Search for extra dimensions using diphoton events in 7 TeV proton–proton collisions with the ATLAS detector

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1016/j.physletb.2012.03.022
Publisher	Elsevier
Version	Final published version
Accessed	Wed Dec 12 21:09:42 EST 2018
Citable Link	http://hdl.handle.net/1721.1/92023
Terms of Use	Creative Commons Attribution
Detailed Terms	http://creativecommons.org/licenses/by/3.0/
Search for extra dimensions using diphoton events in 7 TeV proton–proton collisions with the ATLAS detector

ATLAS Collaboration*

1. Introduction

The enormous difference between the Planck scale and the electroweak scale is known as the hierarchy problem. A prominent class of new physics models addresses the hierarchy problem through the existence of extra spatial dimensions. In this Letter, we search for evidence of extra dimensions within the context of the models of Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1] and of Randall and Sundrum (RS) [2]. In these models, gravity can propagate in the higher-dimensional bulk, giving rise to a so-called Kaluza–Klein (KK) tower of massive spin-2 graviton excitations (KK gravitons, G_n). Due to their couplings to Standard Model (SM) particle–antiparticle pairs, KK gravitons can be investigated in proton–proton (pp) collisions at the Large Hadron Collider (LHC) via a variety of processes, including virtual graviton exchange as well as direct graviton production through gluon–gluon fusion or quark–antiquark annihilation.

The ADD model [1] postulates the existence of n flat additional spatial dimensions compactified with radius R, in which only gravity propagates. The fundamental Planck scale in the $(4+n)$-dimensional spacetime, M_{Pl}, is related to the apparent scale M_{Pl}^n by Gauss' law: $M_{Pl}^n = M_{Pl}^{4+n} R^n$, where $M_{Pl}^n = M_{Pl}/\sqrt{8\pi}$ is the reduced Planck scale. The mass splitting between subsequent KK states is of order $1/R$. In the ADD model, resolving the hierarchy problem requires typically small values of $1/R$, giving rise to an almost continuous spectrum of KK graviton states.

While processes involving direct graviton emission depend on M_D, effects involving virtual gravitons depend on the ultraviolet cutoff of the KK spectrum, denoted M_S. The effects of the extra dimensions are typically parametrized by $\eta_G = F/M_S^2$, where η_G describes the strength of gravity in the presence of the extra dimensions and F is a dimensionless parameter of order unity reflecting the dependence of virtual KK graviton exchange on the number of extra dimensions. Several theoretical formalisms exist in the literature, using different definitions of F and, consequently, of M_S:

$$F = \begin{cases} 1 & \text{(GRW) [3];} \\ \log\left(\frac{M_{Pl}^n}{\hat{s}}\right) & n = 2, \\ \frac{2 \sqrt{n}}{n-2} & n > 2 \end{cases} \text{(HLZ) [4];}$$

$$F = \pm \frac{2}{\pi} \text{ (Hewett) [5];}$$

where $\sqrt{\hat{s}}$ is the center-of-mass energy of the parton–parton collision. Effects due to ADD graviton exchange were first considered at HERA [6], LEP [7], the Tevatron [8], and the LHC [9,10]. Recent diphoton results from CMS are the most restrictive so far, setting limits on M_S in the range of 2.3–3.8 TeV [10].

The RS model [2] posits the existence of a fifth dimension with “warped” geometry, bounded by two $(3+1)$-dimensional branes, with the SM fields localized on the so-called TeV brane and gravity originating on the other, dubbed the Planck brane, but capable
of propagating in the bulk. Mass scales on the TeV brane, such as the Planck mass describing the observed strength of gravity, correspond to mass scales on the Planck brane as given by $M_{\text{Pl}} = M_{\text{Pl}} e^{-kr_c} r_c$, where k and r_c are the curvature scale and compactification radius of the extra dimension, respectively. The observed hierarchy of scales can therefore be naturally reproduced in this model, if $kr_c \approx 12$ [11]. KK gravitons in this model would have a mass splitting of order 1 TeV and would appear as new resonances. The phenomenology can be described in terms of the mass of the lightest KK graviton excitation (m_{c}) and the dimensionless coupling to the SM fields, κ / M_{Pl}. It is theoretically preferred [11] for κ / M_{Pl} to have a value in the range from 0.01 to 0.1. The most stringent experimental limits on RS gravitons are from the LHC. For $\kappa / M_{\text{Pl}} = 0.1$, ~ 1 fb$^{-1}$ ATLAS results from $G \to ee/\mu\mu$ exclude gravitons below 1.63 TeV [12], assuming leading order (LO) cross section predictions, and a recent 2.2 fb$^{-1}$ $G \to \gamma \gamma$ result from CMS excludes gravitons below 1.84 TeV [10], using next-to-leading order (NLO) cross section values. These results have surpassed the limits from searches at the Tevatron [13] and earlier searches at the LHC [14].

The diphoton final state provides a sensitive channel for this search due to the clean experimental signature, excellent diphoton mass resolution, and modest backgrounds, as well as a branching ratio for graviton decay to diphotons that is twice the value of that for graviton decay to any individual charged-lepton pair. In this Letter, we report on a search in the diphoton final state for evidence of extra dimensions, using a data sample corresponding to an integrated luminosity of 2.12 fb$^{-1}$ of $\sqrt{s} = 7$ TeV pp collisions, recorded during 2011 with the ATLAS detector at the LHC. The measurement of the diphoton invariant mass spectrum is interpreted in both the ADD and RS scenarios.

2. The ATLAS detector

The ATLAS detector [15] is a multipurpose particle physics instrument with a forward–backward symmetric cylindrical geometry and near 4\pi solid angle coverage.\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates (ρ, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by $\eta = -\ln \tan(\theta/2)$.} Closest to the beamline are tracking detectors to measure the trajectories of charged particles, including layers of silicon-based detectors as well as a transition radiation tracker using straw-tube technology. The tracker is surrounded by a thin solenoid that provides a 2 T magnetic field for momentum measurements. The solenoid is surrounded by a hermetic calorimeter system, which is particularly important for this analysis. A system of liquid-argon (LAr) sampling calorimeters is divided into a central barrel calorimeter and two endcap calorimeters, each housed in a separate cryostat. Fine-grained LAr electromagnetic (EM) calorimeters, segmented in three longitudinal layers, are used to precisely measure the energies of electrons, positrons and photons for $|\eta| < 3.2$. Most of the EM shower energy is collected in the second layer, which has a granularity of $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$. The first layer is segmented into eight strips per middle-layer cell in the η direction, extending over four middle-layer cells in ϕ, designed to separate photons from π^0 mesons. A presampler, covering $|\eta| < 1.81$, is used to correct for energy lost upstream of the calorimeter. The regions spanning $1.5 < |\eta| < 4.9$ are instrumented with LAr calorimetry also for hadronic measurements, while an iron-scintillator tile calorimeter provides hadronic coverage in the range $|\eta| < 1.7$. A muon spectrometer consisting of three superconducting toroidal magnet systems, tracking chambers, and detectors for triggering lies outside the calorimeter system.

3. Trigger and data selection

The analysis uses data collected between March and September 2011 during stable beam periods of 7 TeV pp collisions. Selected events had to satisfy a trigger requiring at least two photon candidates with transverse energy $E_T^\gamma > 20$ GeV and satisfying a set of requirements, referred to as the “loose” photon definition [16], which includes requirements on the leakage of energy into the hadronic calorimeter as well as on variables that require the transverse width of the shower, measured in the second EM calorimeter layer, to be consistent with the narrow width expected for an EM shower. The loose definition is designed to have high photon efficiency, albeit with reduced background rejection. The trigger was essentially fully efficient for high mass diphoton events passing the final selection requirements.

Events were required to have at least one primary collision vertex, with at least three reconstructed tracks. Selected events had to have at least two photon candidates, each with $E_T^\gamma > 25$ GeV and pseudorapidity $|\eta^\gamma| < 2.37$, with the exclusion of 1.37 $< |\eta^\gamma| < 1.52$, the transition region between the barrel and endcap calorimeters. As described in more detail in Ref. [16], photon candidates included those classified as unconverted photons, with no associated track, or photons which converted to electron–positron pairs, with one or two associated tracks. The two photons were required to satisfy several quality criteria and to lie outside detector regions where their energy was not measured in an optimal way. The two photon candidates each had to satisfy a set of stricter requirements, referred to as the “tight” photon definition [16], which included a more stringent selection on the shower width in the second EM layer and additional requirements on the energy distribution in the first EM calorimeter layer. The tight photon definition was designed to increase the purity of the photon selection sample by rejecting most of the remaining jet background, including jets with a leading neutral hadron (mostly π^0 mesons) that decay to a pair of collimated photons.

The isolation transverse energy E_T^{iso} for each photon was calculated [16] by summing over the cells of both the EM and hadronic calorimeters that surround the photon candidate within an angular cone of radius $\Delta R = \sqrt{(\eta - \eta^\gamma)^2 + (\phi - \phi^\gamma)^2} < 0.4$, after removing a central core that contains most of the energy of the photon. To reduce the jet background further, an isolation requirement was applied, requiring that each of the two leading photons satisfied $E_T^{\text{iso}} < 5$ GeV. An out-of-core energy correction was applied, to make E_T^{iso} essentially independent of E_T^γ. An ambient energy correction, based on the measurement of low transverse momentum jets [17], was also applied, on an event-by-event basis, to remove the contributions from the underlying event and from “pileup”, which results from the presence of multiple pp collisions within the same or nearby bunch crossings.

For events with more than two photon candidates passing all the selection requirements, the two photons with the highest E_T^γ values were considered. The diphoton invariant mass had to exceed 140 GeV. A total of 6846 events were selected.

4. Monte Carlo simulation studies

Monte Carlo (MC) simulations were performed to study the detector response for various possible signal models, as well as to perform some SM background studies. All MC events were simulated [18] with the ATLAS detector simulation based on GEANT4 [19] and using ATLAS parameter tunes [20], and were processed through the same reconstruction software chain as used
for the data. The MC events were reweighted to mimic the pileup conditions observed in the data.

SM diphoton production was simulated with PYTHIA[21] version 6.424 and MRST2007LOMOD[22] parton distribution functions (PDFs). The PYTHIA events were reweighted as a function of diphoton invariant mass to the differential cross section predicted by the NLO calculation of DIPHOX[23] version 1.3.2. The reweighting factor varied from \(\approx 1.6 \) for a diphoton mass of 140 GeV, decreasing smoothly to unity for large masses. For the DIPHOX calculation, the renormalization scale and the initial and final factorization scales of the model were all set to the diphoton mass. The various scales were varied by a factor of two both up and down, compared to this central value, to evaluate systematic uncertainties. The PDFs were chosen following the recommendations of the PDF4LHC working group[24], with MSTW2008 NLO PDFs[25] used for the NLO predictions, and CTEQ6.6[26] and MRST2007LOMOD[22] used for systematic comparisons.

SHERPA[27] version 1.2.3 was used with CTEQ6L[26] PDFs to simulate the various ADD scenarios for a variety of \(M_S \) values. Due to the interference between the SM and gravity-mediated contributions, it is necessary to simulate events according to the full differential cross section as a function of the diphoton mass. A generator-level cut was applied to restrict the signal simulation to diphoton masses above 200 GeV. The ADD MC samples were used to determine the signal acceptance (\(A \)) and selection efficiency (\(\epsilon \)). The acceptance, defined as the percentage of diphoton signal events with the two highest \(E_T \) photons passing the applied \(E_T^{\gamma\gamma} \) and \(\eta^\gamma \) cuts, varied somewhat for the various ADD implementations and fell from typical values of \(\approx 20\% \) for \(M_S = 1.5 \) TeV down to \(\approx 15\% \) for \(M_S = 3 \) TeV, due mostly to the variations in the \(\eta^\gamma \) distributions. The selection efficiency, for events within the detection acceptance, was found to be \(\approx 70\% \).

RS model MC signal samples were produced using the implementation of the RS model in PYTHIA[21] version 6.424, which is fully specified by providing the values of \(m_G \) and \(k/M_{Pl} \). MC signal samples were produced for a range of \(m_G \) and \(k/M_{Pl} \) values, using the MRST2007LOMOD[22] PDFs. The products of \(A \times \epsilon \) for the RS signal models were in the range (53–60\%), slowly rising with increasing graviton mass. The reconstructed shape of the graviton resonance was modeled by convolving the Breit–Wigner lineshape with a double-sided Crystal Ball (CB) function to describe the detector response. The natural width of the Breit–Wigner was fixed according to the expected theoretical value, which varies as the square of \(k/M_{Pl} \). The values of the width increase, for \(k/M_{Pl} = 0.1 \), from \(\approx 8 \) GeV up to \(\approx 30 \) GeV for \(m_G \) values from 800 GeV to 2200 GeV, respectively. The parameters of the CB function, which includes a Gaussian core to model the detector resolution matched to exponential functions on both sides to model the modest non-Gaussian tails, were determined by fitting to the reconstructed MC signals. The fitted values of \(\sigma \) of the Gaussian core approached a value of \(\approx 1\% \) for high \(m_G \) values, as expected given the current value of the constant term in the EM calorimeter energy resolution, and were found to be independent of \(k/M_{Pl} \). The EM energy resolution has been verified in data using \(Z \rightarrow ee \) decays[28], and MC used to describe the modest differences between the response to photons versus electrons. The fitted values of the CB parameters varied smoothly with \(m_G \). Fitting this mass dependence provided a signal parametrization that was used to describe signals with any values of \(m_G \) and \(k/M_{Pl} \).

5. Background evaluation

The largest background for this analysis is the irreducible background due to SM \(\gamma\gamma \) production. The shape of the diphoton invariant mass spectrum from this background was estimated using MC, reweighting the PYTHIA samples to the differential cross section predictions of DIPHOX.

Another significant background component is the reducible background that includes events in which one or both of the reconstructed photon candidates result from a different physics object being misidentified as a photon. This background is dominated by \(\gamma + \text{jet} \) (\(j \)) and \(jj \) events, with one or two jets faking photons, respectively. Backgrounds with electrons faking photons, such as the Drell–Yan production of electron–positron pairs as well as \(W/Z + \gamma \) and \(t\bar{t} \) processes, were verified using MC to be small after the event selection and were neglected. Several background-enriched control samples were defined in order to determine the shape of the reducible background using data-driven techniques. In all control samples, the two photon candidates were required to pass the same isolation cut as for the signal selection, since removing the isolation requirement was seen to modify the diphoton mass spectrum. The first control sample contained those events where one of the photon candidates passed the tight requirement applied for the signal selection. However, the other photon candidate was required to fail the tight photon identification definition, but to pass the loose requirement; the latter restriction was applied to avoid any trigger bias, as the trigger required two loose photons. This sample is enriched in \(\gamma + j \) events, where the photon passed the tight requirement and a jet passed the loose one, and also in \(jj \) events where both photon candidates were due to jets. A second control sample, dominated by \(jj \) events, was similarly defined, but both photon candidates were required to fail the tight photon identification while passing the loose definition.

The diphoton invariant mass distributions were compared for these control samples. To check for any kinematic bias, the control sample with one tight and one loose photon candidate was further divided, with the \(\gamma \)\(j \) (\(\gamma \)\(\gamma \)) subsample being defined as the case with the tight photon being the photon candidate with the highest (second highest) transverse energy. The diphoton invariant mass distributions of all three control subsamples were found to be consistent with each other, within statistical uncertainties. The sum of the control samples was used to provide the best estimate of the reducible background shape. Variations among the subsamples were taken into account as a source of systematic uncertainty in the reducible background prediction.

The data control samples have relatively few events in the high diphoton mass signal region. It was therefore necessary to extrapolate the reducible background shape to higher masses, which was done by fitting with a smooth function of the form \(f(x) = p_1 \times x^{p_2} + p_3 \log x \), where \(x = m_{\gamma\gamma} \) and \(p_1 \) are the fit parameters. This functional form has been used in previous ATLAS resonance searches[12,29], and describes well the shape of the control data samples.

The total background, calculated as the sum of the irreducible and reducible components, was normalized to the number of data events in a low mass control region with diphoton masses between 140 and 400 GeV, in which possible ADD and RS signals have been excluded by previous searches. The fraction of the total background in this region that is due to the irreducible background is defined as the purity of the sample. The purity (\(p \)) was determined by three complementary methods. The most precise measurement resulted from a method previously used in Refs.[30,31] that examines the \(E^{iso}_{\text{jet}} \) values of the two photon candidates. Templates for the \(E^{iso}_{\text{jet}} \) distributions of true photons and of fake photons from jets were both determined from the data. The shape for fake photons was found using a sample of photon candidates that failed at least one of a subset of several of the selection requirements used for the tight photon definition. The shape for photons was found from the tight photon sample, after subtracting the fake photon shape normalized to match the number of candidates with large
values (greater than 10 GeV) of E_{iso}. In addition, for jj events, due to the observed significant ($\approx 20\%$) correlation between the E_{T} values of the two photon candidates, a two-dimensional template was formed using events in which both photon candidates failed the tight identification. An extended maximum likelihood fit to the two-dimensional distribution formed from the E_{T} values of the two photon candidates was performed in order to extract the contributions from $\gamma\gamma$, $j\gamma$, jj, and jj events. The fit was performed using the photon and fake photon E_{T} templates, as well as the two-dimensional jj template. The resultant value of the purity in the low mass control region was $p = 71^{+5\%}_{-0\%}$. The uncertainty was determined by varying the subset of tight selection criteria failed by fake photon candidates, and then repeating the purity determination. Cross checks using either the DIPHOX prediction for the absolute normalization of the irreducible component, or fitting the shapes of the irreducible and reducible backgrounds to the data in the low mass control region, yielded consistent, but less precise results. The result from the isolation method was therefore used as the best estimate of the purity, and the total SM background prediction was set equal to the sum of the irreducible and reducible components, weighted appropriately by this purity value and normalized to data in the low mass control region.

6. Systematic uncertainties

Systematic uncertainties in the DIPHOX prediction for the shape of the irreducible background were obtained by varying the scales of the model and the PDFs, while keeping the overall normalization fixed in the low mass control region in which the total background prediction was normalized to the data. The resultant systematic uncertainties range from a few percent at low masses, up to $\approx 15\%$ for diphoton masses of ≈ 2 TeV. Systematic uncertainties in the reducible background shape were obtained by comparing the results of the extrapolation fit for the various control data subsamples, in each case maintaining the overall normalization to the data in the low mass control region. The resultant uncertainties increase from $\approx 5\%$ for low masses to $\approx 100\%$ at a mass of ≈ 2 TeV.

The systematic uncertainty on the shape of the total background was obtained by adding in quadrature the uncertainties on the shapes of the irreducible and reducible background components, weighted appropriately to account for the purity. In addition, there is a contribution, which is roughly constant with a value of $\approx 10\%$ for diphoton masses above 800 GeV, introduced by varying the purity value within its uncertainty. An additional overall uncertainty of $\approx 2\%$ was included due to the finite statistics of the data sample in the low mass control region. The total background systematic uncertainty starts at $\approx 2\%$ for $m_{\gamma\gamma} = 140$ GeV, rises to $\approx 15\%$ by 700 GeV and then increases slowly up to almost 20% for the highest $m_{\gamma\gamma}$ values, above 2 TeV.

Systematic uncertainties on the signal yields were evaluated separately for the ADD and RS models. Since the differences were small, for simplicity the higher value was taken and applied to both models. The systematic uncertainties considered for the signal yield include the 3.7\% uncertainty on the integrated luminosity [32], and a 1\% uncertainty to account for the limited signal MC statistics. A value of 1\% for the uncertainty on the bunch crossing identification (BCID) efficiency accounts for the ability of the Level 1 trigger hardware to pick the correct BCID when signal pulse saturation occurs in the trigger digitization. In addition, a value of 2\% was applied for the uncertainty on the efficiency of the diphoton trigger. An uncertainty of 2.5\% was applied due to the influence of pileup on the signal efficiency. Finally, a value of 4.3\% was taken to account for the uncertainty in the selection and identification of the pair of photons, including uncertainties due to the photon isolation cut, the description of the detector material, the tight photon identification requirements, and extrapolation to the high photon E_{T} values typical of the signal models. Uncertainties due to the current knowledge of the EM energy scale and resolution were verified to have a negligible impact. Adding all effects in quadrature, the total systematic uncertainty on the signal yields was 6.7\%.

Uncertainties in the theoretical signal cross sections due to PDFs and due to the NLO approximation were considered. The uncertainties due to PDFs range from ≈ 10–15% for ADD models and from ≈ 5–10% for RS models. The authors of Refs. [33,34] have privately updated their calculations of the NLO signal cross sections for 14 TeV, and provided k-factors to the LHC experiments to scale from LO to NLO cross section values for the case of 7 TeV pp collisions. The NLO k-factor values, evaluated in our case for $|p_T| < 2.5$, have some modest dependence on the diphoton mass as well as on m_T for the ADD model, and on the k/β_{PDF} value for the RS model. However, the variations are within the theoretical uncertainty. For simplicity, therefore, constant values of 1.70 and 1.75 were assumed for the ADD and RS models, respectively, and an uncertainty in the k-factor value of ± 0.1 was assigned to account for the variations.

7. Results and interpretation

Fig. 1 shows the observed invariant mass distribution of diphoton events, with the predicted SM background superimposed as well as ADD and RS signals for certain choices of the model parameters. The reducible background component is shown separately, in addition to the total background expectation, which sums the reducible and irreducible contributions. The shaded bands around each contribution indicate the corresponding uncertainty. The bottom plot of Fig. 1 shows the statistical significance, measured in standard deviations and based on Poisson distributions, of the difference between the data and the expected background in each bin. The significance was calculated and displayed as detailed in Ref. [35], and plotted as positive (negative) where there was an excess (deficit) in the data in a given bin. Table 1 lists, in bins of diphoton mass, the expected numbers of events for the reducible and irreducible background components, as well as for the total background, and also the numbers of observed data events. Both Fig. 1 and Table 1 demonstrate that there is agreement between the observed mass distribution and the expectation from the SM backgrounds over the entire diphoton mass range; no evidence is seen for either resonant or non-resonant deviations which would indicate the presence of a signal due to new physics. An analysis using the BUMPHUNTER [36] tool found that the probability, given the background-only hypothesis, of observing discrepancies at least as large as observed in the data was 0.28, indicating quantitatively the good agreement between the data and the expected SM background.

Given the absence of evidence for a signal, 95\% CL upper limits were determined on the ADD and RS signal cross sections, using a Bayesian approach [37] with a flat prior on the signal cross section. The systematic uncertainties were incorporated as Gaussian-distributed nuisance parameters and integrated over.

To set limits on the ADD model, the number of observed events with diphoton invariant mass in a high mass signal region was compared with the expected total SM background. To optimise the expected limit, the ADD signal search region was chosen as $m_{\gamma\gamma} > 1.1$ TeV. There are 2 observed events in this signal region, with a background expectation of 1.33 ± 0.26 events,
where the uncertainty includes both statistical and systematic errors. The observed (expected) 95% CL upper limit is 2.73 (0.01) fb for the product of the cross section times acceptance as a function of mass was propagated into the expectation. The theory uncertainties were not included in the limit calculation, but are indicated by showing the theory prediction as a band with a width equal to the combined theory uncertainty when plotting the results. The resultant limits are summarized in Table 3. Using a constant k-factor value of 1.75, the 95% CL lower limits from the diphoton channel are $m_{\gamma\gamma} > 0.79$ (1.85) TeV for k/\overline{M}_{P} = 0.01 (0.1).

The RS model results can be combined with the previously published ATLAS results [12] from the dilepton final state, where, assuming LO cross sections and $k/\overline{M}_{P} = 0.1$, RS gravitons with masses below 1.51 (1.45) TeV were excluded at 95% CL using data samples of 1.08 (1.21) fb$^{-1}$ to search for $G \rightarrow ee$ ($G \rightarrow \mu\mu$). To ensure their statistical independence, the selection cuts of the diphoton analysis included a veto of any events which were also selected by the 1.08 fb$^{-1}$ $G \rightarrow ee$ analysis. In performing the combination, correlations were considered between the systematic uncertainties in the $\gamma\gamma$ and ee channels. In the ee analysis [12], the background prediction was normalized such that the expected and observed numbers of events in the region of the Z peak agreed, eliminating the dependence of the ee result on the measured integrated luminosity. Therefore, the $\gamma\gamma$ and ee signal predictions were treated as uncorrelated, since there should be no correlation in the luminosity and efficiency uncertainties. The systematic uncertainty on the QCD dijet background was treated as being correlated; however, this background was quite small so the effect was minor. The PDF and scale uncertainties were treated as correlated across all three channels, and affect the irreducible background in the $\gamma\gamma$ channel as well as the Drell–Yan background in the $ee/\mu\mu$ channels. The left plot of Fig. 2 shows the combined 95% CL upper limit on the product of the graviton production cross section times the branching ratio for $G \rightarrow \gamma\gamma/ee/\mu\mu$, obtained using the same k-factor value of 1.75 for all three channels. As summarized in Table 3, the combined 95% CL lower limit is $m_{\gamma\gamma} > 0.80$ (1.95) TeV for $k/\overline{M}_{P} = 0.01 (0.1)$. As shown in the right plot of Fig. 2, the results can be translated into a 95% CL exclusion in the plane of k/\overline{M}_{P} versus graviton mass.

Table 1

<table>
<thead>
<tr>
<th>Mass range (GeV)</th>
<th>Background expectation</th>
<th>Observed events</th>
</tr>
</thead>
<tbody>
<tr>
<td>[140, 400)</td>
<td>4738 ± 180</td>
<td>1935 ± 97</td>
</tr>
<tr>
<td>[400, 500)</td>
<td>90.0 ± 8.5</td>
<td>19.9 ± 1.8</td>
</tr>
<tr>
<td>[500, 600)</td>
<td>31.7 ± 4.0</td>
<td>5.8 ± 0.8</td>
</tr>
<tr>
<td>[600, 700)</td>
<td>13.7 ± 2.3</td>
<td>2.0 ± 0.4</td>
</tr>
<tr>
<td>[700, 800)</td>
<td>6.2 ± 1.2</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>[800, 900)</td>
<td>3.1 ± 0.4</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>[900, 1000)</td>
<td>1.6 ± 0.2</td>
<td>0.14 ± 0.05</td>
</tr>
<tr>
<td>[1000, 1100)</td>
<td>1.0 ± 0.2</td>
<td>0.07 ± 0.03</td>
</tr>
<tr>
<td>[1100, 1200)</td>
<td>0.50 ± 0.09</td>
<td>0.03 ± 0.02</td>
</tr>
<tr>
<td>[1200, 1300)</td>
<td>0.29 ± 0.07</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>[1300, 1400)</td>
<td>0.14 ± 0.04</td>
<td>0.010 ± 0.005</td>
</tr>
<tr>
<td>[1400, 1500)</td>
<td>0.13 ± 0.04</td>
<td>0.005 ± 0.003</td>
</tr>
<tr>
<td>> 1500</td>
<td>0.18 ± 0.09</td>
<td>0.009 ± 0.006</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>k-Factor value</th>
<th>Channel(s) used</th>
<th>95% CL limit [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$G \rightarrow \gamma\gamma$</td>
<td>0.74 1.26 1.41 1.79</td>
</tr>
<tr>
<td></td>
<td>$G \rightarrow \gamma\gamma/ee/\mu\mu$</td>
<td>0.76 1.32 1.47 1.90</td>
</tr>
<tr>
<td>1.75</td>
<td>$G \rightarrow \gamma\gamma$</td>
<td>0.79 1.30 1.45 1.85</td>
</tr>
<tr>
<td></td>
<td>$G \rightarrow \gamma\gamma/ee/\mu\mu$</td>
<td>0.80 1.37 1.55 1.95</td>
</tr>
</tbody>
</table>

Table 3

95% CL lower limits on the mass (GeV) of the lightest RS graviton, for various values of k/\overline{M}_{P}. The results are shown for the diphoton channel alone and for the combination of the diphoton and dilepton channels of Ref. [12], using both LO (k-factor = 1) and NLO (k-factor = 1.75) theory cross section calculations.

![Fig. 1. The observed invariant mass distribution of diphoton events, superimposed with the predicted SM background and expected signals for ADD and RS models with certain choices of parameters. The bin width is constant in log($m_{\gamma\gamma}$). The bin-by-bin significance of the difference between data and background is shown in the lower panel.](image-url)
8. Summary

Using a dataset corresponding to 2.12 fb$^{-1}$, an analysis of the diphoton final state was used to set 95% CL lower limits of between 2.27 and 3.53 TeV on the parameter k of the ADD large extra dimension scenario, depending on the number of extra dimensions and the theoretical formalism used. The diphoton results also exclude at 95% CL RS graviton masses below 0.79 (1.95) TeV for the dimensionless RS coupling $k/M_{Pl} = 0.01 (0.1)$. Combining with the previous ATLAS dilepton analyses further tightens these limits to exclude at 95% CL RS graviton masses below 0.80 (1.95) TeV for $k/M_{Pl} = 0.01 (0.1)$.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STSC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DFN, DNSSC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMWF, DFG, MPG and AvH Foundation, Germany; GSKT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERVYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MZVT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

1 University at Albany, Albany NY, United States
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupin University, Kayseri; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
6 Department of Physics, University of Arizona, Tucson AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Bogazici University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States
22 Department of Physics, Brandeis University, Waltham MA, United States
23 (a) Universidad Federale do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFJS), Sao Joao del Rei, Brazil
24 (a) Institute of Physics, Universidad de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States
26 National Institute of Physics and Nuclear Engineering, Bucharest; (a) University Politehnica Bucharest, Bucharest; (b) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Institute of Modern Physics, University of Science and Technology of China, Anhui, China; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
34 Laboratory of Physics, Física Corpuscular, Université Libre de Bruxelles and INRS/IN2P3, Brussels, Belgium
35 Nevis Laboratory, Columbia University, Irving NY, United States
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 INFN Gruppo Collegato di Cosenza; (a) Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende, Italy
38 ACH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States
41 Physics Department, University of Texas at Dallas, Richardson TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
48 INFN Laboratori Nazionali di Frascati, Frascati, Italy
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 INFN Laboratori Nazionali di Frascati, Frascati, Italy
51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
52 Physics Department, University of Geneva, Geneva, Switzerland
53 Department of Physics, University of Helsinki, Helsinki, Finland
54 Institute for Theoretical Physics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
55 INFN Laboratori Nazionali di Frascati, Frascati, Italy
56 INFN Laboratori Nazionali di Frascati, Frascati, Italy
57 Laboratory for Particle Physics and Cosmology, Harvard MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyota University, Kyota, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 INFN Sezione di Lecce; Dipartimento di Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, IPMANC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund, Sweden
80 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States
89 INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
97 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Nijmegen, Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb IL, United States
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York NY, United States
108 Department of Physics, Oklahoma State University, Stillwater OK, United States
109 Ohio State University, Columbus OH, United States
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States
112 Department of Physics, Oklahoma State University, Stillwater OK, United States
113 Palacký University, RCPKM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States
115 LAP, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 INFN Sezione di Pavia; Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States
124 Laboratorio de Instrumentación e Física Experimental de Partículas - LIP, Lisboa, Portugal
125 Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
128 Czech Technical University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
131 Physics Department, University of Regina, Regina SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 INFN Sezione di Roma I; Dipartimento di Fisica, Università La Sapienza, Roma, Italy
134 INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma, Rome, Italy
135 INFN Sezione di Roma Tre; Dipartimento di Fisica, Università Roma Tre, Roma, Italy

135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco

136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States

138 Department of Physics, University of Washington, Seattle WA, United States

139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

140 Department of Physics, Shinshu University, Nagano, Japan

141 Fachbereich Physik, Universität Siegen, Siegen, Germany

142 Department of Physics, Simon Fraser University, Burnaby BC, Canada

143 SLAC National Accelerator Laboratory, Stanford CA, United States

144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

147 Physics Department, Royal Institute of Technology, Stockholm, Sweden

148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States

149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

150 School of Physics, University of Sydney, Sydney, Australia

151 Institute of Physics, Academia Sinica, Taipei, Taiwan

152 Department of Physics, Technion; Israel Inst. of Technology, Haifa, Israel

153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

158 Department of Physics, University of Toronto, Toronto ON, Canada

159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

160 Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8517, Japan

161 Science and Technology Center, Tufts University, Medford MA, United States

162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States

164 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

165 Department of Physics, University of Illinois, Urbana IL, United States

166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica y Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

168 Department of Physics, University of British Columbia, Vancouver BC, Canada

169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

170 Waseda University, Tokyo, Japan

171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

172 Department of Physics, University of Wisconsin, Madison WI, United States

173 Fachhochschule für Wissenschaft und Kunst, Darmstadt, Germany

174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

175 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

176 Department of Physics, Yale University, New Haven CT, United States

177 Yerevan Physics Institute, Yerevan, Armenia

178 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

8 Also at Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal.
8 Also at Facultade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
8 Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
8 Also at TRIUMF, Vancouver BC, Canada.
8 Also at Department of Physics, California State University, Fresno CA, United States.
8 Also at Novosibirsk State University, Novosibirsk, Russia.
8 Also at Fermilab, Batavia IL, United States.
8 Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
8 Also at Università di Napoli Parthenope, Napoli, Italy.
8 Also at Institute of Particle Physics (IPP), Canada.
8 Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
8 Also at Louisiana Tech University, Ruston LA, United States.
8 Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
8 Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.
8 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
8 Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
8 Also at Manhattan College, New York NY, United States.
8 Also at Department of Physics, Shandong University, Shandong, China.
8 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
8 Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
8 Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
8 Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
8 Also at Section de Physique, Université de Genève, Geneva, Switzerland.
8 Also at Departamento de Física, Universidade de Minho, Braga, Portugal.
8 Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States.
8 Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
8 Also at California Institute of Technology, Pasadena CA, United States.
8 Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
8 Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
ad Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
ae Also at Department of Physics, Oxford University, Oxford, United Kingdom.
af Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
ag Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States.
ah Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
* Deceased.