Magnetic interactions in 3d metal chains on Cu[subscript 2]X/Cu(001) (X = N, O): Comparison with corresponding unsupported chains

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Magnetic interactions in 3d metal chains on Cu$_2$X/Cu(001) ($X = N$, O): Comparison with corresponding unsupported chains

M. C. Urdaniz, 1 M. A. Barral, 1,2 A. M. Llois, 1,2 and A. Saúl 3,4,5

1Departamento de Física, Comisión Nacional de Energía Atómica, Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
2Departamento de Física “Juan José Giambiagi,” Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
3CINaM, Université d’Aix Marseille-CNRS, Campus de Luminy, case 913, 13288 Marseille Cedex 9, France
4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
5MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

(Received 10 July 2014; revised manuscript received 29 October 2014; published 18 November 2014)

In this work we present a systematic study of the magnetic interactions within 3d transition-metal chains adsorbed on Cu$_2$N and Cu$_2$O monolayers grown on Cu(001). We are interested in the particular geometric adsorption configuration which gives rise, after relaxation, to the development of diatomic TM-X ($X = N$, O) chains. By using density functional theory (DFT), we calculate the energy difference between the ferromagnetic and antiferromagnetic intrachain configurations for Ti, V, Cr, Mn, Fe, and Co. Both substrates give rise, with minor differences, to the same magnetic trends, the only chains which are ferromagnetic after adsorption are Cr chains. By performing similar calculations in unsupported chains and introducing a tight-binding-model Hamiltonian based on physically reasonable assumptions we reproduce the magnetic trends obtained from the DFT calculations.

DOI: 10.1103/PhysRevB.90.195423 PACS number(s): 75.75.–c, 73.22.—f

I. INTRODUCTION

During many years, experimental work in low-dimensional magnetism relied on the existence of crystalline samples formed by periodic arrangements of the desired low-dimensional systems. It has been possible to study the magnetic properties of thermodynamic ensembles of dimers [1–4], trimers [5,6], linear chains [7–9], or ladders [10,11]. Advances in surface-physics methods during the past decades allowed to study the magnetic properties of ensembles [12,13] and individual [14–23] deposited structures.

For example, x-ray magnetic circular dichroism (XMCD) was used to study the magnetic properties of one-dimensional (1D) Co chains grown by ultrahigh vacuum deposition on a vicinal Pt(997) surface [12,13].

By using a low-temperature, high-magnetic-field scanning tunneling microscope, Heinrich et al. [14] have studied spin-excitation spectra of single Mn atoms deposited on Al$_2$O$_3$ islands on a NiAl surface. Hirjibehedin et al. [15–17] measured the magnetic ground state of Mn chains adsorbed on two different sites of a substrate formed by a decoupling monolayer of copper nitride Cu$_2$N deposited on Cu(001). Loth et al. used the spin-polarized current of a scanning tunneling microscope to modify and measure the spin state of Mn atoms and dimers [20] and finite Fe chains [23] on the same Cu$_2$N/Cu(001) substrate. It has also been shown that the magnetocrystalline anisotropy of a single Fe atom deposited on the same substrate depends on the relative position of the other nearby Fe atoms [24].

Several groups have performed calculations based on density functional theory (DFT) to study the magnetic properties of free-standing or deposited low-dimensional systems [16,25–28].

Mokrousov et al. considered a series of 3d transition metals deposited on different substrates [Cu, Pd, Ag, and NiAl(110)] [25]. Rudenko et al. studied the magnetic interactions and anisotropies of the experimentally observed Mn chains on Cu$_2$N/Cu(001) [26]. Urdaniz et al. recently considered possible adsorption sites other than the experimentally reported ones for 3d transition-metal (TM) chains on Cu$_2$N/Cu(001). By performing total-energy calculations based on DFT, they concluded that different magnetic-interaction mechanisms can exist depending on the geometry of the magnetic state of free-standing 3d metal chains and to antiferromagnetic at the end of it. This behavior contrasts with the calculated ferromagnetic ground state of free-standing 3d transition-metal chains of V, Cr, Mn, Fe, and Co at the same distance [25]. This demonstrates that the substrate as well as the d filling of the adsorbed transition-metal atoms both play a role in the determination of the nature of the magnetic interaction. To try to separate both effects, we perform calculations where the decoupling monolayer contains oxygen instead of nitrogen and compare the magnetic properties for both substrates. The idea of replacing nitrogen by oxygen is not only to study the effect...
of including one more electron (which is already taken into account by the series of 3d TMs studied) but to understand the consequence of using a decoupling monolayer with a more electronegative ligand.

We also compare the magnetic ground state of free-standing (unsupported) TM-O and TM-N chains with the same interatomic distance and we estimate the kinetic exchange contributions of the different bands to the magnetic order using a tight-binding Hamiltonian. We show that the use of a simple set of parameters and the application of physically reasonable assumptions can account for the observed magnetic trends.

In Sec. II we describe the calculation details and the system of interest. In Sec. III we present the results of the ground-state energies for the TM chains on Cu2N/Cu(001) and Cu2O/Cu(001) substrates and the unsupported TM-N and TM-O chains. We then introduce the model Hamiltonian and the expressions for the exchange energy of the different orbital contributions in Sec. IV. We finally discuss and conclude in Sec. V.

II. CALCULATION DETAILS AND DESCRIPTION OF SYSTEMS

In order to study the electronic and magnetic properties of the TM chains deposited on Cu2N/Cu(001) and Cu2O/Cu(001), we carry out DFT calculations by using the full potential linearized augmented plane waves method (FP-LAPW), as implemented in the WIEN2k code [29]. The generalized gradient approximation (GGA) for the exchange and correlation potential in the parametrization of Perdew, Burke, and Ernzerhof [30] and the augmented plane waves local orbital (apw-lo) basis are used. The cutoff parameter which gives the number of plane waves in the interstitial region is taken as $R_{MT}K_{\text{max}} = 7$, where K_{max} is the value of the largest reciprocal lattice vector used in the plane waves’ expansion and R_{MT} is the smallest muffin tin radius used. The number of k points in the Brillouin zone is enough in each case to obtain the desired energy and charge precision; namely, 10^{-4} Ry and $10^{-4}e$, respectively.

Cu(001) is modeled by using a periodic supercell composed by a five-layer slab and a vacuum region of 13.8 Å. The thickness of the vacuum region is found to be sufficiently large to avoid interactions among subsequent slabs. The N and O atoms are adsorbed in a $c(2 \times 2)$ configuration in the fourfold-coordinated hollow sites on the outermost metallic copper layer. To exploit inversion symmetry and to prevent unphysical multipoles, each slab has one Cu2N or one Cu2O monolayer on each side. We use the experimental lattice constant of copper, which is only 0.27% smaller than the corresponding one obtained with GGA-DFT for bulk Cu.

In the calculations, we consider that the adsorbed 3d atomic chains are infinitely long and are deposited on both sides of the slabs. In the adsorption geometry studied, the 3d atoms are arranged directly on top of Cu atoms of the Cu2N [Figs. 1(a) and 1(b)] or Cu2O [Figs. 1(c) and 1(d)] monolayer, in such a way that one sp atom lies between each pair of 3d atoms along the chain. There are four lateral copper atoms of the Cu2N or Cu2O monolayer surrounding each chain atom and the nearest-neighbor 3d–3d distance along the chains is 3.61 Å in all cases studied. This is one of the experimentally reported situations [15] for Mn on Cu2N/Cu(001). In our supercell calculations, chains are periodically arranged 7.2 Å apart from

![FIG. 1. (Color online) Relaxed structures of supported 3d chains. (a) and (c) Full views of the resulting diatomic chains on Cu2N/Cu(001) and Cu2O/Cu(001), respectively. (b) and (d) Lateral views of panels (a) and (c) with the diatomic chains perpendicular to the plane. (e) Diatomic TM-N unsupported chain. N and O atoms are depicted by small, dark spheres (respectively green and red online). White spheres indicate 3d TM atoms (yellow online), and light or dark gray spheres indicate surface or subsurface Cu atoms, respectively (orange and violet online).]
among the different relevant differences in the relaxation of the chains are observed
distance to the monolayer, relaxing outwards and forming are between two 3
distance between the X atom (N, O) and the deposited TM atom,
bridging atoms and
atom from O to N.
sp
4), the transitions from the FM to AFM ground state shown in Fig. 3 demonstrate that, for an unsupported system, they happen when the total number of valence electrons increases from 12 to 13 (Mn for O and Fe for N). If one relates the magnetic order to the filling of the 3d bands it is somehow natural to see a left shift of the curves when changing the sp atom from O to N.

The dependence of the total magnetic moment of the supported and unsupported chains on the 3d filling is shown in Fig. 4. For the unsupported chains with O [red circles in Fig. 4(b)], the evolution of the magnetic moment corresponds to a perfect splitting between the 3d-up and 3d-down bands. In other words, in this case, the crystal splitting is smaller than the effective Hund intra-atomic interaction I. From Ti to Mn, the magnetic moment increases from $2\mu_B$ to $5\mu_B$ and then

III. CALCULATION RESULTS

Relaxed TM chains on Cu$_2$N/Cu(001) and on Cu$_2$O/Cu(001) are shown schematically in Figs. 1(a)–1(d). No relevant differences in the relaxation of the chains are observed among the different 3d fillings. The N or O atoms, which are between two 3d atoms, change significantly their vertical distance to the monolayer, relaxing outwards and forming nearly linear diatomic chains together with the 3d atoms. For the case of Cu$_2$N/Cu(001), this is in agreement with previous results [16]. However, the Cu$_2$N and Cu$_2$O monolayers relax slightly differently in the presence of TM chains as can be seen in Figs. 1(a)–1(d). The main difference is that the distance between the sp atom, which forms the diatomic chains, and the neighboring Cu atom, indexed as Cu(2), is larger in the Cu$_2$O monolayer than in Cu$_2$N monolayer. The principal structural properties of the systems are summarized in Table I. In the last section, we relate the magnetic behavior of the systems with their structural properties.

We consider only collinear ferromagnetic (FM) and antiferromagnetic (AFM) intrachain configurations for each system. To analyze the evolution of the magnetic ground state as a function of d-band filling, we calculate the total energy difference ΔE between the AFM and FM solutions. If this difference is negative the magnetic ground state is AFM; if not, it is FM. The results obtained for the deposited chains are shown in Fig. 2. It is seen that both substrates give rise, with minor differences, to the same magnetic trends and that the only chains which are ferromagnetic after adsorption are Cr chains.

In the resulting diatomic chains one can argue that there are, in principle, contributions through the sp bridging atoms and contributions mediated by the substrate. In order to understand the role played by the substrate and by the d filling, we also studied unsupported linear chains TM-O and TM-N [as an example, see Fig. 1(e) depicting a TM-N chain].

In Fig. 3 we show the evolution of these ground states for the two types of unsupported chains as a function of d filling. For oxygen bridging, the TM atoms present the same behavior as the deposited chains on Cu$_2$O, while in the case of the nitrogen bridge the strongest ferromagnetic ground state is given for Mn and not for Cr as for the TM-O chains.

Because N (2s22p3) has one less valence p electron than oxygen (2s22p4), the transitions from the FM to AFM ground state shown in Fig. 3 demonstrate that, for an unsupported system, they happen when the total number of valence electrons increases from 12 to 13 (Mn for O and Fe for N). If one relates the magnetic order to the filling of the 3d bands it is somehow natural to see a left shift of the curves when changing the sp atom from O to N.

The dependence of the total magnetic moment of the supported and unsupported chains on the 3d filling is shown in Fig. 4. For the unsupported chains with O [red circles in Fig. 4(b)], the evolution of the magnetic moment corresponds to a perfect splitting between the 3d-up and 3d-down bands. In other words, in this case, the crystal splitting is smaller than the effective Hund intra-atomic interaction I. From Ti to Mn, the magnetic moment increases from $2\mu_B$ to $5\mu_B$ and then

![FIG. 2. (Color online) Difference in total energy between the AFM and FM collinear chain configurations as a function of 3d filling for TM chains adsorbed on Cu$_2$N/Cu(001) (squares, blue online) and Cu$_2$O/Cu(001) (circles, red online).](image)

![FIG. 3. (Color online) Difference in total energy between the AFM and FM collinear chain configurations as a function of d filling for linear diatomic unsupported chains. The results for the TM-N chains are shown represented by squares (blue online) and for TM-O by circles (red online).](image)

TABLE I. Structural properties of the systems. $d_{x}\text{--TM}$ is the distance between the X atom (N, O) and the deposited TM atom, $d_{\text{TM--Cu(1)}}$ is the distance between the TM atom and the underlying Cu, and $d_{\text{TM--Cu(3)}}$ is the distance between the TM atom and the Cu(3) atom. $d_{x}\text{--Cu(2)}$ is defined as the distance between the X atom (N, O) and the Cu(2) atom. The values are given in Å.

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Cu$_2$N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{x}\text{--TM}$</td>
<td>1.90</td>
<td>1.86</td>
<td>1.81</td>
<td>1.81</td>
<td>1.81</td>
<td>1.81</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{\text{TM--Cu(1)}}$</td>
<td>2.41</td>
<td>2.35</td>
<td>2.35</td>
<td>2.38</td>
<td>2.33</td>
<td>2.28</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{\text{TM--Cu(2)}}$</td>
<td>4.01</td>
<td>3.98</td>
<td>3.99</td>
<td>4.02</td>
<td>4.03</td>
<td>4.00</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{x}\text{--Cu(2)}$</td>
<td>2.91</td>
<td>2.55</td>
<td>2.18</td>
<td>2.10</td>
<td>2.01</td>
<td>2.04</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{x}\text{--TM}$</td>
<td>1.90</td>
<td>1.87</td>
<td>1.82</td>
<td>1.84</td>
<td>1.83</td>
<td>1.81</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{\text{TM--Cu(1)}}$</td>
<td>2.41</td>
<td>2.44</td>
<td>2.48</td>
<td>2.43</td>
<td>2.37</td>
<td>2.33</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{\text{TM--Cu(2)}}$</td>
<td>4.12</td>
<td>4.15</td>
<td>4.16</td>
<td>4.14</td>
<td>4.11</td>
<td>4.06</td>
<td>Cu$_2$N</td>
</tr>
<tr>
<td>$d_{x}\text{--Cu(2)}$</td>
<td>3.15</td>
<td>3.13</td>
<td>3.01</td>
<td>3.04</td>
<td>2.91</td>
<td>2.66</td>
<td>1.95</td>
</tr>
</tbody>
</table>
decreases with the number of valence electrons. The magnetic moment of the unsupported TM-N chains is similar if we take into account that there is one less electron available [blue squares in Fig. 4(b)]. The difference is that the maximum magnetic moment is only $4 \mu_B$, corresponding to a crossover between the down and up bands. The dependence of the magnetic moments of the supported chains with the $3d$ filling is shown in Fig. 4(a). The main difference is the systematic decrease of the magnetic moments due to the hybridization with the substrate in the Cu$_2$N case.

The evolution of the occupation of the spin-polarized bands are shown in Figs. 5 and 6 for the TM-N and TM-O unsupported chains, respectively. In both cases, from Ti to Mn, the above-mentioned saturation of the magnetic moments is in agreement with the position of the $3d$ spin-down bands above the Fermi level (lower panels in Figs. 5 and 6). The decrease of the magnetic moment of Fe and Co is a consequence of the filling of the spin-down bands.

The AFM solution for the Mn chains on Cu$_2$N/Cu(001) (see Fig. 2) is in agreement with other experimental [15,16] and theoretical [26,27] works. The estimated experimental effective exchange interaction is $J = 6$ meV. Assuming a Heisenberg Hamiltonian, we estimate a value of 4.8 meV from the calculated energy difference $\Delta E = 2S^2 J = 60$ meV and a spin $S = 5/2$. The AFM ground state for Fe chains agrees with the ground state found for Fe dimers and trimers calculated by using GGA + U [31,32] by Nicklas et al. [33]. Their estimate of the effective interaction for the dimer, $J = 28$ meV, and trimer, $J = 34$ meV, are in good agreement with the $J = 40$ meV estimated by ourselves from the energy difference $\Delta E = 180$ meV and a spin $S = 3/2$.

We also checked that the use of GGA + U instead of plain GGA has a limited effect on our results. By using $U = 5$ eV for Cr and Mn and $U = 2$ eV for Fe, we compared the total energy differences between the AFM and FM configurations, ΔE, for these TM chains adsorbed on Cu$_2$N/Cu(001). We obtained in the case of Cr that $\Delta E = 275$ meV/atom with GGA and 260 meV/atom with GGA + U, for Mn -60 meV/atom and -40 meV/atom, and for Fe -185 meV/atom and -175 meV/atom.

In the next section we consider a simple Hamiltonian that allows us to understand the FM to AFM transition in the unsupported TM-N and TM-O chains. The different behavior between the supported and unsupported chains will be discussed in Sec. V.

IV. EXCHANGE MODEL

As expected, the three bands close to the Fermi level have a strong $3d$ character of the TM (see Figs. 5 and 6). With the z axis of the local coordinate system along the chains, these bands correspond to the d_{z^2} nondegenerate band ($m = 0$), the doubly degenerate bands with d_{x^2} and d_{y^2} character ($m = \pm 1$), and the doubly degenerate flat bands with $d_{3z^2-r^2}$ and d_{xy} character ($m = \pm 2$). The difference in electronegativity between the two ligands is clearly reflected if we compare the spin-down bands (lower panels) of both systems. On the energy scale of the band-structure plots, the low-energy bonding bands
For the double-degenerate orbitals presented in Fig. 8.

of N character are more visible (closer to the Fermi level) than those of O character. This is in agreement with the expected more-ionic character of the oxygen bonds.

Having this in mind, we can assume that two of the original valence electrons of the TM go to the O atom and the remaining valence electrons fill the 3d orbitals. Looking carefully at the upper panel of Fig. 6 it seems clear that the first electron goes to the nondegenerate z^2 up orbital and the subsequent ones to the double degenerate xz/yz and $x^2 - y^2/xy$ up orbitals. A schematic picture representing the filling of the 3d bands is shown in Fig. 7.

To relate the filling of these bands to the energy differences obtained for the unsupported TM-O chains presented in Fig. 3, we considered a tight-binding Hamiltonian for the effective magnetic orbitals centered on the TM atoms. The hopping integrals are treated as a perturbation, in the spirit of the kinetic exchange.

For a perfectly straight chain, symmetry reasons allow to consider separately each one of the 3d bands. In the case of the d_{z^2} character, only the level occupation with one electron is of interest; namely, the half-filled situation. In the case of the double degenerate states with dz^2 and d_{xy} symmetries, there are three occupations to be considered: 1, $1/4$, and $3/4$. We do not consider the contributions to the magnetic order of the double degenerate orbitals with d_{xz}/d_{yz} and d_{xy} symmetries. The reason is that the corresponding bands (see Figs. 5 and 6) are extremely flat and the hopping integrals are negligibly small.

The expressions for the difference in energy between antiferromagnetic and ferromagnetic configurations of the model system, $\Delta E = E_{AFM} - E_{FM}$, are obtained by using second-order perturbation theory. For the z^2 orbital and filling $1/2$, the energy difference is the simple expression for kinetic exchange:

$$\Delta E_{1/2}^0 = -4 \frac{t_0^2}{U}. \tag{1}$$

For the double-degenerate orbitals xz/yz and filling $1/4$, the energy difference is

$$\Delta E_{1/4}^1 = \frac{4 \frac{4}{I} t_1}{U(U' - I)}. \tag{2}$$

For filling $1/2$, the energy difference is

$$\Delta E_{1/2}^1 = - \frac{4}{U + I}. \tag{3}$$

In Eqs. (1)–(4), t_0 and t_1 are respectively the effective hopping integrals between two $m = 0$ or two $m = \pm 1$ orbitals, U is the Coulomb repulsion between two electrons in the same d orbital, U' is the corresponding repulsion between electrons in different d orbitals in the same atom, and I is the intra-atomic Hund exchange interaction.

The energy differences calculated with these expressions and the orbital occupancies sketched in Fig. 7 are shown in Fig. 8. They have been calculated with a single set of reasonable values: $U = 6$ eV, $U' = 4$ eV, $I = 2.5$ eV, $t_0 = 0.25$ eV, and $t_1 = 0.60$ eV.

Finally, for filling $3/4$, the energy difference is

$$\Delta E_{3/4}^1 = \frac{4 \frac{2}{I} t_1}{U(U' - I)}. \tag{4}$$

The qualitative agreement with the calculated energy differences for the TM-O chain presented in Fig. 3 is remarkably good.

In Table II we show the contributions of the different orbitals to the energy difference. The small AFM contribution of the z^2 orbital is due to the small dispersion of the bands (see Fig. 6) and the relative high value of the repulsive Coulomb interaction. The enhanced AFM character for Mn is a consequence of the synergic contribution of the z^2 and the xz/yz orbitals. The FM ground state for Cr is a consequence of the relatively large FM contribution of the double-degenerate xz/yz orbital with filling $3/4$ in comparison with the AFM contribution of the z^2 orbital. The condition that should be
fulfilled by the tight-binding parameters for a stabilization of the FM ground state in the case of Cr ($\Delta E_{1/4}^1 + \Delta E_{1/2}^0 > 0$) can be written as

$$\left(\frac{t_1}{t_0}\right)^2 > \frac{U'(U' - I)}{IU}. \quad (5)$$

On the one hand, in order to have a FM ground state, a strictly nonzero value for the effective Hund interaction I is needed. On the other hand, the relatively large dispersion of the xz/yz bands with respect to the z^2 bands ($t_1 \gg t_0$) makes the stabilization of the FM ground state a robust result against other choices of the effective Coulomb interactions U and U'. It is interesting to note that, in the case of Cr, the ground state stabilized by the degenerate orbitals xz/yz corresponds to a FM spin order and an AFM-orbital order, i.e., the occupied orbitals are alternatively xz and the yz.

The case of unsupported TM-N chains is a little more complicated. If we fill with electrons the same energy scheme for the 3d orbitals as for the TM-O case (Fig. 7), we would correctly predict FM for Mn-N and a transition to AFM for Fe-N. However, the same scheme will incorrectly predict a small stabilization of the AFM ground state for Ti, V, and Cr when the *ab initio* calculations give a FM ground state. The reasons can be seen in the magnetic band structure of Fig. 5: the filling of the 3d bands is not as clear as in the case of the TM-O chains; the successively added electrons spread over the bands and the rigid energy levels sketched in Fig. 7 do not strictly correspond to the actual band filling. In particular, the AFM solution is the preferred magnetic order for a single occupied nondegenerate band. The spread of the 3d electrons between the different orbitals and the departure from half filling could be at the origin of the stabilization of the FM order for Ti, V, and Cr.

V. DISCUSSION AND CONCLUSIONS

The exchange model presented in the preceding section has been used to explain the energy difference for the unsupported chains. The similarity of the energy difference and magnetic moments plots for the supported and unsupported chains in the TM-O case makes us believe that the same arguments can be used to explain the magnetic order for the supported TM-O chains.

The striking result is that the supported TM-N chains show a magnetic trend similar to that for the supported TM-O chains. A possible explanation could be that there is a small but significative charge transfer between the chains and the substrate that would explain why the chains behave as deposited on Cu$_2$O even though they are deposited on Cu$_2$N.

This argument is supported by the electronic density plots that we show in Fig. 9. One can see that the copper atom labeled as Cu(2) is closer to the neighboring N atom than the same Cu(2) atom is to the corresponding O atom. This indicates a less-important bonding effect for the latter substrate. Thus, Cu(2) contributes to charge transfer from the substrate to the chains and, in the presence of the Cu$_2$N, it would help to transform the diatomic TM-N chains into TM-O-like chains. This can also be inferred from Table I when comparing the distance between Cu(2) and the nearest sp atoms of the chains for both cases under study. The distance N-Cu(2) is systematically smaller than the distance O-Cu(2), in agreement with the electron transfer in the former case.

In conclusion, in this work we studied the influence of a covalent ultrathin film on the magnetic interactions within adsorbed 3d transition-metal chains, when this film separates the adsorbed nanostructures from a metallic substrate. We focused on the case of a Cu$_2$N monolayer as decoupling layer from Cu(001). This decoupling layer has been the object of several experimental as well as theoretical works. Among the possible adsorption arrangements for TM chains, we studied the particular one which gives rise to the appearance of diatomic TM-N chains after relaxation of the systems. To understand the role played by the substrate we also considered a similar substrate where the decoupling monolayer is Cu$_2$O.

We performed DFT calculations for 3d TM atoms going from Ti to Co. Both substrates give rise to the same magnetic trends; the only chains which present ferromagnetic order after adsorption are Cr chains.

By performing similar calculations for unsupported chains and introducing a tight-binding-model Hamiltonian based on physically reasonable assumptions we were able to reproduce the magnetic trends obtained from the DFT calculations. It was possible to identify the orbital occupancies which give rise to different magnetic ground states as a function of d filling in the resulting diatomic chains and to understand the antiferromagnetic-to-ferromagnetic transition that takes place at the d filling corresponding to Cr.

We expect that it should be possible to obtain similar behavior for other decoupling films by properly engineering these films and selecting suitable adsorption sites for the atoms intended to build a supported nanostructure.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Guillaume Radtke. M.A.B. is supported and M.C.U. and A.M.L. are partially supported by CONICET and belong to the Institute of Nanoscience and Nanotechnology (INN) of the Atomic Energy Agency (CNEA), Argentina. This work was partially funded by the grants PIP00273 (CONICET), UBACYT-W354 (UBA), PICT-2011-1187 (ANPCyT), and PRH074 (ANPCyT).
Only U' appears in Eqs. (2) and (4) because both lowest-energy FM and AFM configurations present AFM-orbital ordering, i.e., the electrons occupy different orbitals in different atoms. As for symmetry reasons, there is no interorbital hopping (between xz and yz orbitals in different sites), the repulsion energy of the virtual state is always U' instead of U: $E_{FM} = 2u_d - 4t_z^2/(U' - I)$ and $E_{AFM} = 2u_d - 4t_z^2/U'$, where u_d is the on-site energy of a d orbital. The other AFM state, with the electrons in the same orbital at different sites, has a higher energy, $2u_d - 4t_z^2/U$, than the one with AFM-orbital ordering.