Search for first generation scalar leptoquarks in pp collisions at \(s = 7 \) TeV with the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

1. Introduction

Similarities between leptons and quarks in the Standard Model (SM) suggest that they might be a part of some symmetry at energy scales above the electroweak symmetry breaking scale. In this type of symmetry, transitions between leptons and quarks, mediated by a new type of gauge boson, a leptoquark (LQ), may occur. LQs are putative color-triplet bosons with spin 0 or 1, and fractional electric charge [1]. They are predicted in many extensions of the SM, such as Grand Unification models, and possess both quark and lepton quantum numbers. The Yukawa coupling λ_{LQ}^{-1-1} of a leptoquark to a lepton and a quark, and the branching ratio (β) to a charged lepton, are model dependent. In pp collisions, if λ_{LQ}^{-1-1} is of the order of the electroweak coupling strength, leptoquarks are predominantly produced in pairs via the strong interaction. At the LHC, the pair production cross section is dominated by gluon fusion for LQ masses $m_{LQ} \lesssim 1$ TeV, whereas at higher masses it is dominated by quark–antiquark annihilation. Under these assumptions, the production rate for scalar LQs depends only on the known QCD coupling constant and the unknown LQ mass, and has been calculated at up to next-to-leading order. It is usually assumed that leptoquarks only couple to one generation of SM isospin multiplet to accommodate experimental constraints on flavor-changing neutral currents, and lepton and baryon number violation [2]. Consequently, they are classified as first, second, or third generation according to the fermion generation to which they couple [3]. Lower mass limits on the first generation LQs already exist from searches of LQ produced in pairs at the LHC [4,5], Tevatron [6] and LEP [7]. Limits on single LQ production come from HERA [8] and other experiments [9].

In this Letter we present updated results on a search for the pair production of first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV. The search is performed with a dataset corresponding to an integrated luminosity of 1.03 ± 0.035 fb$^{-1}$ [10] of data collected by the ATLAS detector at the LHC from March 2011 to July 2011. We search for leptoquarks in two different final states. In the first one both LQs decay into an electron and a quark, while in the second final state one of the LQs decays into an electron and a quark and the other LQ decays into an electron–neutrino and a quark. These result in two different experimental signatures. One such signature is the production of two electrons and two jets and the other one comprises one electron, two jets, and missing transverse momentum (the magnitude of which is denoted as E_T^{miss}). The results from the two final states are combined and presented in the m_{LQ} versus β plane, where β is the branching ratio for a single LQ to decay into a charged lepton and a quark.

2. The ATLAS detector

The ATLAS detector [11] is a general-purpose particle detector with cylindrical geometry, which consists of several subdetectors...
surrounding the interaction point, and providing nearly 4π coverage in solid angle. The location of the interaction point and momenta of charged particles are determined by the multi-layer silicon pixel and strip detectors covering |η| < 2.5 in pseudorapidity η, and a transition radiation tracker extending to |η| < 2.0, which are inside a superconducting solenoid producing a field of 2 T. The tracking system is surrounded by a high-granularity liquid-argon (LAr) sampling electromagnetic calorimeter with coverage up to |η| < 3.2. An iron-scintillator tile hadronic calorimeter provides coverage in the range |η| < 1.7. In the end-cap and forward regions LAr calorimeters provide both electromagnetic and hadronic measurements and cover the region 1.5 < |η| < 4.9. The muon spectrometer, consisting of precision tracking detectors and superconducting toroids, is located outside the calorimeters.

We perform the search in the data sample selected by a three-level trigger requiring at least one high transverse energy (E_{T}) electron. The trigger is fully efficient for electrons with E_{T} > 30 GeV, as measured in an inclusive Z → ee control sample [12].

3. Simulated samples

Samples of Monte Carlo (MC) events are used to devise selection criteria and validate background predictions. Background and signal samples are processed through the full ATLAS detector simulation based on GEANT4 [13], followed by the same reconstruction algorithms as used for collision data. The effects from in-time and out-of-time proton–proton collisions are included in the MC simulation. In the simulated samples, an event weight is applied to the average number of additional proton–proton collisions occurring in the same bunch crossing (event pile-up), to ensure that the number of interactions per bunch crossing, amounting to an average of 6, is well modeled.

The dominant backgrounds to the leptoquark signal include W and Z boson production in association with one or more jets, single and pair production of top quarks, QCD multi-jet (MJ) and diboson processes. The ALPGEN [14] generator is used for the simulation of the W, Z boson production in association with n partons. This program is interfaced to HERWIG [15] and JIMMY [16] to model parton showers and multiple parton interactions, respectively. The MLM [14] jet-parton matching scheme is used to form inclusive W/Z+jets MC samples. MC@NLO [17] is used to estimate single and pair production of top quarks. Diboson events are generated using HERWIG, and scaled to next-to-leading (NLO) cross section predictions [17,18].

4. Object identification

This search is based on selecting events with a high E_{T} electron, two high p_{T} jets, and an additional electron or large E_{T}^{miss}. Electron candidates are reconstructed as energy deposits in the electromagnetic calorimeter. Electrons are required to have a shower profile consistent with that expected for this particle, and to have a track pointing to the energy deposit in the calorimeter. The pattern of the energy deposits on the first layer of the EM calorimeter is used to reject hadrons, while contamination from photon conversions is reduced by requiring a hit in the first layer of the pixel detector [22]. In addition to these criteria, we require electrons to have a transverse energy E_{T} > 30 GeV and fall within a well instrumented region of the detector. Further rejection against hadrons is achieved by requiring the electron candidates to be isolated from additional energy deposits in the calorimeter by requiring that E_{T}^{miss}/E_{T} < 0.1, where E_{T}^{miss} is the transverse energy in a cone of radius ΔR = \sqrt{(Δη)^2 + (Δφ)^2} = 0.2 centered on the electron track, excluding the electron contribution, and corrected for the energy from event pile-up and the electron energy leakage inside the cone.

Jets are defined as localized energy deposits in the calorimeter and are reconstructed using the anti-k_{t} algorithm [23] with a distance parameter of 0.4 and by performing a four-vector sum over calorimeter clusters. Reconstructed jets are corrected for the non-compensating calorimeter response, upstream material and other effects by using p_{T}- and η-dependent correction factors derived from MC and validated with test-beam and collision data [24]. We further require that jets satisfy E_{T} > 30 GeV, |η| < 2.8 and are separated from electrons passing the above selection within ΔR > 0.4. Selected jets must also pass quality requirements to reject jets arising from electronic noise bursts, cosmic rays and beam background, originating mainly from beam-gas events and beam-halo events [25].

The presence of neutrinos is inferred from the missing transverse momentum \vec{p}_{T}^{miss} (and its magnitude E_{T}^{miss}) [26]. \vec{p}_{T}^{miss} is defined as the negative vector sum of the transverse momenta of reconstructed electrons, muons and jets, as well as calorimeter clusters not associated to reconstructed objects.

Corrections are made to the simulated samples to ensure a good description of the energy resolution and the trigger and reconstruction efficiencies. These are determined in control data samples and applied to both simulated background and signal samples. These corrections change the total expected yields by less than 2%.

5. Event selection

We define event selections to create samples with high signal and background acceptance. Events are selected to be consistent with the LQ → eeeq̄qq̄ decays. In the eejj topology we require two electrons and at least two jets as defined in Section 4 and an invariant mass of the electron pair m_{ee} > 40 GeV. In the evjj topology, one electron, at least two jets and E_{T}^{miss} > 30 GeV are required, together with a requirement on the transverse mass of the electron and the \vec{p}_{T}^{miss}, m_{T} = \sqrt{2p_{T}E_{T}^{miss}(1 - \cos(\Delta\phi))} > 40 GeV, where Δφ is the angle between the electron p_{T} and \vec{p}_{T}^{miss}. In addition, we require that Δφ(\vec{p}_{T}, \vec{p}_{T}^{miss}) > 4.5 × (1 – E_{T}^{miss}/45 GeV) in the evjj channel for events with E_{T}^{miss} < 45 GeV to reduce residual contamination from MJ events. Events with additional identified electrons as defined in Section 4 or muons with p_{T} > 30 GeV and |η| < 2.4 are rejected.

After all the selection criteria are applied the signal acceptance is of 70% for a LQ signal of m_{LQ} = 600 GeV for both channels, but the sample is still dominated by background events.

6. Background determination

The MJ background estimate is derived directly from data, whereas MC samples are used to predict the other backgrounds. We verify the shape of the V + jets (V = W, Z) and top quark background prediction using control regions, which are defined to enhance either the V + jets or the top quark production contribution, while keeping a negligible LQ signal contamination. These control regions are also used to derive the final normalization of the V + jets and top quark backgrounds.

The V + jets and top quark control regions are defined by applying additional selection criteria on m_{T} and m_{T} to the selected sample. The remaining signal contamination is reduced by applying an upper threshold to the summed transverse momentum in the event, S_{T}, defined as the scalar sum of the p_{T} of the two
leading jets and the transverse energy of the two electrons in the eejj channel. In the S_T definition in the $e\nu jj$ channel, the second electron E_T is substituted by the E_{miss}^T.

In the eejj topology we define two control regions (i) $Z +$ jets: formed by events with at least two jets and in which the two electrons are required to have an invariant mass within a Z mass window $81 < m_{ee} < 101$ GeV, and (ii) $t\bar{t}$: events with at least two jets and exactly one electron and one muon [27], defined as in Section 4. In the $e\nu jj$ topology we define three control regions (iii) $W + 2$ jets: events with exactly two jets, an electron and E_{miss}^T such that the transverse mass of the electron and the E_{miss}^T is in the region of the W Jacobian peak, $40 < m_T < 120$ GeV, and an $S_T < 225$ GeV requirement to limit the presence of signal events, (iv) $W + 3$ jets: as in (iii) but with three or more jets, and (v) $t\bar{t}$: events with at least 4 jets, where the thresholds on the first and second jets are raised to 50 GeV and 40 GeV, respectively.

To estimate the MJ background, we perform fits to the m_{ee} distribution in the eejj channel, and to the E_{miss}^T distribution in the $e\nu jj$ channel. In these fits, the relative fraction of the MJ background is a free parameter. Templates for the MJ background distributions are derived from MJ enhanced samples, which are formed using electron candidates passing relaxed selection requirements but failing the nominal electron identification criteria described in Section 4. The MJ enhanced samples are corrected to remove the residual contamination from real electrons. In the eejj channel, the fits are applied to the sample selected following the criteria of Section 5, as well as to control regions (i) and (ii), and the $W +$ jets background is estimated together with the MJ background. In the $e\nu jj$ channel, the fits are applied to the selected sample as well as to control regions (iii)–(v).

We observe 5615 data events in the eejj channel and 76855 data events in the $e\nu jj$ channel, with SM expectations of 5600 ± 1000 and 74000 ± 11000, respectively. For $m_{LQ} = 600$ GeV, we expect 7.5 ± 0.5 signal events in the eejj channel and 4.5 ± 0.2 signal events in the $e\nu jj$ channel. The aforementioned uncertainties fully account for (the dominant) systematic and statistical uncertainties.

7. Likelihood analysis

We use a likelihood ratio method to separate signal and SM background. The likelihoods are constructed separately for background (L_B) and signal (L_S) hypotheses from a set of discriminating variables as follows: $L_B = \prod b_i(x_i)$, $L_S = \prod s_i(x_i)$, where b_i, s_i are the probabilities of the i-th input variable from the normalized
summed background and signal distributions respectively, and x_j is the value of that variable for the j-th event in a given sample. Separate L_S distributions are created for several signal mass points, allowing mass-dependent optimization. Using the aforementioned quantities, a likelihood ratio is defined as $LLR = \log \left(\frac{L_S}{L_B} \right)$ and is used as the final variable to determine whether or not there is a LQ signal present in our data.

The following discriminating variables, selected to give the best separation between signal and background, are used. For the $eejj$ channel, we use m_{ee}, $S_T = E_{T}^{e1} + E_{T}^{e2} + p_{T}^{jet1} + p_{T}^{jet2}$ and the average invariant LQ mass \bar{m}_{LQ}. For the $e\nu jj$ topology, we use $m_T(e, E_{T}^{mis})$, S_T, the transverse LQ mass $m_{LQ}^{T}(jet, E_{T}^{mis})$ and the invariant LQ mass $m_{LQ}(e, jet)$. To obtain the LQ masses, we calculate the invariant mass of the electron-jet system and the transverse mass of the E_{T}^{mis}-jet system. Since the LQs are produced in pairs, there are two possible mass combinations for the electron-jet and E_{T}^{mis}-jet pairs, and the combination giving the smallest mass difference is used. In the $eejj$ channel, two possible electron-jet combinations arise from this procedure, and we take their average \bar{m}_{LQ} for the analysis. The discriminating variables are shown in Figs. 1 and 2 for the $eejj$ and the $e\nu jj$ channels, respectively.

8. Systematic uncertainties

Systematic uncertainties affect both background normalizations and shapes of the input distributions into the LLR. We consider systematic uncertainties from a variety of sources. These are described as follows.

The jet energy scale (JES) and resolution (JER) uncertainties are considered independently, and applied by varying the JES (JER) within its uncertainty of 4% to 6.5% (14%) depending on the jet p_T and η [28,29] for all simulated events. These variations are also propagated to the E_{T}^{mis} in the $e\nu jj$ channel. The resulting uncertainties for the $m_{LQ} = 600$ GeV signal and background are 5% (8%) and 11% for the $eejj$ ($e\nu jj$) final state.

Systematic uncertainties on the electron energy scale (1.6%) and resolution (0.6%), and on the electron trigger, reconstruction and identification efficiencies are derived by varying the selection criteria defining the Drell–Yan control sample used for the various measurements [12]. In addition, a 1% uncertainty is included to account for the efficiency of the isolation requirement. They lead to total signal and background yield uncertainties of 8% and 5% (3.5%), respectively, for the $eejj$ ($e\nu jj$) channel and for a signal of mass $m_{LQ} = 600$ GeV.

Fig. 2. Data and SM background comparisons of the input LLR variables for the $e\nu jj$ channel. (a) Transverse mass of the electron and the E_{T}^{mis} in the event, (b) S_T, (c) LQ mass, and (d) LQ transverse masses. The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for $\beta = 0.5$. The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.
The systematic uncertainty for the production model of $V + \text{jets}$ is taken to be the largest difference between the nominal data-driven prediction using ALPGEN and that obtained by using SHERPA [30], giving an uncertainty of 1.5% and 3% for the eejj and the evjj channels, respectively.

The systematic uncertainty for the tt production model is evaluated by comparing the yields between events generated with MC@NLO and those generated with various alternate samples. These include samples generated with POWHEG [31], a different top mass (170 GeV and 175 GeV instead of the nominal value of 172.5 GeV), and a different amount of initial and final state-radiation (ISR/FSR). The result is an uncertainty in the tt yield of 10% and 15% for the single electron and dielectron analyses, respectively.

Systematic uncertainties are determined for the MJ backgrounds by comparing results from alternative normalizations to those from the methods described earlier. The largest variation is taken, resulting in an uncertainty of 20% and 28% in the MJ normalization for the evjj and the eejj channels, respectively. An uncertainty of 3.7% [10] on the integrated luminosity is applied to both diboson and single top background yields, as well as to expected signal yields.

Finally, further uncertainties on the simulated background contributions originate from finite statistics in the MC samples used.
The obtained cross section limits are combined, and reinterpreted as limits in the plane as shown in Fig. 5. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

Acknowledgements

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNRS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; IRFU, MINERVA, Gif, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRCES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KitGridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

P. Frampton, T. Kephart, Phys. Rev. D 42 (1990) 3892;
E. Witten, Nucl. Phys. B 258 (1985) 75;
w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

y Also at California Institute of Technology, Pasadena, CA, United States.

z Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

aa Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.

ab Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

ac Also at Department of Physics, Oxford University, Oxford, United Kingdom.

ad Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

ae Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

af Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.

ag Also at Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

* Deceased.