Search for heavy lepton partners of neutrinos in proton–proton collisions in the context of the type III seesaw mechanism

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for heavy lepton partners of neutrinos in proton–proton collisions in the context of the type III seesaw mechanism

CMS Collaboration

A R T I C L E I N F O

Article history:
Received 5 October 2012
Accepted 25 October 2012
Available online 29 October 2012
Editor: M. Doser

Keywords:
CMS
Physics

A B S T R A C T

A search is presented in proton–proton collisions at \(\sqrt{s} = 7 \) TeV for fermionic triplet states expected in type III seesaw models. The search is performed using final states with three isolated charged leptons and an imbalance in transverse momentum. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 4.9 fb\(^{-1}\). No excess of events is observed above the background predicted by the standard model, and the results are interpreted in terms of limits on production cross sections and masses of the heavy partners of the neutrinos in type III seesaw models. Depending on the considered scenarios, lower limits are obtained on the mass of the heavy partner of the neutrino that range from 180 to 210 GeV. These are the first limits on the production of type III seesaw fermionic triplet states reported by an experiment at the LHC.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Experiments on neutrino oscillations [1–4] indicate that neutrinos have mass and their masses are much smaller than those of the charged leptons. However, the origin of neutrino mass is still unknown. An interesting possibility is provided by the seesaw mechanism, in which a small Majorana mass can be generated for each of the known neutrinos by introducing massive states with Yukawa couplings to leptons and to the Higgs field. Seesaw models called type I [5,6], type II [7–11], and type III [12,13] introduce heavy states of mass \(M \), that involve, respectively, weak-isospin singlets, scalar triplets, and fermion triplets. The neutrino masses are generically reduced relative to charged fermion masses by a factor \(v/M \), where \(v \) is the vacuum expectation value of the Higgs field. For sufficiently large \(M \) (of the order of \(10^{14} \) GeV), small neutrino masses are generated even for Yukawa couplings of \(\approx 1 \). On the other hand, either smaller Yukawa couplings or extended seesaw mechanisms, such as those of the inverse seesaw models [14], are required to obtain small neutrino masses while keeping \(M \) close to a few hundreds of GeV. At the Large Hadron Collider (LHC), type II and III states can be produced through gauge interactions, so that the possible smallness of the Yukawa couplings does not affect the production cross section of the heavy states. In particular, the possibility of discovering a type III fermion at a proton–proton centre-of-mass energy of \(\sqrt{s} = 14 \) TeV is discussed in Refs. [15–17]. Recently, a leading-order (LO) computation of the signal expected at \(\sqrt{s} = 7 \) TeV has become available as a computer program for simulating such final states [18].

Given the electric charges of the lepton triplet, hereafter referred to as \(\Sigma^+ \), \(\Sigma^0 \), and \(\Sigma^- \), the most promising signature for finding a \(\Sigma \) state with a mass \(M_\Sigma \) of the order of a few hundreds of GeV is in production through quark–antiquark annihilation \(q\bar{q} \to \Sigma^0 \Sigma^+ \), followed by the decays \(\Sigma^0 \to \ell^+W^\mp \) and \(\Sigma^+ \to W^+\nu \). The mass differences among the three electric charge states are assumed to be negligible. The mass range relevant for this analysis is bounded by the present lower limits (\(\approx 100 \) GeV) from the L3 experiment [19] and by the CMS loss of sensitivity near \(\approx 200 \) GeV because of the very steep decrease of the expected cross section with mass. Since there are twice as many u as d valence quarks in the proton, the production of \(\Sigma^+ \Sigma^0 \) via virtual W bosons in the s-channel (Fig. 1) has the highest cross section of all the \(\Sigma \) charge combinations. (The cross section for the charge conjugate intermediary \(W^- \) is expected to be about a factor two smaller.) Selecting \(W^\pm \to \ell^\pm\nu \) decays (where \(\ell \) is an electron or muon) as the final states for the search, offers a very clean signature of three charged, isolated leptons. The decay \(\Sigma^+ \to \ell^+Z \), with \(Z \to \nu\bar{\nu} \) or \(Z \to q\bar{q} \), can also contribute significantly to the three-lepton final state, especially since its relative yield grows with \(M_\Sigma \). The \(\tau \) lepton also contributes to the three-lepton final states through \(\tau \to \ell_V\nu_V \) decays. Details of the phenomenology and the different contributions to the final state of interest can be found in Ref. [18].

The total width of the \(\Sigma \) states and their decay branching fractions to SM leptons depend on the mixing matrix element for the
leptons V_α, where α labels each of the e, μ, and τ generations of leptons. Constraints on the mixing parameters and their products are available in Refs. [18,20].

The $\Sigma^+\Sigma^0$ production cross section does not depend on the matrix elements V_α, which enter only in the Σ decays. The fraction of Σ decays to the lepton α is proportional to:

$$b_\alpha = \frac{|V_{e\alpha}|^2}{|V_{e\mu}|^2 + |V_{e\tau}|^2}.$$

If all three $V_{e\alpha}$ values are less than 10^{-6}, the Σ states can have sufficiently long lifetimes to produce leptons at secondary vertices, a possibility not considered in this analysis.

This Letter reports on a search for fermionic triplet states expected in type III seesaw models, in final states with three charged leptons and an imbalance in transverse momentum. A smaller contribution to the background comes from Z bosons. The production of three EW bosons is generated with MadGraph 5 [32]. Backgrounds from jets and photons that are misidentified as leptons are also taken into account, including events from Drell–Yan $\ell^+\ell^-$ + jets sources [33], $W +$ jets, $Z +$ jets, $t\bar{t}$, and Drell–Yan $\ell^+\ell^-$ + γ conversions to $\ell^+\ell^-$. The Drell–Yan process consists of $qq \rightarrow \gamma^*Z \rightarrow \ell^+\ell^-$ production, with γ^* and Z intermediaries representing virtual γ or Z bosons.

The presence of additional simultaneous pp interactions (pileup) is incorporated by simulating and mixing additional interactions with a multiplicity matching that observed in data.

4. Event selection criteria

The online trigger and the offline selection criteria are analogous to those used in other multi-lepton analyses performed by the CMS Collaboration. Events are selected through two-lepton triggers in which two muons, two electrons, or one electron and one muon are required to be present. Because of the steady increase in instantaneous luminosity in 2011, some of the lepton p_T thresholds were increased over time to keep the trigger rates within the capabilities of the data acquisition system. For the two-muon trigger, the p_T requirements evolved from 7 GeV for each muon to asymmetric requirements of 17 GeV for the highest-p_T (leading) muon and 8 GeV for the second-highest p_T muon. For the two-electron trigger, the requirement is asymmetric, with a threshold applied to the energy of an ECAL cluster projected onto the plane transverse to the beam line ($E_T = E \sin \theta$). The cluster of the leading electron is required to have $E_T > 17$ GeV, and that of the next-to-leading electron to have $E_T > 8$ GeV For the electron–muon trigger, the thresholds are either $E_T > 17$ GeV for the electron and $p_T > 8$ GeV for the muon, or $E_T > 8$ GeV for the electron and $p_T > 17$ GeV for the muon. The selected events must contain at least two lepton candidates with trajectories that have a transverse impact parameter of less than 0.2 mm relative to the principal interaction vertex. The chosen vertex is defined as the one with the largest value for the sum of the p_T^2 of the emanating tracks.

Muon candidates are reconstructed from a fit performed to hits in both the silicon tracker and the outer muon detectors, thereby defining a "global muon." The specific selection requirements for a muon are: (i) $p_T > 10$ GeV, (ii) $|\eta| < 2.4$, (iii) more than 10 hits in the silicon tracker, and (iv) a global-muon fit with χ^2/dof < 10, where dof is the number of degrees of freedom.
Electron candidates are reconstructed using clusters of energy depositions in the ECAL that match the extrapolation of a reconstructed track. The electron track is fitted using a Gaussian-sum filter [36], with the algorithm taking into account the emission of bremsstrahlung photons in the silicon tracker. The specific requirements for a reconstructed electron are: (i) $p_T > 10$ GeV, (ii) $|\eta| < 1.44$, within the fully instrumented part of the central barrel, or $1.57 < |\eta| < 2.5$ for the endcap regions, (iii) not being a candidate for photon conversion, and (iv) the tracks reconstructed using three independent algorithms [23] to give the same sign for the electric charge.

All accepted lepton candidates are required to be isolated from other particles. In particular, selected muons must have $(\sum p_T)/p_T^\mu < 0.15$, where the sum over scalar p_T includes all other PF objects within a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ of the muon track, where $\Delta \eta$ and $\Delta \phi$ are the differences in pseudorapidity and azimuthal angle between the lepton axis and the positions of other particles. Similarly, an electron candidate is accepted if $(\sum p_T)/p_T^e < 0.20$ within a cone of $\Delta R = 0.3$.

The candidate events used for the search are required to have: (i) three isolated charged leptons originating from the same primary vertex, as defined above, (ii) sum of the lepton charges equal to zero, (iii) $E^{miss} > 30$ GeV, (iv) $p_T > 18$, 15, 10 GeV for the lepton of highest, next-to-highest, and lowest p_T, and (v) $H_T < 100$ GeV, where H_T is the scalar sum of the transverse momenta of jets with $p_T > 30$ GeV and $|\eta| < 2.4$, which reduces the background from $t\bar{t}$ events.

The selected events are classified into six categories that depend on lepton flavour and electric charge: $\mu^+e^-e^+$, $\mu^+\mu^+\mu^+$, $\mu^+\mu^-\mu^+$, $e^-\mu^+\mu^+$, $e^-e^+\mu^+$, and $e^-e^+e^+$. Except for the first and fourth categories, such configurations can also result from W^+Z events. Fig. 2 shows the distributions of the $\mu^+\mu^+$ invariant mass for $\mu^+e^-\mu^+$ and $\mu^+\mu^-\mu^+$ events in data, before applying any requirement on the $\mu^+\mu^+$ mass, compared to the sum of SM background contributions. A peak in the $\mu^+\mu^+$ effective mass close to that of the Z boson is evident in both simulated events and in data. To reduce the background from W^+Z events, a Z veto is added to the selection requirements for the corresponding categories as follows. Events with at least one $E^{\mu\mu}$ mass combination in the range $82 < m_{\mu\mu} < 102$ GeV are rejected. To reject lepton pairs from decays of heavy-flavour quarks, events with $m_{\mu\mu} < 12$ GeV are also discarded.

Other sources of background in final states with three leptons arise from conversions of photons into additional $e^-\mu^-$ pairs through the process $Z \rightarrow e^-\mu^-\gamma \rightarrow e^-\mu^-\ell^-\ell^-$. If one of these additional leptons carries most of the momentum of the photon, the final state can appear as a three-lepton event. In such cases, the invariant mass of the $e^-\mu^-$ state peaks close to the mass of the Z boson [34]. Since the probability of a photon conversion to electrons is higher than to muons, an additional Z veto of $82 < m_{e^-\mu^-} < 102$ GeV is applied to the $\mu^+e^-\mu^+$ and $e^-e^+e^+$ categories to reject such events. This is discussed further in the next section.

5. Background estimation

Three types of SM processes can produce a three-lepton final state: (i) events containing three or more prompt leptons from production and leptonic decays of two or three EW bosons. This is referred to as irreducible background, since it corresponds to the same final states as the signal from Z production, (ii) $V^\pm + \gamma$ and $V + \gamma^*$ events, where V represents any EW boson, with the accompanying photons converting to $\ell^+\ell^-$, and (iii) events with one or two prompt leptons and additional non-prompt leptons that arise from leptonic decays of hadrons within jets, called “misidentified jets”.

The irreducible background from more than two leptons is dominated by SM WZ production, but also includes ZZ and three-boson events. The two-boson contribution, which is reduced substantially by the Z mass veto, and the three-boson contribution, which is dominated by the WWW channel, are both evaluated using MC simulation. The contribution from three-boson production is small relative to the other sources, as shown in Table 1.

As mentioned in Section 4, photon conversions in the presence of W or Z bosons can produce isolated leptons that constitute another source of background. External conversions of photons, namely of produced photons that interact with the material in the detector to yield primarily e^-e^+ pairs, are evaluated from simulation [V_Y in Table 1]. Internal conversions, involving the direct materialisation of virtual photons into $\mu^+\mu^-$ or e^-e^+ pairs, can also provide a similar source of background. Both external and internal conversions can become problematic when one of the two final-state leptons carries off most of the photon energy, and the second lepton is not detected. The contribution of conversions to electrons is reduced by the additional three-lepton-mass rejection applied to the $\mu^+e^-\mu^+$ and $e^-e^+e^+$ categories as discussed above. The
contribution from internal photon conversions to muons \(\gamma^* \rightarrow \mu^+\mu^- \) is evaluated according to the method described in Ref. [34], where the ratio of \(\ell^+\ell^-\mu^\pm \) to \(\ell^+\ell^-\gamma \) events, in which the mass is close to that of a Z boson, defines a conversion factor \(C_\gamma \) for muons. The background is estimated from \(C_\mu \) and from the number of \(\ell^+\ell^-\gamma \) events in data that pass all selections, except the three-lepton requirements. An alternative evaluation is obtained from events in an independent Z-enriched control region, by reversing the \(E_T^{\text{miss}} \) requirement to \(E_T^{\text{miss}} < 20 \text{ GeV} \). As mentioned before, events from Z decays into two muons or two electrons that contain an additional muon from internal photon conversion, produce a peak in the three-lepton invariant mass distribution close to the Z mass. The number of events expected in the final sample is estimated from the ratio of simulated events for Z production with \(E_T^{\text{miss}} > 30 \text{ GeV} \) to that with \(E_T^{\text{miss}} < 20 \text{ GeV} \). This estimate agrees with that of the previous method. The \(\gamma^* \rightarrow \mu^+\mu^- \) background contribution is small, as can be seen in Table 1. An overall uncertainty of \(\pm 50\% \) is assumed for this source of background, which is limited by the statistical precision of both estimates (30%), and has an additional contribution from the choice of normalization criteria (40%).

The largest background, aside from the irreducible backgrounds, arises from the Z + jets process (including the Drell–Yan contribution), in which the Z boson decays leptonically, and a jet in the event is misidentified as a third lepton. Processes with non-prompt leptons from heavy-flavour decays and a jet in the event are misidentified as a third lepton. In fact, the largest uncertainty for this simulation is \(\pm 50\% \) for this source of background, which is limited by the statistical precision of both estimates (30%), and has an additional contribution from the choice of normalization criteria (40%).

Events from \(t\bar{t} \) production with two leptonic W decays and an additional coincident lepton, are reduced through the PF isolation requirements from internal photon conversions to muons. The selection of \(\gamma^* \rightarrow \mu^+\mu^- \) is removed by the rejection criteria on three-lepton masses. Statistical uncertainties are included for the six categories, and systematic uncertainties on normalizations are listed in the last row.

Table 1

<table>
<thead>
<tr>
<th>(\gamma^* \rightarrow \mu^+\mu^-)</th>
<th>(\mu^-e^+e^-)</th>
<th>(\mu^-\nu\bar{\nu})</th>
<th>(\mu^-\mu^+\mu^-)</th>
<th>(e^-\mu^+\mu^-)</th>
<th>(e^-e^+e^-)</th>
<th>Normalization uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.3 \pm 0.1)</td>
<td>(4.0 \pm 0.3)</td>
<td>(4.9 \pm 0.3)</td>
<td>(0.3 \pm 0.1)</td>
<td>(4.9 \pm 0.3)</td>
<td>(2.5 \pm 0.2)</td>
<td>17% (WZ) 75% (ZZ)</td>
</tr>
<tr>
<td>(0.09 \pm 0.01)</td>
<td>(0.19 \pm 0.01)</td>
<td>(0.11 \pm 0.01)</td>
<td>(0.09 \pm 0.01)</td>
<td>(0.21 \pm 0.02)</td>
<td>(0.06 \pm 0.01)</td>
<td>50%</td>
</tr>
<tr>
<td>(0.9 \pm 0.4)</td>
<td>(3.1 \pm 1.2)</td>
<td>(5.7 \pm 1.9)</td>
<td>(0.8 \pm 0.5)</td>
<td>(3.0 \pm 1.2)</td>
<td>(1.4 \pm 1.0)</td>
<td>13%</td>
</tr>
<tr>
<td>(0.9 \pm 0.4)</td>
<td>(3.1 \pm 1.2)</td>
<td>(5.7 \pm 1.9)</td>
<td>(0.8 \pm 0.5)</td>
<td>(3.0 \pm 1.2)</td>
<td>(1.4 \pm 1.0)</td>
<td>13%</td>
</tr>
<tr>
<td>(50%)</td>
</tr>
</tbody>
</table>

6. Systematic uncertainties

Systematic uncertainties can be divided in two categories: those related to the extraction of the signal and those relevant to the sources of background. The first group includes efficiencies of trigger selections, particle reconstruction, and lepton identification. In the kinematic region defined by the analysis, the trigger efficiency for the signal is very high because it is based on a combination of three separate two-lepton triggers, each of which is found to be 92% to 100% efficient, and the estimated overall efficiency is (99 ± 1)%.

Uncertainties on lepton selection efficiencies are determined using a “tag-and-probe” method [37], both in data and through MC simulations, and the differences between these are taken as systematic uncertainties on the efficiencies. Additional contributions include uncertainties on the energy scales and on resolutions for leptons and for \(E_T^{\text{miss}} \) as well as uncertainties in the modeling of pileup, all of which are obtained from a full \textsc{Geant4} simulation. As mentioned in Section 3, \textsc{Geant4} simulation of the signal is restricted to a limited number of \(M_{\Sigma} \) masses. In fact, the largest available value for this simulation is \(M_{\Sigma} = 140 \text{ GeV} \). The efficiencies are therefore extrapolated to higher mass points using fast detector simulation. The difference between the efficiencies evaluated with the full and fast simulation at 140 GeV is taken as an additional contribution to the overall uncertainty. The largest difference is for the channel with three muons. Statistical uncertainties of the extrapolation are also taken into account. The uncertainties attributed to the expected signal efficiencies are summarized in Table 2 for \(M_{\Sigma} = 180 \text{ GeV} \), and are expected not to differ significantly for higher mass points [18].

As mentioned above, the uncertainties on backgrounds are estimated using MC simulations or control samples in data. For the dominant irreducible background of WW production, we apply a 17% uncertainty on the measured cross section [38]. Uncertainties of 7.5% for ZZ [39], and 13% for VV [40] cross sections are also taken into account. Very small backgrounds, such as WWW, we assume a normalization uncertainty of 50%.

Uncertainties on background estimates from methods based on data were discussed in Section 5, and those statistical and systematic uncertainties are summarized in Table 1.

The overall uncertainty on integrated luminosity is 2.2% [41]. For backgrounds determined from simulation, the systematic uncertainties on efficiency and luminosity are common to all signals.
of the cross section on τ states, where the lepton can be an electron, muon or Σ, of observed events in each of the analyzed event categories. Each of the three possibilities for mixing (FDS, μS, eS) described in Section 1 is considered in the analysis.

No significant excess of events is observed relative to the SM expectations in any of the six analysis channels. Combining all channels, we set upper limits at the 95% confidence level (CL) on $\sigma \times B$, on the product of the production cross section of $\Sigma^\pm \Sigma^0$ and its branching fraction (B) to the three-lepton final states, where the lepton can be an electron, muon or τ (contributing through $\tau \rightarrow e\nu\nu\tau$). The branching fraction to three-lepton final states depends on M_Σ [18], and is predicted to be about 9% for $M_\Sigma \approx 200$ GeV, where we extrapolate signal yields to $M_\Sigma > 180$ GeV using the results of Ref. [18].

The upper limits on σB as a function of fermion mass M_Σ, combining for all channels by multiplying the corresponding likelihood functions, are shown in Fig. 3, 4, and 5, for FDS, μS, and eS possibilities, respectively. The dashed lines correspond to the expected limits obtained from MC pseudo-experiments, which reflect the combined statistical and systematic uncertainties of the SM contributions. The asterisks and the black points show, respectively, the observed limits computed following a frequentist method based on the CLs criterion and a Bayesian approach.

The reported limits are valid only for short Σ lifetimes, which hold for values of the matrix elements $V_{\alpha\Sigma}$ greater than $\approx 10^{-6}$. For smaller values, the analysis requires a different approach, since the leptons can originate from displaced vertices in an environment that, as indicated previously, is not considered in this analysis.

8. Summary

A search has been presented for fermionic triplet states expected in type III seesaw models. The search was performed in events with three isolated leptons (muons or electrons), whose charges sum to $+1$, and contain jets and an imbalance in transverse momentum.

Table 2

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Trigger efficiency</th>
<th>Signal efficiency (Full simulation)</th>
<th>Total (FDS/FastSim) systematic</th>
<th>Total systematic</th>
<th>(FDS/FastSim) statistical</th>
<th>Total syst. + stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^{-}\mu^{+}$</td>
<td>1.0%</td>
<td>6.3%</td>
<td>2.9%</td>
<td>7.0%</td>
<td>3.0%</td>
<td>7.6%</td>
</tr>
<tr>
<td>$\mu^{-}\mu^{+}$</td>
<td>1.0%</td>
<td>4.5%</td>
<td>6.8%</td>
<td>8.2%</td>
<td>2.3%</td>
<td>8.5%</td>
</tr>
<tr>
<td>$\mu^{-}\mu^{+}$</td>
<td>1.0%</td>
<td>3.9%</td>
<td>11.1%</td>
<td>11.8%</td>
<td>3.3%</td>
<td>12.2%</td>
</tr>
<tr>
<td>$\mu^{-}\mu^{+}$</td>
<td>1.0%</td>
<td>4.5%</td>
<td>8.5%</td>
<td>9.7%</td>
<td>2.9%</td>
<td>10.1%</td>
</tr>
<tr>
<td>$\mu^{-}\mu^{+}$</td>
<td>1.0%</td>
<td>6.3%</td>
<td>4.1%</td>
<td>7.6%</td>
<td>2.4%</td>
<td>7.9%</td>
</tr>
<tr>
<td>$\mu^{-}\mu^{+}$</td>
<td>1.0%</td>
<td>7.6%</td>
<td>2.8%</td>
<td>8.0%</td>
<td>4.2%</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Table 3

Summary of the expected number of events for signal as a function of M_Σ, for the expected SM background, and the observed number of events in data, after implementing all analysis selections. Each of the three possibilities for mixing (FDS, μS, eS) described in Section 1 is considered separately in the analysis.

Fig. 3. The expected (dashed line) and observed (asterisks and black points) exclusion limits at 95% confidence level on σB as a function of the fermion mass M_Σ, assuming $b_0 = b_1 = b_2 = 1/3$ (FDS) for the signal. The solid (blue) curve represents the predictions of the LO type III seesaw models. The light (yellow) and dark (green) shaded areas represent, respectively, the 1 standard deviation (68% CL) and 2 standard deviations (95% CL) limits on the expected results obtained from MC pseudo-experiments, which reflect the combined statistical and systematic uncertainties of the SM contributions. The asterisks and the black points show, respectively, the observed limits computed following a frequentist method based on the CLs criterion and a Bayesian approach.

7. Results

Table 3 presents the results of our search for the fermionic Σ triplet states in terms of the expected number of signal events, the expected number of events from SM background, and the number of observed events in each of the analyzed event categories. Each of the three possibilities for mixing (FDS, μS, eS) described in Section 1 is considered in the analysis.

No significant excess of events is observed relative to the SM expectations in any of the six analysis channels. Combining all channels, we set upper limits at the 95% confidence level (CL) on $\sigma \times B$, on the product of the production cross section of $\Sigma^\pm \Sigma^0$ and its branching fraction (B) to the three-lepton final states, where the lepton can be an electron, muon or τ (contributing through $\tau \rightarrow e\nu\nu\tau$). The branching fraction to three-lepton final states depends on M_Σ [18], and is predicted to be about 9% for $M_\Sigma \approx 200$ GeV, where we extrapolate signal yields to $M_\Sigma > 180$ GeV using the results of Ref. [18].

The upper limits on σB as a function of fermion mass M_Σ, combining for all channels by multiplying the corresponding likelihood functions, are shown in Fig. 3, 4, and 5, for FDS, μS, and eS possibilities, respectively. The dashed lines correspond to the expected limits obtained from MC pseudo-experiments, and are based on the CLs criterion [42,43]. The observed limits on data are computed following both a Bayesian approach [33, Ch. 33], and a frequentist method also based on the CLs criterion. In the former, the assumed prior is a constant. In both calculations, the uncertainties on efficiencies for detecting the signal, the uncertainty on integrated luminosity and on the expected SM background, are treated as uninteresting “nuisance” parameters with Gaussian or log-normal densities. Upper limits are computed at 95% CL using the RooStats software [44], and the package developed to combine results from searches for the Higgs boson [45]. The two results are similar, as shown in Figs. 3, 4, and 5. The results are stable relative to variations of $\pm 20\%$ on the systematic uncertainties. Finally, we extract lower limits on M_Σ using the theoretical dependence of the cross section on M_Σ, as represented by the solid blue lines of Fig. 3, 4, and 5, for the three possibilities for the type III seesaw model for signal. The expected and observed 95% CL limits obtained with the Bayesian method are given in Table 4.
momentum. The data are from proton–proton collisions at $\sqrt{s} = 7$ TeV, recorded during 2011 by the CMS experiment at the CERN LHC, and correspond to an integrated luminosity of 4.9 fb$^{-1}$.

No evidence for pair production of $\Sigma^+ \Sigma^0$ states has been found, and 95% confidence upper limits are set on the product of the production cross section of $\Sigma^+ \Sigma^0$ and its branching fraction to the examined three-lepton final states. Comparing the results with predictions from type III seesaw models, lower bounds are established at 95% confidence on the mass of the Σ states. Limits are reported for three choices of mixing possibilities between the Σ states and the three lepton generations. Depending on the considered scenarios, lower limits are obtained on the mass of the heavy partner of the neutrino that range from 180 to 210 GeV. The results are valid only if at least one of the mixing matrix elements is larger than $\approx 10^{-6}$. These are the first limits on the production of type III seesaw fermionic triplet states reported by an experiment at the LHC.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staffs at CERN and other CMS institutes, and acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and USA (Mexico); Mes et NRC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NWO (The Netherlands); ThEIP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

CMS Collaboration

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shrivpuri

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

S. Banerjee, S. Dugad

Tata Institute of Fundamental Research - HECR, Mumbai, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

c INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

S. Albergò, G. Cappello, M. Chiorboli, S. Costa, R. Potenza, A. Tricomi, C. Tuve
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale (Novara), Torino, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

S.G. Heo, T.Y. Kim, S.K. Nam
Kangwon National University, Chunchon, Republic of Korea

Kyungpook National University, Daegu, Republic of Korea

J.Y. Kim, Zero J. Kim, S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park
Korea University, Seoul, Republic of Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis
Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krokikowski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

PN. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Djordjevic, M. Ekmejic, D. Krpic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

B. Akgun, V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Rice University, Houston, USA

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzwieg, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

The Rockefeller University, New York, USA

Rutgers, the State University of New Jersey, Piscataway, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

* Corresponding author.
1 Deceased.
2 Also at Vienna University of Technology, Vienna, Austria.
3 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
4 Also at Universidade Federal do ABC, Santo Andre, Brazil.
5 Also at California Institute of Technology, Pasadena, USA.
6 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
7 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
8 Also at Suez Canal University, Suez, Egypt.
9 Also at Cairo University, Cairo, Egypt.
10 Also at Fayoum University, El-Fayoum, Egypt.
11 Also at British University, Cairo, Egypt.
12 Now at Ain Shams University, Cairo, Egypt.
13 Also at National Centre for Nuclear Research, Swierk, Poland.
14 Also at Université de Haute-Alsace, Mulhouse, France.
15 Now at Joint Institute for Nuclear Research, Dubna, Russia.
16 Also at Moscow State University, Moscow, Russia.
17 Also at Brandenburg University of Technology, Cottbus, Germany.
18 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
19 Also at Eötvös Loránd University, Budapest, Hungary.
20 Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.
21 Also at University of Visva-Bharati, Santiniketan, India.
22 Also at Sharif University of Technology, Tehran, Iran.
23 Also at Isfahan University of Technology, Isfahan, Iran.
24 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
25 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
26 Also at Università della Basilicata, Potenza, Italy.
27 Also at Università degli Studi Guglielmo Marconi, Roma, Italy.
28 Now at Università di Genova, Genova, Italy.
29 Also at Università degli Studi di Siena, Siena, Italy.
30 Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
31 Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
32 Also at University of California, Los Angeles, Los Angeles, USA.
33 Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
34 Also at INFN Sezione di Roma; Università di Roma, Roma, Italy.
35 Also at University of Athens, Athens, Greece.
36 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
37 Also at The University of Kansas, Lawrence, USA.
38 Also at Paul Scherrer Institut, Villigen, Switzerland.
39 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
40 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
41 Also at Gaziosmanpasa University, Tokat, Turkey.
42 Also at Adiyaman University, Adiyaman, Turkey.
43 Also at Izmir Institute of Technology, Izmir, Turkey.
44 Also at The University of Iowa, Iowa City, USA.
45 Also at Mersin University, Mersin, Turkey.
46 Also at Ozyegin University, Istanbul, Turkey.
47 Also at Kafkas University, Kars, Turkey.
48 Also at Suleyman Demirel University, Isparta, Turkey.
49 Also at Ege University, Izmir, Turkey.
50 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
51 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
52 Also at University of Sydney, Sydney, Australia.
53 Also at Utah Valley University, Orem, USA.
54 Also at Institute for Nuclear Research, Moscow, Russia.
55 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
56 Also at Argonne National Laboratory, Argonne, USA.
57 Also at Erzincan University, Erzincan, Turkey.
58 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
59 Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
60 Also at Kyungpook National University, Daegu, Republic of Korea.