}_1}$. We also optimize the transverse-momentum requirement for the three leptons as well as the subleading-dilepton-mass requirement [29].

The limits are set using a modified frequentist method approach (CL_s method) [31,32] that compares the background-only with the signal-plus-background hypotheses treating all trilepton channels independently. Figure 2 shows the 95% confidence level (C.L.) cross-section $[\sigma \times BR(\tilde{\chi}_1^\pm \tilde{\chi}_2^0 \rightarrow l\ell\ell)]$ exclusion upper limit as a function of the lightest chargino mass $m_{\tilde{\chi}_1^\pm}$, along with the theoretical cross section. Masses above 96 GeV/c^2 and below 168 GeV/c^2 are excluded. For $140 < m_{\tilde{\chi}_1^\pm} < 180$ GeV/c^2, the trilepton analysis excludes cross sections greater than 0.1 pb at the 95% C.L.

We repeat the procedure by varying the masses of the next-to-lightest neutralino $\tilde{\nu}_2$ and $\tilde{\tau}$ and report the corresponding two-dimensional exclusion region shown in Fig. 3. This analysis excludes part of the $(m_{\tilde{\nu}_2} \text{ vs } \tilde{\tau})$ space.
not excluded in previous CDF or D0 results [13,14] due to its additional sensitivity to decays of tau leptons into hadrons and low-\(p_T\) leptons. For \(m_{\nu}^2 \gtrsim 140\) GeV/c\(^2\), we are sensitive to mass differences \(m_{\nu}^2 - m_{\tilde{\nu}}^2 \gtrsim 15\) GeV/c\(^2\).

In summary, we present a search for new physics in the trilepton + \(E_T\) final state using data from 1.96-TeV proton-antiproton collisions collected by CDF and corresponding to an integrated luminosity of 5.8 fb\(^{-1}\). In the study, we include low-momentum leptons that are not investigated at the LHC and that could result from direct decays of new light particles or chain decays of particles with similar masses. We do not observe any significant discrepancies from the expected SM prediction; we set mSUGRA limits on chargino mass and establish an exclusion in the \((m_{\tilde{\chi}^\pm} vs \tau)\) space.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

[7] In mSUGRA (minimal supergravity) the only free parameters are the common scalar mass \(m_0\), the common gaugino mass \(m_{1/2}\), the ratio of Higgs vacuum expectation values \(\tan \beta\), the trilinear sfermion-sfermion-Higgs coupling \(A_0\), and the sign of the Higgsino scale parameter \(\mu\).
[28] The missing transverse-momentum vector \(E_T\) is defined as \(-(\sum_i \vec{E}_i)\), where \(\vec{E}_i\) has magnitude equal to the energy deposited in the \(i\)th calorimeter tower and direction perpendicular to the beam axis and pointing to that calorimeter tower at \(\eta = 0\). The \(E_T\) is corrected for the presence of muons, because they deposit only a little of their energy in the calorimeters.

[30] Our mSUGRA benchmark point is an indicative point in the mSUGRA parameter space, for which $m_{\tilde{\chi}} \approx m_{\tilde{\chi}_0} \approx 123 \text{ GeV}/c^2$, and which leads to decays to three leptons, with a preference to lower momenta. For this point the allowed decays of gauginos are $\tilde{\chi}_1^+ \rightarrow \tilde{\nu}_e \rightarrow \ell\nu\tilde{\chi}_1^0$ and $\tilde{\chi}_0 \rightarrow \ell\ell \rightarrow \ell\ell\tilde{\chi}_1^0$.
