Search for Supersymmetry in Events with Photons and Low Missing Transverse Energy in pp Collisions at s = 7 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.physletb.2012.12.055</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Dec 19 05:51:37 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/91904</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Search for supersymmetry in events with photons and low missing transverse energy in pp collisions at $\sqrt{s} = 7$ TeV

CMS Collaboration

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 7 October 2012
Received in revised form 5 December 2012
Accepted 22 December 2012
Available online 28 December 2012
Editor: M. Doser

Keywords:
CMS
Physics

A B S T R A C T

Many models of new physics, including versions of supersymmetry (SUSY), predict production of events with low missing transverse energy, electroweak gauge bosons, and many energetic final-state particles. The stealth SUSY model yields this signature while conserving R-parity by means of a new hidden sector in which SUSY is approximately conserved. The results of a general search for new physics, with no requirement on missing transverse energy, in events with two photons and four or more hadronic jets are reported. The study is based on a sample of proton–proton collisions at $\sqrt{s} = 7$ TeV corresponding to $4.96 \, \text{fb}^{-1}$ of integrated luminosity collected with the CMS detector in 2011. Based on good agreement between the data and the standard model expectation, the data are used to determine model-independent cross-section limits and a limit on the squark mass in the framework of stealth SUSY. With this first study of its kind, squark masses less than $1430 \, \text{GeV}$ are excluded at the 95% confidence level.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
each event; this sum is referred to as S_T. We define E_{miss} as the magnitude of the negative of the vector sum of the p_T of all final state objects in the event; the definitions of other objects included in the sum are described below.

We consider a model that includes degenerate light squarks (\tilde{q}), a “bino-like” LVSP $\tilde{\chi}_1^0$, a gluino (\tilde{g}) with mass of 1500 GeV, and a hidden sector containing a singlet state S and its fermionic “singlino” superpartner \tilde{S}. The model is similar to squark–antiquark ($q\bar{q}^*$) production with the decay $\tilde{q} \to q\tilde{\chi}_1^0$ described in Ref. [17] with two differences: the addition of the hidden sector and the participation of \tilde{g} in the production mechanism. After initial production of two $\tilde{\chi}_1^0$ and jets, each $\tilde{\chi}_1^0$ decays into the hidden sector producing a photon and \tilde{S}, which subsequently decays to S and a gravitino, $\tilde{S} \to S\tilde{G}$. The S state is even under R-parity and decays to jets via $S \to gg$. The resulting \tilde{G} LSP has small momentum because the hidden sector superpartners (S, \tilde{S}) are nearly mass degenerate, so the final state tends to have low E_{miss}.

The decay of a squark in this model is shown in Fig. 1.

The model is characterized by the masses of the particles in the decay chain. We consider a range of squark masses $M_{\tilde{q}}$ from 400 to 2000 GeV in steps of 100 GeV. We make the following assumptions inspired by benchmark points described in Ref. [5]: S and S masses of 100 GeV and 90 GeV, respectively; $\tilde{\chi}_1^0$ with mass equal to $1/2 M_{\tilde{q}}$; and branching fractions of unity for the decays of $\tilde{\chi}_1^0$, S, and \tilde{S} described above. The production cross section for this process (and its uncertainty) is calculated as a function of $M_{\tilde{q}}$ at next-to-leading order (NLO) accuracy including the resummation of soft gluon emission at next-to-leading logarithmic (NLL) accuracy as described in Refs. [18–23].

A detailed description of the CMS detector can be found in Ref. [24]. The CMS coordinate system is right-handed with the origin at the center of the detector, the x-axis directed toward the center of the LHC ring, and the y-axis directed upward; ϕ is the azimuthal angle, ϕ is the polar angle, and $\eta = -\ln(\tan(\theta/2))$ is the pseudorapidity. The central feature of the CMS apparatus is a superconducting solenoid of 6 m inner diameter that surrounds a silicon pixel and strip tracker, covering the region $|\eta| < 2.5$, as well as a lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL), both covering $|\eta| < 3$. Muons are detected by gas-ionization detectors embedded in the steel flux return yoke covering the range $|\eta| < 2.4$.

The triggers, event reconstruction methods, and selection criteria for photons and jets are identical to those used in the CMS search for SUSY in events with photons, jets, and E_{miss} [25]. Events are recorded with the CMS two-level trigger system requiring the presence of one photon with transverse energy (E_T) greater than 36 GeV and a second with $E_T > 22$ GeV. To suppress jets giving rise to photon candidates, these triggers require the latter to be isolated from other activity in the tracker, ECAL, and HCAL. As instantaneous luminosity increased throughout 2011, isolation requirements were gradually changed to keep the trigger rate approximately constant, but the isolation in the trigger is always less restrictive than offline requirements described below.

Photon candidates are reconstructed from clusters of energy in the ECAL barrel with $|\eta| < 1.44$. Candidate events are required to have a leading photon with $E_T > 40$ GeV and an additional photon with $E_T > 25$ GeV; at these thresholds the triggers are more than 99% efficient. We require the ECAL cluster shape to be consistent with that expected for photons, and the energy detected in HCAL in the direction of the photon shower to not exceed 5% of the ECAL energy. We ensure isolation from other activity in the event by requiring that the scalar E_T sum of tracks and calorimeter deposits within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ of the photon candidate’s direction be less than 6 GeV after correcting for contributions from the products of additional collisions in the event (pile-up) and the candidate itself. These criteria efficiently select both photons and electrons; candidates that cannot be matched to hit patterns in the pixel detector are considered photons.

Jets are reconstructed with the particle-flow algorithm [26], which simultaneously reconstructs all particles produced in a collision based on information from all detector subsystems and identifies each as a charged or neutral hadron, photon, muon, or electron. All of these particles are clustered into jets with the anti-k_T clustering algorithm [27] with radius parameter of 0.5. To remove jets arising from potential instrumental and non-collision backgrounds, we require the fraction of jet energy coming from charged and neutral electromagnetic deposits to be less than 0.99, the neutral hadron fraction to be less than 0.99, and the charged hadron fraction to be greater than zero. The jet energy and momentum are corrected for the nonlinear response of the calorimeter and the effects of pile-up. Jets are required to have $p_T > 20$ GeV, $|\eta| < 2.4$, and to be isolated from photon candidates by $\Delta R > 0.5$.

We determine the fraction of stealth SUSY events that pass these reconstruction procedures and selection criteria (the “acceptance”) and the leading order plus leading logarithm (LO) cross section for stealth SUSY using the PYTHIA 6.424 event generator [28], the D6T underlying event tunes [29], the CTEQ6L1 [30] parton distribution functions (PDFs), and a full simulation of the CMS detector based on GEANT4 [31]. The acceptance when including a requirement for five or more jets rises monotonically from 17% to 35% for $M_{\tilde{q}}$ from 400 to 1100 GeV and falls monotonically from 35% to 25% for $M_{\tilde{q}}$ from 1100 to 2000 GeV as additional hadronic activity makes it less likely that photons will be isolated. The acceptance when requiring exactly four jets is 12–13% (1–2%) of the >5-jet acceptance for $M_{\tilde{q}} < 1500$ GeV ($M_{\tilde{q}} > 1500$ GeV). The LO acceptance for each of the dominant subprocesses (pp $\to q\bar{q}$, $q\bar{q}^*$, qq, and gg) is weighted with the appropriate NLO/LK factor; the corrected acceptance is within 5% of the LO acceptance at all $M_{\tilde{q}}$.

The SM events satisfying the selection criteria come mainly from direct production of two photons or a single photon and a jet, which is misidentified as a photon. In both cases, additional jets come from radiation via quantum chromodynamics. These events are divided into three samples: a signal-rich “search sample” comprising events with four or more jets and $S_T > 700$ GeV, a signal-depleted “jet multiplicity sideband” (JMSB) composed of events with two or three jets and $S_T > 600$ GeV, and a signal-depleted “S_T sideband” composed of events with four or more jets and $600 \text{ GeV} < S_T < 700$ GeV. We examine the search sample for evidence of NP in the form of an excess of events over the SM expectation.

The SM expectation is estimated from the data based on the observation that the shape of the S_T spectrum of the SM background is independent of jet multiplicity. This multiplicity invariance arises because the S_T of an event is dominated by the initial hard parton–parton scattering process; additional radiation, which is largely collinear with incoming or outgoing partons, does not have a large effect on event S_T. For this reason, we are able to take the S_T shape from the JMSB and the normalization from the S_T sideband.
This method of background estimation was first used in the CMS search for black holes [32,33], in which the jet-multiplicity invariance of the S_T shape in jet dominated events was demonstrated. We confirm that this invariance holds for events with photons in addition to jets using a data sample of events with one photon and two or more jets (photon + jets). The event selection criteria for this sample are the same as those described above except for changes required by differences in the trigger and event topology: we require that events include a single photon with $E_T > 80$ GeV and $H_T > 450$ GeV, where H_T is defined as the scalar sum of the p_T of jets with $p_T > 40$ GeV and $|\eta| < 3.0$.

In Fig. 2 we compare the S_T spectra for five subsamples of this photon + jets dataset characterized by jet multiplicity: the 2-jet, 3-jet, 4-jet, \geq5-jet, and \geq3-jet samples. We show these spectra (area-normalized for $S_T > 800$ GeV) along with the n-jet/2-jet ratio where $n = 3, 4, \geq 5$, and ≥ 3. The shape of each ratio is consistent with a flat line within the statistical uncertainty. As an example, the fit of the ≥ 3-jet/2-jet ratio from Fig. 2b with the function $a + bx$ where $x = S_T/7$ TeV yields $a = 1.0 \pm 0.2$ and $b = -0.3 \pm 1.1$ (statistical uncertainty). A slope of this size would affect the expected background rate by 6%, which is negligible compared to the systematic uncertainty from other sources (described below).

As introduced above, we model the shape of the S_T distribution for the background by fitting the JMSB data with the function $1/\alpha x^\alpha$, where x is defined above and α is a free parameter. We find $\alpha = 5.02 \pm 0.32$ from the fit of the entire JMSB; in the 2-jet (3-jet) subsample of the JMSB we find a best fit value of $\alpha = 5.00 \pm 0.45$ (5.03 \pm 0.45). This background shape is normalized for use in the search sample with data in the S_T sideband.

We compare this background prediction to the observed S_T spectrum in the search sample in Fig. 3 along with the systematic uncertainty on the prediction (described below). The data are in good agreement with the background expectation. The probability for the most significant excess (at 700 GeV $< S_T < 750$ GeV) to have local significance as high or higher than that observed is 0.08.

Supported by the good agreement of the data with the background expectation, we use the data to compute $N_{\text{exc}}(S_T)$, the upper limit on the number of events exceeding the SM expectation as a function of lower S_T threshold. Limits are computed at the 95% confidence level (CL) with the modified frequentist CL$_S$ method [34,35] based on a profile likelihood ratio test statistic constructed from the Poisson probability for the observed number of events given the expectations for background and signal. For the model-independent cross-section limits, we separately compute $N_{\text{exc}}(S_T)$ for two categories of jet multiplicity, \geq4-jet and \geq5-jet. For stealth SUSY limits, we compute $N_{\text{exc}}(S_T)$ using exclusive 4-jet and \geq5-jet-jet-multiplicity bins combined as described in Ref. [36]; the inclusion of the 4-jet bin improves the expected cross-section limit by 7.5% at $M_{Q_t} = 1400$ GeV.

Using the measured integrated luminosity, we convert $N_{\text{exc}}(S_T)$ into a model-independent limit on the product of the acceptance and cross section of any new process that may be present in addition to the SM (the "effective NP cross section"). Using the integrated luminosity and the signal acceptance, we convert $N_{\text{exc}}(S_T)$ into a limit on the stealth SUSY cross section as a function of M_Q. For each value of M_Q, we use the value of S_T that maximizes the sensitivity to the stealth SUSY signal accounting for systematic uncertainty on the background expectation; these S_T values range from 800 to 2400 GeV for M_Q from 400 to 2000 GeV.

Systematic uncertainties on the expected numbers of background events, the signal acceptance, and the integrated luminosity...
are treated as nuisance parameters with a Gamma function prior distribution for the uncertainty related to the normalization of the background prediction and log-normal prior distributions for the other uncertainties. The theoretical uncertainty on the predicted cross section does not enter the cross-section limit, but is used in determining the limit on $M_{\tilde{q}}$.

We estimate that the following sources of uncertainty affect our knowledge of the expected background at the stated level: jet energy scale (3%), statistical uncertainty on signal acceptance from finite simulated samples (2%), and the measurement of integrated luminosity (2.2%) [16]. The effects on the signal acceptance of variations in pile-up and PDFs are less than 1%. The theoretical uncertainty on the predicted cross section related to PDFs, renormalization and factorization scales, and α_S variations is estimated to be 9–57% for $M_{\tilde{q}}$ from 400 to 2000 GeV; the dominant source is the PDF uncertainty.

In summary, we perform a search for NP in events with two photons and four or more jets. The selection requirements are general and provide sensitivity to a broad range of NP phenomena. We observe no excess over the SM expectation in a data sample corresponding to 4.96 fb^{-1} of integrated luminosity collected in 2011.

We determine model-independent limits on the effective NP cross section of 0.6 to 4 fb depending on S_{min}^T. We also compute the limit on the stealth SUSY cross section as a function of $M_{\tilde{q}}$. Comparing this limit to the predicted stealth SUSY cross section, we exclude the production of squarks with $M_{\tilde{q}} < 1430$ GeV. Existing SUSY searches based on photons and E_T^{miss} [25] are insensitive to most of the stealth SUSY region excluded by this analysis; this region is characterized by low E_T^{miss} predicting $1.5 \pm 0.1 (21.3 \pm 1.6)$ events with $E_T^{\text{miss}} > 100 \text{ GeV}$ for $M_{\tilde{q}}$ of 1400 (800) GeV. This is the first limit on the parameters of the stealth SUSY model.
Acknowledgements

We thank Joshua Ruderman for help in stealth SUSY event generation. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RFF (Cyprus); MEYS (Czech Republic); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEK, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, gal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugual); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); THEp, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria
D. Fasanellaa,b,5, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, M. Meneghellia,b,5, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, R. Travaglinia,b

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

G. Barbagliaa,5, V. Ciullia,b, C. Civininia, R. D'Alessandroa, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolellaa, G. Sguazzonia, A. Tropianoa,b

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, S. Colafranceschi25, F. Fabbri, D. Piccolo
INFN Laboratori Nazionali di Frascati, Frascati, Italy

P. Fabbricatorea, R. Musenicha, S. Tosia,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

A. Benagliaa,b, F. De Guioa,b, L. Di Matteoa,b,5, S. Fiorendia,b, S. Gennaia,b, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b, A. Martellia,b, A. Massironia,b,5, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempoa, C.A. Carrillo Montoyaa, N. Cavalloa,26, A. De Cosaa,b,5, O. Doganguna,b, F. Fabozzia,26, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,27, M. Merolaa,b, P. Paoluccia,5

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli “Federico II”, Napoli, Italy

M. Gabusiaa,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b

a INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

M. Biasinia,b, G.M. Bileia, L. Fanoa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Nappia,b,†, F. Romeoa,b, A. Sahaa, A. Santochiaa,b, A. Spieziaa,b, S. Taronia,b

a INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

P. Azzurriaa,5, C. Bagliesia,c, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D'Agnoloa,c,5, R. Dell’Orsoa, F. Fioria,b,5, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martina,28, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A.T. Serbana,29, P. Spagnoloa, P. Squillaciotia,5, R. Tenchinia,
G. Tonellia,b, A. Venturia, P.G. Verdinia

a INFN Sezione di Pisa, Pisa, Italy
b Università di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, C. Fanellia,b, M. Grassia,b,5, E. Longoa,b, P. Meridiania,5, F. Michela,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Sofia,b

a INFN Sezione di Roma, Roma, Italy
b Università di Roma, Roma, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale (Novara), Torino, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

S.G. Heo, T.Y. Kim, S.K. Nam
Kangwon National University, Chuncheon, Republic of Korea

Kyungpook National University, Daegu, Republic of Korea

J.Y. Kim, Zero J. Kim, S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park
Korea University, Seoul, Republic of Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis
Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del I.P.N., Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC – Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

51 Also at University of Sydney, Sydney, Australia.
52 Also at Utah Valley University, Orem, USA.
53 Also at Institute for Nuclear Research, Moscow, Russia.
54 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
55 Also at Argonne National Laboratory, Argonne, USA.
56 Also at Erzincan University, Erzincan, Turkey.
57 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
58 Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
59 Also at Kyungpook National University, Daegu, Republic of Korea.