Search for physics beyond the standard model in events with a Z boson, jets, and missing transverse energy in pp collisions at $s = 7$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for physics beyond the standard model in events with a Z boson, jets, and missing transverse energy in pp collisions at $\sqrt{s} = 7$ TeV

CMS Collaboration

A search is presented for physics beyond the standard model (BSM) in events with a Z boson, jets, and missing transverse energy (E_T^{miss}). This signature is motivated by BSM physics scenarios, including supersymmetry. The study is performed using a sample of proton–proton collision data collected at $\sqrt{s} = 7$ TeV with the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.98 fb$^{-1}$. The contributions from the dominant standard model backgrounds are estimated from data using two complementary strategies, the jet-Z balance technique and a method based on modeling E_T^{miss} with data control samples. In the absence of evidence for BSM physics, we set limits on the non-standard-model contributions to event yields in the signal regions and interpret the results in the context of simplified model spectra. Additional information is provided to facilitate tests of other BSM physics models.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

This Letter describes a search for physics beyond the standard model (BSM) in proton–proton collisions at a center-of-mass energy of 7 TeV. Results are reported from a data sample collected with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN corresponding to an integrated luminosity of 4.98 fb$^{-1}$. This search is part of a broad program of inclusive, signature-based searches for BSM physics at CMS, characterized by the number and type of objects in the final state. Since it is not known a priori how the BSM physics will be manifest, we perform searches in events containing jets and missing transverse energy (E_T^{miss}) [1–3], single isolated leptons [4], pairs of opposite-sign [5] and same-sign [6] isolated leptons, photons [7,8], etc. Here we search for evidence of BSM physics in final states containing a Z boson that decays to a pair of oppositely-charged isolated electrons or muons. Searches for BSM physics in events containing oppositely-charged leptons have also been performed by the ATLAS Collaboration [9–11].

This strategy offers two advantages with respect to other searches. First, the requirement of a leptonically-decaying Z boson significantly suppresses large standard model (SM) backgrounds including QCD multijet production, events containing Z bosons decaying to a pair of invisible neutrinos, and events containing leptonically-decaying W bosons, and hence provides a clean environment in which to search for BSM physics. Second, final states with Z bosons are predicted in many models of BSM physics, such as supersymmetry (SUSY) [12–16]. For example, the production of a Z boson in the decay $\tilde{\chi}^0_2 \rightarrow Z \tilde{\chi}^0_1$, where $\tilde{\chi}^0_1$ (or $\tilde{\chi}^0_2$) is the lightest (second lightest) neutralino, is a direct consequence of the gauge structure of SUSY, and can become a favored channel in regions of the SUSY parameter space where the neutralinos have a large Higgsino or neutral wino component [17–19]. Our search is also motivated by the existence of cosmological cold dark matter [20], which could consist of weakly-interacting massive particles [21] such as the lightest SUSY neutralino in R-parity conserving SUSY models [22]. If produced in pp collisions, these particles would escape detection and yield events with large E_T^{miss}. Finally, we search for BSM physics in events containing hadronic jets. This is motivated by the fact that new, heavy, strongly-interacting particles predicted by many BSM scenarios may be produced with a large cross section and hence be observable in early LHC data, and such particles tend to decay to hadronic jets. These considerations lead us to our target signature consisting of a leptonically-decaying Z boson produced in association with jets and E_T^{miss}.

After selecting events with jets and a $Z \rightarrow \ell^+ \ell^-$ ($\ell = e, \mu$) candidate, the dominant background consists of SM Z production accompanied by jets from initial-state radiation (Z+jets). The E_T^{miss} in Z+jets events arises primarily when jet energies are mismeasured. The Z+jets cross section is several orders of magnitude larger than our signal, and the artificial E_T^{miss} is not necessarily well reproduced in simulation. Therefore, the critical
prerequisite to a discovery of BSM physics in the Z + jets + \(E_T^{miss}\) final state is to establish that a potential excess is not due to SM Z + jets production accompanied by artificial \(E_T^{miss}\) from jet mismeasurements. In this Letter, we pursue two complementary strategies, denoted the Jet-Z Balance (JZB) and \(E_T^{miss}\) template (MET) methods, which rely on different techniques to suppress the SM Z + jets contribution and estimate the remaining background. The two methods employ different search regions, as well as different requirements on the jet multiplicity and Z boson identification. After suppressing the Z + jets contribution, the most significant remaining SM background consists of events with a pair of top quarks that both decay leptonically (dilepton tf). We exploit the fact that in dilepton tf events the two lepton flavors are uncorrelated, which allows us to use a control sample of e\(\mu\) events, as well as events in the sideband of the dilepton mass distribution, to estimate this background.

The JZB method is sensitive to BSM models where the Z boson and dark matter candidate are the decay products of a heavier particle. In such models, the Z boson and \(E_T^{miss}\) directions are correlated, with the strength of this correlation dependent on the BSM mass spectrum. The Z + jets background contribution to the JZB signal region is estimated from a Z + jets sample, by exploiting the lack of correlation between the direction of the Z boson and \(E_T^{miss}\) in these events for large jet multiplicity. With this method, the significance of an excess is reduced in models where the \(E_T^{miss}\) and Z directions are not correlated.

The MET method relies on two data control samples, one consisting of events with photons accompanied by jets from initial-state radiation (\(\gamma + \text{jets}\)) and one consisting of QCD multijet events, to evaluate the Z + jets background in a high \(E_T^{miss}\) signal region. In contrast to the JZB method, the MET method does not presume a particular mechanism for the production of the Z boson and \(E_T^{miss}\). The significance of an excess is reduced in models where both the \(E_T^{miss}\) and Z directions are not correlated.

The Letter is organized as follows: we first describe the detector (Section 2), and the data and simulated samples and event selection that are common to both strategies (Section 3). The two methods are then described and the results presented (Sections 4 and 5). Systematic uncertainties on the signal acceptance and efficiency are presented in Section 6. Next, the two sets of results are interpreted in the context of simplified model spectra (SMS) [23–25], which represent decay chains of new particles that may occur in a wide variety of BSM physics scenarios, including SUSY (Section 7). We provide additional information to allow our results to be applied to arbitrary BSM physics scenarios (Section 8). The results are summarized in Section 9.

2. The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass/scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry. The CMS coordinate system is defined with the origin at the center of the detector and the z axis along the direction of the counterclockwise beam. The transverse plane is perpendicular to the beam axis, with \(\phi\) the azimuthal angle, \(\theta\) the polar angle, and \(\eta = -\ln(\tan(\theta/2))\) the pseudorapidity. Muons are measured in the range \(|\eta| < 2.4\). The inner tracker measures charged particles within the range \(|\eta| < 2.5\). A more detailed description of the CMS detector can be found elsewhere [26].

3. Samples and event selection

Events are required to satisfy at least one of a set of ee, e\(\mu\) or \(\mu\)\(\mu\) double-lepton triggers, with lepton transverse momentum \((p_T)\) thresholds of 17 GeV for one lepton and 8 GeV for the other. Events with two oppositely-charged leptons \((e^+ e^-\text{ or } \mu^+ \mu^-)\) are rejected. Details of the lepton reconstruction and identification can be found in Ref. [27] for electrons and in Ref. [28] for muons. Both leptons must have \(p_T > 20\) GeV, in the efficiency plateau of the triggers. Electrons (muons) are restricted to \(|\eta| < 2.5 (2.4)\). For the candidate sample, only e\(e^-\) and \(\mu^+\mu^-\) events are used, and the dilepton system is required to have an invariant mass consistent with the mass of the Z boson (\(m_Z\)). The e\(\mu\) events are used as a data control sample to estimate the tf background.

Because leptons produced in the decays of low-mass particles, such as hadrons containing b and c quarks, are nearly always inside jets, they can be suppressed by requiring the leptons to be isolated in space from other particles that carry a substantial amount of transverse momentum. The lepton isolation [29] is defined using the scalar sum of both the transverse momentum depositions in the calorimeters and the transverse momenta of tracks in a cone of \(\Delta R \equiv \sqrt{\Delta\eta^2 + (\Delta\phi)^2} < 0.3\) around each lepton, excluding the lepton itself. Requiring the ratio of this sum to the lepton \(p_T\) to be smaller than 15% rejects the large background arising from QCD production of jets.

We select jets [30] with \(p_T > 30\) GeV and \(|\eta| < 3.0\), separated by \(\Delta R > 0.4\) from leptons passing the analysis selection. We use the particle flow (PF) method [31] to reconstruct charged and neutral hadrons, muons, electrons, and photons. The PF objects are clustered to form jets using the anti-kt clustering algorithm [32] with a distance parameter of 0.5, as implemented in the FASTJET package [33,34]. We apply \(p_T\) and \(\eta\)-dependent corrections to account for residual effects of non-uniform detector response. The contribution to the jet energy from pile-up is estimated on an event-by-event basis using the jet area method described in Ref. [35], and is subtracted from the overall jet \(p_T\). The missing transverse momentum \(E_T^{miss}\) is defined as the magnitude of the vector sum of the transverse momenta of all PF objects. The \(E_T^{miss}\) vector is the negative of that same vector sum.

The sample passing the above preselection requirements is dominated by SM Z + jets events, which must be suppressed in order to achieve sensitivity to BSM physics. As discussed in the introduction, we pursue two complementary approaches to evaluate the Z + jets background. Samples of Z + jets, tf, WW, WZ, and ZZ Monte Carlo (MC) simulated events generated with MADGRAPH 5.1.10 [36] are used to guide the design of these methods, but the dominant backgrounds are estimated with techniques based on data control samples. Events produced by MADGRAPH are passed to PYTHIA 6.4.22 [37] for the generation of parton showers. Additional MC samples of Z + jets, \(\gamma + \text{jets}\), and QCD multijet events generated with PYTHIA 6.4.22 are used to validate the \(E_T^{miss}\) template method of Section 5. We also present the expected event yields for two benchmark scenarios of the constrained minimal supersymmetric extension of the standard model (CMSSM) [38], denoted LM4 and LMB [39], which are generated with the same version of PYTHIA. The CMSSM is described with five parameters: the universal scalar and gaugino masses \(m_0\) and \(m_{1/2}\), the universal soft SUSY-breaking parameter \(A_0\), the ratio of vacuum expectation values of the two Higgs doublets \(\tan \beta\), and the sign of the Higgs mixing parameter \(\mu\). The LM4 (LMB) parameter sets are \(m_0 = 210 (300)\) GeV, \(m_{1/2} = 285 (300)\) GeV, \(\tan \beta = 10\), sign(\(\mu\)) = +, and \(A_0 = 0 (-300)\) GeV. The LM4 scenario is excluded in Ref. [3]; this Letter is the first to exclude LMB. In these two scenarios heavy neutralinos predominantly decay to a Z boson and a lighter...
neutralino. All samples are generated using the CTEQ6L1 parton distribution functions (PDFs) and normalized to next-to-leading order (NLO) cross sections. Simulation of the CMS detector response is performed using Geant4 [41]. The simulated events are subsequently reconstructed and analyzed in the same way as the data, and are rescaled to describe the measured distribution of overlapping pp collisions in the same bunch crossing (referred to as "pile-up reweighting").

4. JZB search

4.1. Jet-Z balance variable

The JZB variable is defined in the xy plane as

\[
\text{JZB} = \left| \sum_{\text{jets}} p_T^{\text{jet}} - |p_T^{\text{Z}}| \right| \approx -E_T^{\text{miss}} - p_T^{\text{Z}} - |p_T^{\text{Z}}|. \tag{1}
\]

Thus JZB measures the imbalance between the \(p_T\) of the Z boson and that of the hadronic system. In SM \(Z + \) jets events, the JZB distribution is approximately symmetric about zero, while for BSM physics it may be asymmetric, due to correlated production of the Z boson and invisible particles. Five signal regions are defined by requirements on the JZB event variable, from JZB > 50 GeV to JZB > 250 GeV in steps of 50 GeV. The signal region in the invariant mass distribution is defined as \(m_{\ell\ell} - m_Z < 20 \, \text{GeV}\).

In SM \(Z + \) jets events, the JZB variable is analogous to \(E_T^{\text{miss}}\) with sign information. The sign depends on whether \(E_T^{\text{miss}}\) is due to an under- or over-measurement of the jet energy. The probability of a downward fluctuation of the jet energy measurement is in general higher than the probability of an upward fluctuation, leading to an asymmetry of the JZB distribution in SM Z events with exactly 1 jet. However, the JZB distribution in SM \(Z + \) jets events becomes more Gaussian with increasing jet multiplicity, because in multi-jet events the direction of a mismeasured jet is uncorrelated with the direction of the Z boson. Already in three-jet events, where in the most probable configuration, the two leading jets are back-to-back [42], instrumental effects largely cancel. For this reason the JZB method focuses on events containing at least three jets.

We search for BSM events where the Z boson is the decay product of a heavier (parent) particle of mass \(m_X\) and is produced in conjunction with an undetectable decay product of mass \(m_Y\), which gives rise to \(E_T^{\text{miss}}\). Let \(p^*\) be the characteristic momentum of the decay products in the rest frame of the parent particle. If the parent particle has a mass of the order of the electroweak scale, \(m_X \sim O(m_X + m_Z)\), \(p^*\) is small, and \(p^*\) can be smaller than the laboratory momentum of the parent. In that case, the daughter particles all appear in a tightly collimated angular region, the transverse momenta of the Z and invisible particle are balanced by the other particles in the decay chain, and large values of JZB can ensue. An example of such a decay chain is \(\tilde{g} \rightarrow q + \bar{q} \rightarrow q + q + X^0\), where \(\tilde{g}\), \(q\), and \(X^0\) are the gluino, squark, and neutralino supersymmetric particles.

The signal and background discrimination arising from the angular correlation between the Z boson and \(E_T^{\text{miss}}\) can be reduced in certain circumstances. For example, in R-parity-conserving SUSY, supersymmetric particles are produced in pairs and there are two decay chains with one undetected lightest stable particle (LSP) at the end of each chain. It can happen that the two unobserved particle momenta cancel each other, leading to small \(E_T^{\text{miss}}\) and JZB values. Such configurations are, however, disfavored by the selection of events with significant \(E_T^{\text{miss}}\), or large JZB, which is equivalent to requiring that the two LSPs do not balance. The angular correlation is therefore preserved in events with significant \(E_T^{\text{miss}}\).

To summarize, the balance between the jet system and the \(Z + E_T^{\text{miss}}\) system leads to large, positive JZB in events where \(E_T^{\text{miss}}\) and the Z boson are pair-produced, while the JZB > 0 and JZB < 0 regions are evenly populated in SM \(Z + \) jets events.

4.2. Background determination

The principal SM backgrounds are divided into two categories. Backgrounds that produce opposite-flavor (OF) pairs \((e^+e^-, \mu^+\mu^-)\) as often as same-flavor (SF) pairs \((e^+e^-, \mu^+\mu^-)\) are referred to as "flavor–symmetric backgrounds". This category is dominated by t̄t̄ processes. Backgrounds with two SF leptons from a Z boson are referred to as "Z boson backgrounds". This category is dominated by SM \(Z + \) jets production.

Three non-overlapping data control regions are used to predict the contribution of flavor-symmetric backgrounds: (a) OF events compatible with the Z boson mass hypothesis (referred to as "Z-peak region"); (b) OF events in the sideband of the Z boson mass peak, and (c) SF events in this sideband. The sideband region is defined as the union of 55 < \(m_{\ell\ell}\) < 70 GeV and 112 < \(m_{\ell\ell}\) < 160 GeV; it is chosen so that it includes the same number of events as the Z-peak region in t̄t̄ simulation. The two OF data control samples are compared in the region 30 GeV < |JZB| < 50 GeV, which is outside the signal regions and has little contribution from signal or Z(→ττ) + jets. The event yields from the two data control samples in this region are found to be in good agreement with each other and with expectations from the MC simulation. The systematic uncertainties on the number of events estimated from the three data control regions are assessed using a large sample of simulated t̄t̄ events. The JZB distribution in the SF Z-peak (signal) region is found to agree well with the corresponding distributions in the three control regions. A 25% uncertainty is assigned to each individual estimate in order to cover discrepancies at large JZB values, where the number of MC events is low, as well as small differences between the data and MC simulation in the shape of the JZB distribution.

The total contribution from flavor-symmetric backgrounds in the signal region is computed as the average of the yields in the three data control regions, as they provide independent estimates of the same background process. The systematic uncertainties assigned to these yields are approximately uncorrelated, and hence are added quadratically. The absence of strong correlation is confirmed in MC simulation, as well as from the aforementioned comparison of the number of events in the 30 GeV < |JZB| < 50 GeV region.

SM backgrounds with a reconstructed Z boson are estimated using the negative JZB region after subtraction of flavor-symmetric backgrounds. This procedure relies on the fact that Z + jets events with three or more jets evenly populate the negative and positive sides of the JZB distribution, as described above. The method is validated using a large sample of simulated Z + jets events and the JZB distributions in the negative and positive JZB regions are found to agree very well. We assign a 25% systematic uncertainty to the corresponding prediction in order to cover small differences between the data and MC simulation in the shape of the JZB distribution.

Other backgrounds, though less significant, are also accounted for in these estimates. Contributions from the SM WZ and ZZ processes are incorporated into the Z + jets estimate, since in these events the \(E_T^{\text{miss}}\) and the Z boson candidates do not share the same parent particle. The background estimate from OF pairs accounts for WW, Z→ττ, and single-top production. Finally, events with one or more jets reconstructed as electrons or non-isolated
leptons (from QCD multijet, $\gamma +$ jets, or electroweak processes) are accounted for by the background estimate from the sideband control regions.

The overall background prediction method is validated using a simulated sample including all SM backgrounds, with and without the inclusion of LM4 signal events. The comparison between the true and predicted distributions is shown in Fig. 1 for the two cases. The inclusion of LM4 signal slightly modifies the predicted distribution because of contribution from the signal to the control regions. The slope change around $JZB = 50$ GeV corresponds to the region where the $t\bar{t}$ background starts to dominate. The integrated event yields for the various signal regions are summarized in Table 1. We find that there is good agreement in the background-only case, while good sensitivity to a possible signal remains.

4.3. Results

The comparison between the observed and predicted distributions is shown in Fig. 2. The observed and predicted yields in the signal regions are summarized in Table 2, along with 95% confidence level (CL) upper limits on the yields of any non-SM process. Upper limits are computed throughout this Letter using a modified frequentist method (CLS) [43,44]. The nuisance parameters (described in Section 6) are modeled with a lognormal distribution. Table 2 also shows the LM4 and LM8 yields, determined using NLO production cross sections. These yields are corrected to account for the contribution of signal to the background control regions, which tends to suppress the apparent yield of signal in the signal region. The correction is performed by subjecting the signal samples to the same procedures as the data and subtracting the resulting prediction from the signal yield in the signal region. The expected LM4 and LM8 yields exceed the upper limits on the non-SM contributions to the yields in the high JZB signal regions.
5. MET search

For the MET method, we select events with two or more jets. Compared to the JZB method, the dilepton mass requirement is tightened to $|m_{\ell\ell} - m_Z| < 10$ GeV, in order to further constrain mismeasurements of the lepton p_T's and to suppress the $t\bar{t}$ background. As in the JZB method, the principal background is $Z + j$ events. To suppress this background, we require the events to have large E_T^{miss}. Specifically, we define three signal regions:

- $E_T^{miss} > 100$ GeV (loose signal region);
- $E_T^{miss} > 200$ GeV (medium signal region);
- $E_T^{miss} > 300$ GeV (tight signal region).

The use of multiple signal regions allows us to be sensitive to BSM physics differing E_T^{miss} distributions. To estimate the residual Z + j+ jets background with E_T^{miss} from jet mismeasurements, we model the E_T^{miss} in Z + j+ jets events using γ + jets and QCD control samples in data. After applying the E_T^{miss} requirement, the dominant background is expected to be $t\bar{t}$ in all three signal regions. This background is estimated from a control sample of $e\mu$ events in data. Additional sub-leading backgrounds from WZ and ZZ diboson production are estimated from simulation.

5.1. Background estimates

5.1.1. Z + j+ jets background estimate

The background from SM Z + j+ jets production is estimated using an E_T^{miss} template method [45]. In Z + j+ jets events, the E_T^{miss} is dominated by mismeasurements of the hadronic system. Therefore, the E_T^{miss} distribution in these events can be modeled using a control sample with no true E_T^{miss} and a hadronic system as in Z + j+ jets events. We use two complementary control samples: one consisting of γ + jets events and one consisting of QCD multijet events. The γ + jets (QCD multijet) events are selected with a set of single photon (single jet) triggers with online p_T thresholds varying from 20–90 GeV (30–370 GeV). To account for kinematic differences between the hadronic systems in the control and signal samples, the expected E_T^{miss} distribution of a Z + j+ jets event is obtained from the E_T^{miss} distribution of γ + jets or QCD multijet events of the same jet multiplicity and scalar sum of jet transverse energies, normalized to unit area; these normalized distributions are referred to as E_T^{miss} templates. The two control samples are complemental. The γ + jets events have a topology that is similar to the Z + j+ jets events, since both consist of a well-measured object recoiling against a system of hadronic jets. When selecting photons, we include hadronic jets in which a large fraction of the energy is carried by photons or neutral pions. Such jets are well measured; the E_T^{miss} in these events arises from jets with a large hadronic energy fraction as in the true γ + jets events. The QCD multijet sample has better statistical precision due to the larger number of events, and eliminates possible contributions to E_T^{miss} from mismeasurement of the photon in the γ + jets sample. The E_T^{miss} templates extracted from the QCD sample must be corrected for a small bias of the E_T^{miss}, which is observed in γ + jets and Z + j+ jets events in the direction of the recoiling hadronic system, due to a small systematic under-measurement of the jet energies. This bias of the E_T^{miss} is measured to be approximately 6% of the p_T of the hadronic recoil system, and the correction primarily affects the bulk of the E_T^{miss} distribution. A similar effect is present when using the γ + jets templates because a minimum p_T threshold is applied to the photons but not to the Z bosons. However, the maximum resulting bias in the E_T^{miss} is approximately 1 GeV, and is hence negligible.

Because jets in QCD dijet events have a different topology than those in Z + 2 j+ jets events, the γ + jets method alone is used to determine the Z + j+ jets background for events with exactly two jets. For events with at least three jets, we use the average of the background estimates from the γ + jets and QCD multijets methods. The two methods yield consistent predictions for events with at least three jets, which illustrates the robustness of the E_T^{miss} template method and provides a cross-check of the data-driven background prediction. For the benchmark SUSY scenarios LM4 and LM8, we have verified that the impact of signal contamination on the predicted background from the E_T^{miss} template method is negligible.

The systematic uncertainty in the background prediction from the γ + jets method is dominated by possible differences between the predicted and true number of events when we apply the background estimate to the MC, which is limited by the statistical precision of the MC samples (MC closure test, 30% uncertainty). Additional uncertainties are evaluated by varying the photon selection criteria (10% uncertainty) and from the difference in the number of reconstructed pile-up interactions in the Z+jets and γ+jets samples (5% uncertainty). The total uncertainty is 32%. The corresponding uncertainty in the background prediction from the QCD multijet method is dominated by possible differences between the predicted and true number of events in the MC closure test (ranging from 20% for $E_T^{miss} > 30$ GeV to 100% for $E_T^{miss} > 100$ GeV). The uncertainty in the bias of the E_T^{miss} in the direction of the hadronic recoil contributes an additional 16% uncertainty to this background prediction.

5.1.2. Opposite-flavor-background estimate

As in the JZB method, the $t\bar{t}$ contribution is estimated using an OF subtraction technique, based on the equality of the $t\bar{t}$ yield in the OF and SF final states after correcting for the differences in

<table>
<thead>
<tr>
<th></th>
<th>E_T^{miss} > 50 GeV</th>
<th>100 GeV</th>
<th>150 GeV</th>
<th>200 GeV</th>
<th>E_T^{miss} > 250 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z bkg</td>
<td>97 ± 13 ± 38</td>
<td>8 ± 3 ± 3</td>
<td>2.7 ± 1.8 ± 0.8</td>
<td>1.0 ± 1.0 ± 0.3</td>
<td>0</td>
</tr>
<tr>
<td>Flavor-symmetric</td>
<td>311 ± 10 ± 45</td>
<td>81 ± 5 ± 12</td>
<td>19 ± 3 ± 3</td>
<td>7 ± 2 ± 1</td>
<td>2.0 ± 0.8 ± 0.3</td>
</tr>
<tr>
<td>Total bkg</td>
<td>408 ± 16 ± 59</td>
<td>89 ± 6 ± 12</td>
<td>22 ± 3 ± 3</td>
<td>8 ± 2 ± 1</td>
<td>2.0 ± 0.8 ± 0.3</td>
</tr>
<tr>
<td>Data</td>
<td>408 (203, 205)</td>
<td>88 (52, 36)</td>
<td>21 (13, 8)</td>
<td>5 (3, 2)</td>
<td>3 (2, 1)</td>
</tr>
<tr>
<td>Observed UL</td>
<td>114</td>
<td>32</td>
<td>14</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Expected UL</td>
<td>111</td>
<td>31</td>
<td>13</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>LM4</td>
<td>62 ± 4</td>
<td>52 ± 4</td>
<td>40 ± 4</td>
<td>29 ± 4</td>
<td>18 ± 4</td>
</tr>
<tr>
<td>LM8</td>
<td>23 ± 2</td>
<td>19 ± 2</td>
<td>16 ± 2</td>
<td>11.4 ± 1.7</td>
<td>7.8 ± 1.5</td>
</tr>
</tbody>
</table>
the e and μ selection efficiencies. Other backgrounds for which the lepton flavors are uncorrelated (for example, W^+W^-, $\gamma^*/Z \rightarrow \tau^+\tau^-$ and single-top processes, which are dominated by the tW production mechanism) are also included in this estimate.

To predict the SF yield in the E_T^{miss} signal regions, we use the OF yield satisfying the same E_T^{miss} requirements. This yield is corrected using the ratio of selection efficiencies $R_{\mu e} \equiv E_{\mu}/E_{e} = 1.07 \pm 0.07$, which is evaluated from studies of $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$ events in data. The uncertainty on this quantity takes into account a small variation with respect to lepton p_T. To improve the statistical precision of the background estimate, we do not require the OF events to lie in the Z mass region, and we apply a scale factor $K = 0.16 \pm 0.01$, extracted from simulation, to account for the fraction of $t\bar{t}$ events that satisfy $|m_{\ell\ell} - m_Z| < 10$ GeV.

The uncertainty in K is determined by the difference between this quantity evaluated in data versus simulation. An alternate method is to use OF events in the Z mass window; scaling is not required, but fewer events are available. This method yields a prediction that is consistent with that from the nominal method but with a larger statistical uncertainty. The systematic uncertainty on the OF background prediction is dominated by a 25% uncertainty in the yield predicted for the $E_T^{miss} > 200$ GeV region, due to possible differences between the true and predicted number of events in MC closure tests. The uncertainties in the correction factors $R_{\mu e}$ (7%) and K (6%) also contribute.

5.1.3. Other backgrounds

Backgrounds from pairs of WZ and ZZ vector bosons are estimated from MC, and a 50% systematic uncertainty is assessed based on comparison of simulation to data in events with jets and exactly 3 leptons (WZ control sample, MC expected purity approximately 90%) and exactly 4 leptons (ZZ control sample, MC expected purity approximately 100%), which have limited statistical precision due to small event yields. Backgrounds from events with misidentified leptons are negligible due to the requirement of two isolated leptons with $p_T > 20$ GeV in the Z mass window.

5.2. Results

The data and SM predictions are shown in Fig. 3 and summarized in Table 3 ($N_{jets} \geq 2$) and Table 4 ($N_{jets} \geq 3$). In addition to the loose, medium, and tight signal regions defined above, we quote the predicted and observed event yields in two low E_T^{miss} regions, which allow us to validate our background estimates with increased statistical precision. For all five regions, the observed yields are consistent with the predicted background yields. No evidence for BSM physics is observed. We place 95% CL upper limits on the non-SM contributions to the yields in the signal regions. These model-independent upper limits may be used in conjunction with the signal efficiency model discussed in Section 8 to perform exclusions in the context of an arbitrary BSM physics model. We quote results separately for $N_{jets} \geq 2$ and $N_{jets} \geq 3$ to improve the sensitivity to BSM models with low and high average jet multiplicities, respectively. We also quote the NLO expected yields for the SUSY benchmark processes LM4 and LM8, including the statistical component and the systematic uncertainties discussed in Section 6.

To account for the impact of signal contamination, we correct the LM4 and LM8 yields by subtracting the expected increase in the OF background estimate that would occur if these signals were present in the data. As mentioned above, the contribution from LM4 and LM8 to the E_T^{miss} template background estimate is negligible. The expected LM4 and LM8 yields exceed the upper limits on the non-SM contributions to the yields in those signal regions with a minimum E_T^{miss} requirement of 200 GeV.

6. Signal acceptance and efficiency uncertainties

The acceptance and efficiency, as well as the systematic uncertainties on these quantities, depend on the signal model under consideration. For some of the individual uncertainties, we quote values based on SM control samples with kinematic properties similar to the SUSY benchmark models. For others that depend strongly on the kinematic properties of the event, the systematic
uncertainties are quoted model-by-model and separately for the various signal regions.

The systematic uncertainty on the lepton acceptance consists of two parts: the trigger efficiency uncertainty and the identification and isolation uncertainty. The trigger efficiency for two leptons of \(p_T > 20 \text{ GeV} \) is measured in a \(Z \rightarrow \ell \ell \) data sample, with an uncertainty of 2%. We verify that the simulation reproduces the lepton identification and isolation efficiencies in data using \(Z \rightarrow \ell \ell \) samples, within a systematic uncertainty of 2% per lepton.

Another significant source of systematic uncertainty in the acceptance is associated with the jet and \(E_T^{\text{miss}} \) energy scale. The impact of this uncertainty depends on the final state under consideration. Final states characterized by very large \(E_T^{\text{miss}} \) are less sensitive to this uncertainty than those with \(E_T^{\text{miss}} \) values near the minimum signal region requirements. To estimate this uncertainty, we have used the method of Ref. [29] to evaluate the systematic uncertainties in the acceptance for the two benchmark SUSY points. The energies of jets in this analysis are known to 7.5% (not all the corrections in Ref. [30] were applied). For LM4 and LM8, the corresponding systematic uncertainties on the signal region yields vary from 4–6% for \(E_T^{\text{miss}} > 100 \text{ GeV} \) to 24–28% for \(E_T^{\text{miss}} > 300 \text{ GeV} \).

The impact of the hadronic scale uncertainty on the JZB efficiency is estimated by varying the jet energy scale by one standard deviation [30]. This leads to a systematic uncertainty of 3–6% on the signal efficiency, depending on the model and the signal region. The JZB scale is then varied by 5% to account for the uncertainty in unclustered energy deposits. The corresponding signal efficiency uncertainties vary between 1% (JZB > 50 GeV) and 7% (JZB > 250 GeV) for LM4, and between 1% and 10% for LM8.

Table 3
Summary of results in the regions \(E_T^{\text{miss}} > 30, 60, 100, 200, \) and 300 GeV for \(N_{\text{jets}} \geq 2 \). The total predicted background (total bkg) is the sum of the Z + jets background predicted from the \(\gamma + \text{jets} \) \(E_T^{\text{miss}} \) template method (Z bkg), the background predicted from OF events (OF bkg), and the WZ + ZZ background predicted from simulation (VZ bkg). The first (second) uncertainty indicates the statistical (systematic) component. For the observed yield (data), the first (second) number in parentheses is the yield in the ee (\(\mu\mu \)) final state. The 95% CL observed and expected upper limits (UL) on the non-SM yield are indicated. The expected NLO yields for the LM4 and LM8 benchmark SUSY scenarios are also given, including the systematic uncertainties and the correction for the impact of signal contamination indicated in the text.

<table>
<thead>
<tr>
<th>(E_T^{\text{miss}} > 30 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 60 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 100 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 200 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 300 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z bkg</td>
<td>15,070 ± 161 ± 4822</td>
<td>484 ± 23 ± 155</td>
<td>36 ± 4.6 ± 11</td>
<td>2.4 ± 0.6 ± 0.8</td>
</tr>
<tr>
<td>OF bkg</td>
<td>1116 ± 13 ± 100</td>
<td>680 ± 10 ± 61</td>
<td>227 ± 6 ± 20</td>
<td>11 ± 1.3 ± 3.1</td>
</tr>
<tr>
<td>VZ bkg</td>
<td>269 ± 0.9 ± 135</td>
<td>84 ± 10 ± 42</td>
<td>35 ± 0.5 ± 17</td>
<td>5.3 ± 0.4 ± 2.7</td>
</tr>
<tr>
<td>Total bkg</td>
<td>16,455 ± 161 ± 4825</td>
<td>1249 ± 25 ± 172</td>
<td>297 ± 7.5 ± 29</td>
<td>19 ± 1.5 ± 4.1</td>
</tr>
<tr>
<td>Data</td>
<td>16,483 (8243, 8240)</td>
<td>1169 (615, 554)</td>
<td>290 (142, 148)</td>
<td>13 (8, 6)</td>
</tr>
<tr>
<td>Observed UL</td>
<td>9504</td>
<td>300</td>
<td>57</td>
<td>8.3</td>
</tr>
<tr>
<td>Expected UL</td>
<td>9478</td>
<td>340</td>
<td>60</td>
<td>11</td>
</tr>
<tr>
<td>LM4</td>
<td>120 ± 7.0</td>
<td>108 ± 6.7</td>
<td>93 ± 6.6</td>
<td>53 ± 7.3</td>
</tr>
<tr>
<td>LM8</td>
<td>52 ± 3.2</td>
<td>46 ± 3.0</td>
<td>37 ± 2.8</td>
<td>21 ± 2.8</td>
</tr>
</tbody>
</table>

Table 4
Summary of results for \(N_{\text{jets}} \geq 3 \). The details are the same as for the \(N_{\text{jets}} \geq 2 \) results quoted in Table 3, except that the total background prediction is based on the average of the background predictions from the QCD and \(\gamma + \text{jets} \) template methods, which are quoted separately.

<table>
<thead>
<tr>
<th>(E_T^{\text{miss}} > 30 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 60 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 100 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 200 \text{ GeV})</th>
<th>(E_T^{\text{miss}} > 300 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z bkg (QCD)</td>
<td>4010 ± 65 ± 800</td>
<td>191 ± 12 ± 56</td>
<td>11 ± 0.7 ± 11</td>
<td>0.7 ± 0.05 ± 0.7</td>
</tr>
<tr>
<td>Z bkg ((\gamma + \text{jets}))</td>
<td>3906 ± 61 ± 1290</td>
<td>187 ± 10 ± 60</td>
<td>14 ± 1.7 ± 4.6</td>
<td>1.2 ± 0.5 ± 0.8</td>
</tr>
<tr>
<td>OF bkg</td>
<td>442 ± 8.0 ± 40</td>
<td>284 ± 7.0 ± 26</td>
<td>107 ± 4.1 ± 10</td>
<td>7.5 ± 1.1 ± 2.0</td>
</tr>
<tr>
<td>WZ bkg</td>
<td>86 ± 1.0 ± 43</td>
<td>26 ± 0.3 ± 13</td>
<td>11 ± 0.2 ± 5.6</td>
<td>1.9 ± 0.2 ± 1.0</td>
</tr>
<tr>
<td>Total bkg (QCD)</td>
<td>4539 ± 66 ± 802</td>
<td>502 ± 14 ± 63</td>
<td>129 ± 4.2 ± 16</td>
<td>10 ± 1.1 ± 2.3</td>
</tr>
<tr>
<td>Total bkg ((\gamma + \text{jets}))</td>
<td>4435 ± 62 ± 1251</td>
<td>498 ± 12 ± 66</td>
<td>132 ± 4.4 ± 12</td>
<td>11 ± 1.2 ± 2.2</td>
</tr>
<tr>
<td>Total bkg (average)</td>
<td>4487 ± 64 ± 1027</td>
<td>500 ± 13 ± 65</td>
<td>131 ± 4.3 ± 14</td>
<td>11 ± 1.2 ± 2.3</td>
</tr>
<tr>
<td>Data</td>
<td>4501 (2272, 2229)</td>
<td>479 (267, 212)</td>
<td>137 (73, 64)</td>
<td>8 (3, 5)</td>
</tr>
<tr>
<td>Observed UL</td>
<td>2028</td>
<td>120</td>
<td>40</td>
<td>6.7</td>
</tr>
<tr>
<td>Expected UL</td>
<td>2017</td>
<td>134</td>
<td>36</td>
<td>8.4</td>
</tr>
<tr>
<td>LM4</td>
<td>97 ± 6.1</td>
<td>90 ± 6.1</td>
<td>79 ± 6.6</td>
<td>44 ± 7.1</td>
</tr>
<tr>
<td>LM8</td>
<td>42 ± 2.6</td>
<td>39 ± 2.5</td>
<td>33 ± 2.5</td>
<td>19 ± 2.7</td>
</tr>
</tbody>
</table>

Uncertainties on the PDFs are determined individually for each scenario and are propagated to the efficiency, as recommended in Ref. [46]. The uncertainty associated with the integrated luminosity is 2.2% [47].

7. Interpretation

In the absence of a significant excess, we set upper limits on the production cross section of SMS models [23–25], which represent decay chains of new particles that may occur in a wide variety of BSM physics scenarios, including SUSY. We provide the signal selection efficiencies in the model parameter space. These efficiencies may be employed to validate and calibrate the results of fast simulation software used to determine the signal efficiency of an arbitrary BSM model. This allows our results to be applied to BSM models beyond those examined in this Letter. We also provide cross section upper limits in the parameter space of these models, and exclude a region of the parameter space assuming reference cross sections and a 100% branching fraction to the final state under consideration (the Z boson is allowed to decay according to the well-known SM branching fractions).
the cross section upper limit is based on simultaneous counting expected limit for each parameter point. For the MET analysis, regions, and select the observed limit corresponding to the best in the supplementary materials of this Letter.

a model inspired by gauge-mediated SUSY breaking are included σ_{PDF}. responds to gluino pair-production in the limit of infinitely heavy decaying Z. The 95% CL upper limits on the total gluino pair-production cross section, based on the three simultaneous counting experiments in the regions 100 GeV $< E_{\text{T}}^{\text{miss}} < 200$ GeV, 200 GeV $< E_{\text{T}}^{\text{miss}} < 300$ GeV, and $E_{\text{T}}^{\text{miss}} > 300$ GeV for $N_{\text{jets}} \geq 2$ used for the SMS exclusions of Section 7. The total predicted background (total bkg) is the sum of the $Z + \text{jets}$ background predicted from the $\gamma + \text{jets} E_{\text{T}}^{\text{miss}}$ templates method (Z bkg), the background predicted from opposite-flavor events (OF bkg), and the WZ $+ ZZ$ background predicted from simulation (VZ bkg). The uncertainties include both the statistical and systematic contributions. For the observed yield (data), the first (second) number in parentheses is the yield in the ee ($\mu\mu$) final state.

Table 5

<table>
<thead>
<tr>
<th>$E_{\text{T}}^{\text{miss}}$ [GeV]</th>
<th>Z bkg</th>
<th>OF bkg</th>
<th>VZ bkg</th>
<th>Total bkg</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{T}}^{\text{miss}} < 200$ GeV</td>
<td>33 ± 4.5 ± 11</td>
<td>215 ± 5.8 ± 19</td>
<td>29 ± 0.2 ± 15</td>
<td>278 ± 7.4 ± 27</td>
<td>276 (134, 142)</td>
</tr>
<tr>
<td>$E_{\text{T}}^{\text{miss}} < 300$ GeV</td>
<td>1.9 ± 0.5 ± 0.6</td>
<td>10 ± 1.2 ± 2.7</td>
<td>4.2 ± 0.1 ± 2.1</td>
<td>16 ± 1.3 ± 3.5</td>
<td>14 (8, 5)</td>
</tr>
<tr>
<td>$E_{\text{T}}^{\text{miss}} > 300$ GeV</td>
<td>0.4 ± 0.2 ± 0.1</td>
<td>1.0 ± 0.5 ± 0.4</td>
<td>1.2 ± 0.4 ± 0.6</td>
<td>3.2 ± 0.7 ± 0.7</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional interpretations for a different choice of x as well as for a model inspired by gauge-mediated SUSY breaking are included in the supplementary materials of this Letter.

For the JZB analysis, we calculate the observed and expected upper limits on the cross section using the results in all signal regions, and select the observed limit corresponding to the best expected limit for each parameter point. For the MET analysis, the cross section upper limit is based on simultaneous counting experiments in the three exclusive regions of 100 GeV $< E_{\text{T}}^{\text{miss}} < 200$ GeV, 200 GeV $< E_{\text{T}}^{\text{miss}} < 300$ GeV, and $E_{\text{T}}^{\text{miss}} > 300$ GeV, as summarized in Table 5, since this exclusive binning improves the sensitivity to a specific BSM model. The model-dependent systematic uncertainties (energy scale and PDF uncertainties) are determined for each point. To interpret these limits in terms of the gluino pair-production cross section, we use a reference cross section $\sigma_{\text{NLO-QCD}}$ and determine the 95% CL exclusion contours at 1/3, 1, and 3 times $\sigma_{\text{NLO-QCD}}$, to establish how the limit changes with the cross section. This reference cross section $\sigma_{\text{NLO-QCD}}$ corresponds to gluino pair-production in the limit of infinitely heavy squarks, calculated at NLO using PROSPINO [48] and the CTEQ6 [40] PDFs.

Fig. 5 shows the signal selection efficiency times acceptance for the JZB > 150 GeV signal region for the topology described above, normalized to the number of events with at least one leptonically-decaying Z. The 95% CL upper limits on the total gluino pair-production cross section are also shown. The JZB > 250 GeV region has the best sensitivity throughout most of the parameter space of this model. The signal contribution to the $Z + \text{jets}$ control sample has been taken into account in these limits. In this mass spectrum, the Z boson and $E_{\text{T}}^{\text{miss}}$ directions are weakly correlated and the sensitivity of the JZB search is reduced at low LSP masses.

Fig. 6 shows the signal selection efficiency times acceptance for the $E_{\text{T}}^{\text{miss}} > 100$ GeV signal region in the $E_{\text{T}}^{\text{miss}}$ template analysis, normalized to the number of events with at least one leptonically-decaying Z. The 95% CL upper limits on the total gluino pair-production cross section, based on the three simultaneous counting experiments in the regions 100 GeV $< E_{\text{T}}^{\text{miss}} < 200$ GeV, 200 $< E_{\text{T}}^{\text{miss}} < 300$ GeV, and $E_{\text{T}}^{\text{miss}} > 300$ GeV, are also shown. The signal...
Fig. 6. Limits on the SMS topology described in the text, based on the $E_{\text{T}}^{\text{miss}}$ template method: (top) signal efficiency times acceptance normalized to the number of events with at least one $Z \rightarrow \ell\ell$ decay for the $E_{\text{T}}^{\text{miss}} > 100$ GeV region; (bottom) 95% CL upper limits on the total gluino pair-production cross section. The region to the left of the solid contour is excluded assuming that the gluino pair-production cross section is $\sigma_{\text{NLO-QCD}}$, and that the branching fraction to this SMS topology is 100%. The dotted and dashed contours indicate the excluded region when the cross section is varied by a factor of three. The signal contribution to the control regions is negligible.

Fig. 7. Reconstructed JZB (top) and $E_{\text{T}}^{\text{miss}}$ (bottom) selection efficiencies as a function of the generator-level quantity, for the different signal regions in the LM4 simulation.

8. Additional information for model testing

Other models of BSM physics in the dilepton final state can be constrained in an approximate manner by simple generator-level studies that compare the expected number of events in 4.98 fb$^{-1}$ with the upper limits from Sections 4.3 and 5.2. The key ingredients of such studies are the kinematic requirements described in this Letter, the lepton efficiencies, and the detector responses for $E_{\text{T}}^{\text{miss}}$ and JZB. The trigger efficiencies for events containing $e\mu$, or $\mu\mu$ lepton pairs are 100%, 95%, and 90%, respectively. The muon identification efficiency is approximately 91%; the electron identification efficiency varies approximately linearly from about 83% at $p_T = 20$ GeV to about 93% for $p_T > 60$ GeV and then is flat. The lepton isolation efficiency depends on the lepton momentum, as well as on the jet activity in the event. In $t\bar{t}$ events, the efficiency varies approximately linearly from about 85% (muons) and 88% (electrons) at $p_T = 20$ GeV to about 97% for $p_T > 60$ GeV. In LM4 (LM8) events, this efficiency is decreased by approximately 5% (10%) over the whole momentum spectrum. The average detector response for JZB is 92%. In order to better quantify the JZB and $E_{\text{T}}^{\text{miss}}$ selection efficiencies, we study the probability for an event to pass a given reconstructed JZB or $E_{\text{T}}^{\text{miss}}$ requirement as a function of the generator-level quantity. Here, generator-level $E_{\text{T}}^{\text{miss}}$ is the negative vector sum of the stable, invisible particles, including neutrinos and SUSY LSP’s. The response is parametrized by a function of the form (see Fig. 7):

$$
\varepsilon(x) = \varepsilon_{\text{plateau}} \left[\frac{1}{2} \operatorname{erf} \left(\frac{x - x_{\text{thresh}}}{\sigma} \right) + 1 \right].
$$

The fitted parameters are summarized in Table 6.

To approximate the requirement on the jet multiplicity, we count quarks or gluons from the hard scattering process that satisfy the acceptance requirements $p_T > 30$ GeV and $|\eta| < 3.0$. We
have tested this efficiency model with the LM4 and LM8 benchmark models, and find that the efficiency from our model is consistent with the expectation from the full reconstruction to within about 15%.

9. Summary

We have performed a search for BSM physics in final states with a leptonically-decaying Z boson, jets, and missing transverse energy. Two complementary strategies are used to suppress the dominant Z+jets background and to estimate the remaining background from data control samples: the jet-Z balance method and the $E_T\text{miss}$ template method. Backgrounds from $t\bar{t}$ processes are estimated using opposite-flavor lepton pairs and dilepton invariant mass sidebands. We find no evidence for anomalous yields beyond standard model (SM) expectations and place upper limits on the non-SM contributions to the yields in the signal regions. The results are interpreted in the context of simplified model spectra. We also provide information on the detector response and efficiencies to allow tests of BSM models with Z bosons that are not considered in the present study.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPEB (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NWO (Netherlands); MST (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced by European Union, Regional Development Fund.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.physletb.2012.08.026.

References

M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

K. Banzuzi, A. Korpela, T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

D. Sillou

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

F. Fassi, D. Mercier

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS–IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

L. Rurua

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

University of Ioánnina, Ioánnina, Greece

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillas

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

P. Fabbricatore, R. Musenich

INFN Sezione di Genova, Genova, Italy

\(^a\) INFN Sezione di Milano-Bicocca, Milano, Italy
\(^b\) Università di Milano-Bicocca, Milano, Italy

\(^a\) INFN Sezione di Napoli, Napoli, Italy
\(^b\) Università di Napoli “Federico II”, Napoli, Italy

\(^a\) INFN Sezione di Padova, Padova, Italy
\(^b\) Università di Padova, Padova, Italy
\(^c\) Università di Trento (Trento), Padova, Italy

G.M. Bilei, B. Caponeri, L. Fanà, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Saha, S. Taroni

\(^a\) INFN Sezione di Perugia, Perugia, Italy
\(^b\) Università di Perugia, Perugia, Italy

\(^a\) INFN Sezione di Pisa, Pisa, Italy
\(^b\) Università di Pisa, Pisa, Italy
\(^c\) Scuola Normale Superiore di Pisa, Pisa, Italy

\(^a\) INFN Sezione di Roma, Roma, Italy
\(^b\) Università di Roma “La Sapienza”, Roma, Italy

\(^a\) INFN Sezione di Torino, Torino, Italy
\(^b\) Università di Torino, Torino, Italy
\(^c\) Università del Piemonte Orientale (Novara), Torino, Italy
S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,1, D. Montaninoa,b,1, A. Penzoa, A. Schizzia,b

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

S.G. Heo, T.Y. Kim, S.K. Nam

Kangwon National University, Chunchon, Republic of Korea

Kyungpook National University, Daegu, Republic of Korea

J.Y. Kim, Zero J. Kim, S. Song

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

H.Y. Jo

Konkuk University, Seoul, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo

Korea University, Seoul, Republic of Korea

M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck

University of Auckland, Auckland, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

Universidad de Oviedo, Oviedo, Spain

Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tsupputi, M. Verzetti

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

M. Deliomeroglu, E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Bogazici University, Istanbul, Turkey

K. Cankocak

Istanbul Technical University, Istanbul, Turkey

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

K. Hatakeyama, H. Liu, T. Scarborough

Baylor University, Waco, USA

C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J.St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Kansas State University, Manhattan, USA

J. Gronberg, D. Lange, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

University of Minnesota, Minneapolis, USA

L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Mississippi, University, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, P. Killewald, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

S. Guragain, N. Parashar

Purdue University Calumet, Hammond, USA
