Search for charge-asymmetric production of W' bosons in $t\bar{t} + \text{jet}$ events from pp collisions at $s = 7$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for charge-asymmetric production of W' bosons in t̅f + jet events from pp collisions at √s = 7 TeV

CMS Collaboration

1. Introduction

Many extensions to the standard model (SM) involve enhanced gauge symmetries that give rise to additional gauge bosons. Within these extensions, one of the additional bosons could be the W' boson, a proposed heavy partner to the W boson. There are many scenarios with a W' boson: a left–right symmetric model [1], a model based upon a new SU(2) sector [1], a technicolor model [2], and a W' as the lowest Kaluza–Klein mode of the W boson [3].

A W' boson with a coupling to top (t) and down (d) quarks has been proposed [4] to explain the anomalous forward–backward asymmetry in t̅f events reported at the Tevatron [5–7]. The observed effect, which is particularly significant for large values of the t̅f mass, could be explained by the production of a W' boson with a mass in the range of 200–600 GeV/c² [4]. A search for a W' decaying to top and light quarks was conducted by the CDF experiment [8]. With a predicted cross section around 20 pb at 7 TeV and an assumed 100% branching fraction into t and d quarks, as illustrated in Fig. 1, the W' boson is potentially observable with the data already collected by the Compact Muon Solenoid (CMS) Collaboration at the Large Hadron Collider (LHC).

Because the LHC collides protons with protons, rather than with antiprotons, the valence d quarks have a much larger fraction of beam particle momentum than d quarks, which come from the proton “sea”. The result is that, at leading order (LO), the W' (W') contributes about 85% (15%) of the total W' production cross section, for W' masses in the range from 400–1200 GeV/c² [9]. This feature can be used to aid in the identification of the W' as explained in Section 6.

The LO processes shown in Fig. 1 result in a final state of t̅f plus a d quark or antiquark. This final state can be classified according to how the W bosons from the top quarks decay: all hadronic (both W bosons decaying hadronically), partially leptonic (one decaying hadronically, the other leptonically), or fully leptonic (both decaying leptonically). We focus on the partially leptonic mode because it has a larger branching fraction than the fully leptonic mode and a cleaner signature than the all-hadronic mode. The event selection for this analysis requires one electron or muon accompanied by several jets and an imbalance in transverse momentum. The main background originates from SM t̅f production with initial- or final-state radiation. We conduct a search for the W' signal by comparing the number of observed events in data with the

Fig. 1. Feynman diagrams for t̅f production of (left) W'− and (right) W'. Diagrams for t̅f production can be found in Ref. [9].
the total expected from SM sources. In addition, we utilize a kinematic reconstruction of the W' resonance mass and the inherent charge asymmetry of this model to perform an independent test for the presence of W' events in the data.

2. The CMS detector and data samples

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker resides within the field volume, surrounded by a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the flux-return yoke of the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise beam direction. The polar angle, \(\theta \), is measured from the positive z axis and the azimuthal angle, \(\phi \), is measured in the x–y plane. The pseudorapidity is defined as \(\eta = - \ln(\tan(\theta/2)) \). A more detailed description of the detector can be found in Ref. [10].

The data sample corresponds to an integrated luminosity of \(5.0 \pm 0.1 \) fb\(^{-1} \) in pp collisions at a center-of-mass energy \(\sqrt{s} = 7 \) TeV, collected by the CMS detector at the LHC. We perform our search in both the electron-plus-jets (e + jets) and muon-plus-jets (\(\mu + \) jets) channels. For the e + jets channel, about 0.2 fb\(^{-1} \) of data were initially collected by requiring one electron with transverse momentum \((p_T) \) greater than 27 GeV/c. For the next 1 fb\(^{-1} \) of data, the \(p_T \) threshold had to be raised to 32 GeV/c. During the course of data taking, the maximum instantaneous luminosity increased by an order of magnitude, reaching up to \(4 \times 10^{31} \) cm\(^{-2}\) s\(^{-1} \), thereby requiring changes in the trigger configurations. For the remaining 3.8 fb\(^{-1} \) of data, it was necessary to include several jets in the electron trigger, resulting in an electron \(p_T \) threshold of 25 GeV/c plus three jets with \(p_T > 30 \) GeV/c. For the muon + jets channel, 2.2 fb\(^{-1} \) of data were initially collected by requiring a single muon with \(p_T > 30 \) GeV/c, with this threshold later raised to 40 GeV/c for the last 2.8 fb\(^{-1} \) of data.

The data are compared with simulations of SM background contributions from leptonically enriched multijets, single top quark, \(t \bar{t} \), W, and Z production, with all sources including additional jets. The \(t \bar{t} \) background is dominant, and is simulated with up to three additional partons by the \textsc{MADGraph} 4.4.12 [11] event generator interfaced with the \textsc{Pythia} 6.422 [12] parton shower simulator. In the matching procedure for this parton showering [13], the \(k_T \) matrix element uses a matching scale of 30 GeV/c, according to the MLM scheme [14]. The W and Z background processes are produced with the \textsc{MADGraph} event generator. The W' signal samples are produced with \textsc{MADGraph} for masses \(M_{W'} = 400, 600, 800, 900, 1000, \) and 1200 GeV/c\(^2 \) with values of the W' coupling constants to top and down quarks \(g_t = 0 \) and \(g_u = 2 \) [9]. Additional W' benchmark points are produced for masses \(M_{W'} = 600 \) and 800 GeV/c\(^2 \) with \(g_t = 0 \) and \(g_u = \sqrt{2} \). Compared to Ref. [8], the definition of \(g_u \) used here gives values smaller by a factor of 1/\(\sqrt{2} \). Single top quark production is simulated with the \textsc{powheg} [15] event generator and includes s- and t-channel production, along with \(tW \) associated production. The multijet background contribution is simulated using a combination of two sets of samples, one generated with \textsc{MADGraph} and the other with \textsc{Pythia}. The CTEQ6L1 parton distribution function (PDF) set [16], which contains LO PDFs, is used for generating all simulated events. The events for all samples are passed through a Geant4-based simulation [17] of the CMS detector and reconstructed with the same program used to reconstruct data.

3. Event selection and reconstruction

The particle-flow (PF) algorithm [18] is used to reconstruct and identify each particle based upon an optimized combination of information from all the sub-detectors. The particles are classified as charged hadrons, neutral hadrons, photons, muons, or electrons. Charged leptons originating from W boson decays are expected to be isolated from other particles in the event. A variable to quantify this lepton isolation, \(I \), is defined as a sum of momenta, divided by the lepton \(p_T \), where the sum is of the transverse momenta of charged hadrons, neutral hadrons, and photons in a cone of \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3 \) around the lepton direction, excluding the contribution from the lepton itself. Muons are reconstructed using information from the silicon tracker and the muon chambers. Muon candidates are required to be isolated, with \(I < 0.125 \), and to have \(p_T > 42 \) GeV/c and \(|\eta| < 2.1 \). Electrons are reconstructed using associated clusters of energy deposits in the ECAL that are then combined with tracks from the inner tracker [19]. The electron candidate is required to be isolated, with \(I < 0.1 \), and to have \(p_T > 45 \) GeV/c and \(|\eta| < 2.5 \). The \(p_T \) thresholds for the leptons are chosen so as to ensure a \(p_T \)-independent trigger efficiency, whose value is about 98\%, for selected events. Electrons in the \(\eta \) range around the interface between the ECAL endcap and ECAL barrel (1.444 < \(|\eta| < 1.566 \)) are excluded from the selection. From the high-quality vertices that are close to the beam spot, the vertex with the highest sum of \(p_T \) of its constituent tracks is chosen as the primary vertex. To ensure the reconstructed muon or electron track is consistent with originating from the primary vertex, we require the longitudinal distance between the track and vertex to be less than 1 cm, and the point of closest approach to the primary vertex in the transverse direction to be less than 0.02 cm, as suggested by Ref. [20]. Selected events must contain exactly one electron or muon meeting the above requirements, and events are rejected if they have any additional muons with \(p_T > 10 \) GeV/c, \(|\eta| < 2.5 \), and \(I < 0.2 \). To remove electrons resulting from photon conversions, we eliminate those events with a single electron candidate that has no hits in the innermost pixel layer or that is accompanied by a nearby track.

Jets are reconstructed from PF constituents with the \textsc{FastJet} package [21], using the anti-\(k_T \) [22] clustering algorithm with a distance parameter 0.5 and a jet clustering recombination scheme that merges particles by summing their four-vectors [23]. Only charged PF jets that are consistent with originating from the primary vertex are considered. Correction factors [24] are applied to the jet energy to account for non-linearities in detector response. Selected events must have at least five jets with a minimum \(p_T \) of 35 GeV/c and \(|\eta| < 2.4 \). The highest-\(p_T \) jet is required to have \(p_T > 180 \) GeV/c, and the second-highest-\(p_T \) jet must have \(p_T > 90 \) GeV/c. The requirement for the highest-\(p_T \) jet is intended, in part, to select for the \(d \)-quark jet coming from the W’ decay. We also require \(H_T > 700 \) GeV/c, where \(H_T \) is the scalar sum of all jet \(p_T \), the lepton \(p_T \), and a quantity called \(E_T^{miss} \), which is the absolute value of the vector sum of the transverse momenta of all particles found by the PF algorithm, with the particles being treated as massless. These \(H_T \) and jet \(p_T \) values are determined from optimizing the selection to suppress SM backgrounds while enhancing the signal significance, which is taken to be the expected number of signal events for a benchmark point with a W' mass of 600 GeV/c\(^2 \) divided by the square root of the number of expected background events. This benchmark corresponds to the highest mass point that is able to account well for the forward-
backward asymmetry in t̄t events observed at the Tevatron [4]. We further require that at least one jet is identified as originating from a b quark. Jets from b quarks are identified by an algorithm [25] that reconstructs a displaced secondary vertex with high efficiency by combining two or more tracks and then assigns a likelihood of b-quark origin based upon the three-dimensional decay length of the vertex.

The leptonic decay of the W boson arising from a top quark produces a neutrino, which escapes the detector without interacting. The $E_{T\text{miss}}$ provides a measure of this missing energy, so we require $E_{T\text{miss}} > 20$ GeV.

The estimated background contribution from SM processes is obtained from simulation. After all selection requirements are applied, t̄t decays matching the signal topology are the dominant background source, with W + jets events also contributing, but at a much smaller level.

Simulated events are corrected to account for effects of the trigger selection and differences between data and simulation in lepton and b-quark jet identification efficiency. The correction factors for leptons are obtained using a high-purity data sample of $Z \rightarrow \ell^+\ell^-$ decays, where ℓ is an electron or muon. To account for the difference between data and simulation in the performance of the b-tagging algorithm, we follow the method described in Ref. [26], which entails adding or removing a b tag on each jet in simulated events, based upon p_T- and η-dependent correction factors [26].

Table 1 provides the cross sections used for each of the SM backgrounds, which, multiplied by the integrated luminosity of 5.0 fb$^{-1}$ and selection efficiencies, give the expected number of background events. For t̄t, we use the measured cross section from Ref. [27]. The single top quark next-to-next-to-leading-order (NNLO) cross section is obtained from Refs. [28–30]. The W + jets and Z + jets cross sections are computed to NNLO using the Fully Exclusive W, Z Production (FEWZ) pQCD generator [31]. Finally, the cross section for multijets is obtained, at LO, from PYTHIA [12].

The uncertainties quoted in Table 1 reflect statistical and systematic sources, which are elaborated in Section 4. Although large, the estimated background is comparable to the predicted signal for a W$^\prime$ with a mass of 600 GeV/c2 and with $g_L = 0$ and $g_R = 2$ [9,32], given in the next-to-last row in Table 1. The numbers of observed events in data in the e + jets and $\mu +$ jets channels are presented in the last row in Table 1. For W$^\prime$ signal events, the total selection efficiency is roughly 2%, while for the main background, t̄t, it is roughly 0.2%.

4. Systematic uncertainties

The following sources of systematic uncertainty are evaluated for their effect on simulated signal and background yields: jet energy corrections, b-tagging corrections, lepton charge misidentification, lepton trigger and identification efficiencies, and the integrated luminosity measurement. In addition, the parameters used in generating simulated events have associated systematic uncertainties, as does the procedure to make the distribution of additional interaction vertices from pileup match simulation to data.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cross section [pb]</th>
<th>Number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e + jets</td>
<td>$\mu +$ jets</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>154 ± 17 [27]</td>
<td>734 ± 204</td>
</tr>
<tr>
<td>Single top quark</td>
<td>85 ± 40 ± 20</td>
<td>32 ± 16</td>
</tr>
<tr>
<td>W + jets</td>
<td>31 ± 144</td>
<td>64 ± 32</td>
</tr>
<tr>
<td>Z + jets</td>
<td>3048 ± 4 ± 6</td>
<td>8 ± 4</td>
</tr>
<tr>
<td>Multijets</td>
<td>6.7×10^5</td>
<td>5 ± 5</td>
</tr>
<tr>
<td>Total background</td>
<td>$843 ± 209$</td>
<td>$989 ± 279$</td>
</tr>
<tr>
<td>Signal ($M_{W^\prime} = 600$ GeV/c2, $g_L = 0$, $g_R = 2$)</td>
<td>18.2</td>
<td>723 ± 140</td>
</tr>
<tr>
<td>Data</td>
<td>726</td>
<td>904</td>
</tr>
</tbody>
</table>
Simulated samples are produced with a generic distribution describing additional interactions in the same bunch crossing at high instantaneous luminosities (event pileup). A reweighting procedure is applied to match the pileup conditions in the data. The uncertainty in the reweighting procedure has an effect of about 1% on the event yields for both simulated signal and background.

5. Limits on W’ production

We perform a counting experiment where the number of observed events (N_{obs}) is compared with the number of expected events from background (N_{exp}). From Table 1, we have $N_{\text{exp}} = 726$ and $N_{\text{exp}} = 843 \pm 209$ for the $e + \text{jets}$ channel, and $N_{\text{obs}} = 904$ and $N_{\text{obs}} = 989 \pm 279$ for the $\mu + \text{jets}$ channel. We observe no significant excess above the SM background expectation in the two channels.

From a comparison of the observed and estimated numbers of events, we calculate an upper limit on the cross section of W’ production as a function of mass. A 95% confidence level (CL) upper limit is calculated using the CLs technique [35,36]. Any theoretical uncertainty in the LO W’ cross section is not included. Systematic uncertainties in the luminosity, jet energy scale, b-tagging efficiency, pileup, and lepton ID efficiency are taken to be 100% correlated between signal and background. Systematic uncertainties due to PDFs and factorization scales are taken to be uncorrelated for signal and the leading tt background. All systematic uncertainties are assumed to follow log-normal distributions.

The 95% CL upper limit on the number of selected signal events is 581 for the combination of the $e + \text{jets}$ and $\mu + \text{jets}$ channels with W’ coupling constant values $g_L = 0$ and $g_R = 2$. Fig. 2 shows the corresponding 95% CL upper limit on the W’ production. For this W’ model, we exclude W’ masses below 840 GeV/c².

To provide comparison between two important theoretical benchmark points of the W’ model, we also calculate limits on the cross section for W’ masses of 600 and 800 GeV/c² and g_R values of 2 and $\sqrt{2}$, as shown in Table 2.

6. Search for W’ asymmetry

As an independent cross check, we attempt the reconstruction of the W’ mass and derive an asymmetry to check whether there is any indication of signal in the data, as suggested by Ref. [9]. We exploit the charge asymmetry in W’ production, a key feature of this theoretical model.

To reconstruct the W’, we first reconstruct two top quarks. Three jets in the event are used to reconstruct one top quark, with the jets being considered to match the decay chain $t \rightarrow W + b$, $W \rightarrow j + j$, where j is a jet resulting from the hadronic decay of the W boson. Out of the many three-jet combinations possible in each event, we choose the one in which a pair of jets gives an invariant mass closest to the W boson mass [37] and the three jets give an invariant mass closest to the top quark mass [37]. From the lepton, one jet, and E_T^{miss}, we reconstruct the second top quark, following the decay chain $t \rightarrow W + b$, $W \rightarrow \ell + v$. Again, out of the several combinations with the jets in each event, we choose the one giving an invariant mass closest to the top quark mass. Though the event selection requires at least one b-tagged jet, b tagging is not considered when choosing the jets used for top reconstruction. Next, the highest- p_T, non-b-tagged jet not used in the top reconstruction is labeled as the candidate d-quark jet.

Each of the two top candidates are combined in turn with the d-quark jet so that two W’ candidates are reconstructed for each selected event. The charge of the W’ candidate that has the lepton in its decay chain is determined by the charge of the lepton, while the other W’ candidate has the opposite charge. In a true W’ event, only the W’ candidate that matches the true W’ charge could possibly be correctly reconstructed, and thus, because of the charge asymmetry in W’ production, the W’ candidate is more likely to be correctly reconstructed than the W’ candidate. Fig. 3 shows the invariant mass distributions for both W’ candidates reconstructed from every selected event in data and the simulated background. Included with both distributions is the expected signal for a W’ boson with a mass of 600 GeV/c². The invariant mass distribution for the W’ candidates shows a high peak around the W’ mass, while the distribution for the W’ candidates has a lower, more rounded peak. The simulated W’ events provide this shape difference, since, for these events, W’ candidates cluster more around the W’ mass while W’ candidates, likely to be mis-reconstructed, create a broader distribution. A window of 200 GeV/c² width around the W’ mass contains, for W’ signal with a mass of 600 GeV/c², about 42% of W’ candidates compared with only about 34% of W’ candidates. The background components of both distributions look identical since the additional jet originates from initial- or final-state radiation and there is no preference in combining it with either top candidate. The data distributions agree within the uncertainties with the background model.

To illustrate the asymmetry of the W’ model, we calculate the difference in yields for the W’ and W’ invariant mass distributions. The result is shown in Fig. 4. The data are represented by black points, and blue X’s show the expected difference for a combination of background and a simulated W’ signal at a mass of 600 GeV/c². The shaded blue band represents the statistical uncertainty for the combined signal and background. The predicted signature of W’ events, as seen in Fig. 4, is a bump at the W’ mass.

<table>
<thead>
<tr>
<th>W’ mass</th>
<th>600 GeV/c²</th>
<th>800 GeV/c²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling g_R</td>
<td>$2\sqrt{2}$</td>
<td>$2\sqrt{2}$</td>
</tr>
<tr>
<td>Cross section [pb]</td>
<td>18.2, 6.3, 6.5, 2.1</td>
<td>8.3, 6.3, 6.9, 5.3</td>
</tr>
<tr>
<td>Acceptance (comb.)</td>
<td>1.8%, 2.2%, 2.1%, 2.8%</td>
<td>6.6, 5.0, 5.5, 4.3</td>
</tr>
</tbody>
</table>

To derive the upper limit on the W’ production cross section, we use a modified frequentist strategy with the CLs technique. The number of observed events in the data is compared with the expected yield from signal and background. For the $e + \text{jets}$ channel, we have $N_{\text{obs}} = 904$ and $N_{\text{exp}} = 989 \pm 279$, and for the $\mu + \text{jets}$ channel, we have $N_{\text{obs}} = 904$ and $N_{\text{exp}} = 989 \pm 279$. The 95% CL upper limits are calculated as $N_{\text{limit}} = 581$ for the combined $e + \text{jets}$ and $\mu + \text{jets}$ channels.

Fig. 2. The 95% CL expected and observed limits on LO W’ production for $g_L = 0$ and $g_R = 2$ as a function of the W’ boson mass for $e + \text{jets}$ and $\mu + \text{jets}$ channels combined.
and a dip at higher mass, due to the fact that the W'^- mass distribution is more tightly concentrated within a narrow peak compared with the broader distribution seen for W'^+. In contrast, the data are statistically consistent with a flat distribution.

7. Summary

A search has been performed by the CMS Collaboration for a W' boson via the process $d + g \rightarrow t + W'$, $W' \rightarrow t + d$. This model represents one possible explanation for the $t\bar{t}$ forward–backward asymmetry seen at the Tevatron. The data showed no significant deviation from the standard model prediction. A counting experiment set a 95% CL limit on the W' production cross section as a function of mass. This W' model with $g_L = 0$ and $g_R = 2$ has been excluded below a mass of 840 GeV/c^2 in the combined $e + \text{jets}$ and $\mu + \text{jets}$ channels. In addition, no statistically significant indication of the predicted W' mass distribution asymmetry has been observed in the data.

During the final stages of publication of this work, a related article has appeared [38], suggesting that interference effects were not properly taken into account in the theoretical model used in our analysis, with a possible result being the alteration of the limit we quote. The interference effects discussed in Ref. [38] arise mainly in diagrams with t-channel W' exchange, but these effects do not contribute significantly in the region of phase space chosen by our full selection.

Acknowledgements

We thank Matt Strassler, Simon Knappen, and Yue Zhao for the simulation and computation of the cross sections at 7 TeV for the W' model used in this analysis. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.
Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[19] A. Van Spilbeeck, University of Antwerp, Antwerp, Belgium

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Z. Tsamalaidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Athens, Athens, Greece

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA