Search for the Higgs boson in the $H \to WW \gamma \nu\nu$ decay channel at $s = 7$ TeV with the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.physletb.2012.10.066</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Apr 04 18:42:30 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/92045</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Search for the Higgs boson in the $H \rightarrow WW \rightarrow \ell\nu jj$ decay channel at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

1. Introduction

In the Standard Model (SM), a scalar field with a non-zero vacuum expectation value breaks the electroweak symmetry, gives masses to the W/Z bosons and fermions [1–6], and manifests itself directly as a particle, the Higgs boson [2,3,5]. A primary goal of the Large Hadron Collider (LHC) is to test the SM mechanism of electroweak symmetry breaking by searching for Higgs boson production in high-energy proton–proton collisions. At LHC energies, the Higgs boson is predominantly produced via gluon fusion ($gg \rightarrow H$) and via weak boson fusion ($qq \rightarrow qqH$).

Results of Higgs boson searches in various channels using data up to an integrated luminosity of approximately 5 fb$^{-1}$ have recently been reported by both the ATLAS and CMS Collaborations [7,8]. The ATLAS analysis excludes a Higgs boson with mass in the ranges 112.9–115.5 GeV, 131–238 GeV and 251–466 GeV while the CMS analysis excludes a Higgs boson with mass in the range 300 GeV to 600 GeV. The best sensitivity is reached for $m_H = 400$ GeV, where the observed (expected) 95% confidence level upper bound on the cross section for $H \rightarrow WW$ production in association with zero or one jet is 2.2 pb (1.9 pb), corresponding to 1.9 (1.6) times the Standard Model prediction.

For $m_H \gtrsim 135$ GeV, the dominant decay mode of the Higgs boson is $H \rightarrow WW^{(*)}$. For $m_H \gtrsim 200$ GeV, the $H \rightarrow WW \rightarrow \ell\nu jj$ channel, where one W boson decays into two quarks leading to a pair of jets ($W \rightarrow jj$) and the other decays into a charged lepton and a neutrino ($W \rightarrow \ell\nu$) where $\ell = e$ or μ, becomes interesting since jets from the Higgs boson decay are, on average, more energetic than the jets from the dominant background ($W + j$ets). An advantage of $H \rightarrow WW \rightarrow \ell\nu jj$ over channels with two final-state neutrinos is the possibility of reconstructing the Higgs boson mass using kinematical constraints to estimate the component of the neutrino momentum along the beam axis.

This Letter describes a search for the SM Higgs boson in the $H \rightarrow WW \rightarrow \ell\nu jj$ channel using the ATLAS detector at the LHC, based on 4.7 fb$^{-1}$ of pp collision data collected at a centre-of-mass energy of $\sqrt{s} = 7$ TeV during 2011. The present search supersedes a previous analysis in the same Higgs boson decay channel published by the ATLAS Collaboration [11]. The distribution of the $\ell\nu jj$ invariant mass $m(\ell\nu jj)$, reconstructed using the $\ell\nu$ invariant mass constraint $m(\ell\nu) = m(W)$ and the requirement that two of the jets in the event are consistent with a $W \rightarrow jj$ decay, is used to search for a Higgs boson signal. Feed-down from τ lepton decays is included in this analysis for both background and signal, i.e. $H \rightarrow WW \rightarrow \tau\nu jj \rightarrow \ell\nu\nujj$. The present search is restricted to $m_H > 300$ GeV in order to ensure a smoothly varying non-resonant background. The search is further limited to $m_H < 600$ GeV since, for higher Higgs boson masses, the jets from $W \rightarrow jj$ decay begin to overlap due to the large boost of the W boson, and the natural width of the Higgs...
2. The ATLAS detector

The ATLAS experiment [12] uses a multipurpose particle detector with forward–backward symmetric cylindrical geometry\(^1\) covering the pseudorapidity range \(|\eta| < 2.5\) for charged particles and \(|\eta| < 4.9\) for jet measurements. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. The superconducting solenoid is surrounded by a high-granularity liquid-argon (LAr) sampling electromagnetic (EM) calorimeter. An iron/scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end-cap and forward regions are instrumented with LAr calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids, each with eight coils, a system of precision tracking chambers, and detectors for triggering.

3. Data and simulation samples

The data were collected using single-muon and single-electron triggers [13]. The single-muon trigger required the transverse momentum \(p_T\) of the muon with respect to the beam line to exceed 18 GeV; for the single-electron trigger, the threshold varied from 20 GeV to 22 GeV. The trigger object quality requirements for the single-muon triggers were tightened throughout the data-taking period to cope with the increase in the number of hits in the inner detector. They must lie within the range \(|\eta| < 2.4\). The tracks must satisfy the same criteria as for electrons and \(|d_0|/\sigma_{d_0} < 3\). They must also be isolated, with the sum of the transverse energies (excluding those attributed to the muon itself) in calorimeter cells inside a cone \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.3\) around the cluster barycentre must satisfy \(\sum (E_{\text{calo}}^\ell)/(p_T^\ell)^2 \sim 0.14\) and the scalar sum of the transverse momenta of all tracks (excluding the electron track itself) with \(p_T > 1\) GeV from the primary vertex in the same cone must satisfy \(\sum (p_T^{\text{track}})^2/(p_T^\ell)^2 < 0.13\).

Muons are reconstructed by combining tracks in the inner detector and the muon spectrometer. The identification efficiency is measured to be \((92.8 \pm 0.2)\%\) for muons with transverse momentum \(p_T > 20\) GeV [18]. Tracks are required to pass basic quality cuts on the number and type of hits in the inner detector. They must lie within the range \(|\eta| < 2.4\). The tracks must satisfy the same criteria as for electrons and \(|d_0|/\sigma_{d_0} < 3\). They must also be isolated, with the sum of the transverse energies (excluding those attributed to the muon itself) in calorimeter cells inside a cone \(\Delta R = 0.3\) around the muon satisfying \(\sum (E_{\text{calo}}^\ell)/(p_T^\ell)^2 < 0.14\). Furthermore, the scalar sum of the transverse momenta of all tracks (excluding the muon track itself) with \(p_T > 1\) GeV from the primary vertex inside a cone \(\Delta R = 0.4\) around the muon must satisfy \(\sum (p_T^{\text{track}})^2/(p_T^\ell)^2 < 0.15\).

Jets are reconstructed from topological clusters of energy deposited in the calorimeters using the anti-\(k_t\) algorithm [19] with radius parameter \(R = 0.4\). The reconstructed jet energy is calibrated using \(p_T\) and \(\eta\)-dependent correction factors based on MC simulation and validated with data [20]. The selected jets are required to have \(p_T > 25\) GeV and \(|\eta| < 4.5\). Jets are considered \(b\)-tagged if they satisfy the requirement \(|\eta| < 2.8\) and are consistent with having originated from the decay of a \(b\)-quark. This latter requirement is determined by a \(b\)-tagging algorithm which uses a combination of impact parameter significance and secondary vertex information and exploits the topology of weak decays of \(b\)- and \(c\)-hadrons. The algorithm is tuned to achieve an \(80\%\) \(b\)-jet identification efficiency, which results in a tagging rate for light quark jets of approximately \(6\%\) [21,22]. The missing transverse momentum and its magnitude \(E_{\text{miss}}\) are reconstructed from calibrated jets, leptons and photons, and take into account soft clustered energy in the calorimeters [23]. Energy deposited by muons is subtracted in the \(E_{\text{miss}}\) calculation to avoid double counting.

4. Object selection

The \(pp\) collision vertices in each bunch crossing are reconstructed using the inner tracking system [16]. To remove cosmic-ray and beam-induced backgrounds, events are required to have at least one reconstructed primary vertex with at least three associated tracks with \(p_T > 400\) MeV. If multiple collision vertices are reconstructed, the vertex with the largest summed \(p_T^2\) of the associated tracks is selected as the primary vertex.

Each electron candidate is reconstructed from clustered energy deposits in the EM calorimeter with an associated track. It is further required to satisfy a tight set of identification criteria with an efficiency of approximately 80\% for electrons from \(W \rightarrow e\nu\) decays with transverse energy \(20\) GeV \(< E_T < 50\) GeV [17]. While the energy measurement is taken from the EM calorimeter, the pseudorapidity \(\eta\) and azimuthal angle \(\phi\) are taken from the associated track. The cluster is required to be in the range \(|\eta| < 2.47\), excluding the transition region between barrel and end-cap calorimeters, \(1.37 < |\eta| < 1.52\), and small calorimeter regions affected by temporary operational problems. The track associated with the electron candidate is required to point back to the reconstructed primary vertex with a transverse impact parameter significance \((d_0/\sigma_{d_0}) < 10\) and with an impact parameter along the beam direction of \(|z_0| < 1\) mm. Electrons are further required to be isolated: the sum of the transverse energies (excluding the electron itself) in calorimeter cells inside a cone \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3\) around the cluster barycentre must satisfy \(\sum (E_{\text{calo}}^\ell)/(p_T^\ell)^2 \sim 0.14\) and the scalar sum of the transverse momenta of all tracks (excluding the electron track itself) with \(p_T > 1\) GeV from the primary vertex in the same cone must satisfy \(\sum (p_T^{\text{track}})^2/(p_T^\ell)^2 < 0.13\).

5. Event selection

Events are classified based on the number of jets selected in addition to the two jets from the Higgs boson decay candidate. For events to be selected as Higgs boson candidates without an additional jet \((H + 0j)\) or with exactly one additional jet \((H + 1j)\), the channels which are more sensitive to the gluon fusion process, the following conditions must be met: only one reconstructed lepton candidate (electron or muon) with \(p_T > 40\) GeV, no additional leptons with \(p_T > 20\) GeV, \(E_{\text{miss}} > 40\) GeV, and exactly two jets \((\ell \nu jj + 0\text{ jet sample})\) or exactly three jets \((\ell \nu jj + 1\text{ jet sample})\).

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\), measured with respect to the z-axis, as \(\eta = -\ln\tan(\theta/2)\).
with \(p_T > 25 \text{ GeV} \) and \(|\eta| < 4.5 \). The two jets with invariant mass \((m_{jj})\) closest to the mass of the \(W \) boson are required to satisfy \(71 \text{ GeV} < m_{jj} < 91 \text{ GeV} \). One of these two jets must satisfy \(p_T > 60 \text{ GeV} \) and the other must satisfy \(p_T > 40 \text{ GeV} \). These two jets are taken as the \(W \) boson decay jets and are required to lie within the range \(|\eta| < 2.8 \), where the jet energy scale is best known (with an uncertainty of 5% or less for \(p_T > 40 \text{ GeV} \), depending on \(p_T \) and \(|\eta| \) over this range [20]), and have \(\Delta R_{jj} < 1.3 \) to suppress \(W + \text{jets} \) background. In order to reduce top quark background, the event is rejected if either of the \(W \) boson decay jets is \(b \)-tagged.

For the \((\ell\nu jj + 2j)\) selection \((H + 2j)\), which is more sensitive to the weak boson fusion \(H \)iggs boson production mode, the following requirements are applied. The charged lepton \(p_T \) and the \(E_{T}^{\text{miss}} \) must both exceed 30 GeV. There must be at least four jets with \(p_T > 25 \text{ GeV} \) and \(|\eta| < 4.5 \). The two jets with invariant mass closest to the mass of the \(W \) boson are required to satisfy 71 GeV < \(m_{jj} < 91 \text{ GeV} \). These jets are labelled as the \(W \) boson decay jets. Because of the small signal cross section in this channel, the \(W \) boson decay jets are not required to lie within \(|\eta| < 2.8 \), in order to increase the acceptance. The event is required to satisfy a set of “forward jet tagging” cuts designed to select \(q\bar{q} \rightarrow q\bar{q}H \) events. The two highest-\(p_T \) jets apart from the \(W \) boson decay jets are labelled as the “tag” jets, and they are required to be in opposite hemispheres \((\eta_{j1} - \eta_{j2} < 0)\). They are also required to be well-separated in pseudorapidity \((\Delta \eta_{jj} = |\eta_{j1} - \eta_{j2}| > 3)\). The lepton is required to be between the two tag jets in pseudorapidity. The two tag jets must have large invariant mass \((m_{jj} > 600 \text{ GeV})\) and there must be no additional jets in the range \(|\eta| < 3.2\). The event is rejected if it contains a \(b \)-tagged jet.

The \(\ell\nu jj + 0/1j \) selection differs from the selection used Ref. [11]. The selection criteria are optimized to improve the expected \(H \)iggs boson sensitivity for masses above 300 GeV and require a more complex parameterization of the background shape, as discussed in Section 8.

After the \(\ell\nu jj + 0 \) and \(\ell\nu jj + 1 \) selections, the gluon fusion process is expected to contribute approximately 98% and 92% to the total signal yield, respectively, with the remainder primarily due to the weak boson fusion process. After the \(\ell\nu jj + 2 \) selection, the weak boson fusion process is expected to contribute approximately 68% of the total signal yield, with the remainder primarily due to the gluon fusion process.

6. Expected backgrounds

In both the \(\ell\nu jj + 0/1j \) and \(\ell\nu jj + 2j \) selections, the background is expected to be dominated by \(W + \text{jets} \) production. Other important backgrounds are \(Z + \text{jets} \), \(t\bar{t} \), single top quark, diboson \((WW, WZ, ZZ, W\gamma, Z\gamma)\) production, and multijets (MJ) from strong interaction processes that can be selected due either to the presence of leptons from heavy-flavour decays or jets misidentified as leptons.

Although MC predictions are not used to model the background in the Higgs boson search results, a combination of MC and data-driven methods is used to understand the background composition at this intermediate stage. Backgrounds due to \(W/Z + \text{jets} \), \(t\bar{t} \), and diboson production are modelled using the ALPGEN [24], MC@NLO [25], and HERWIG [26] generators, respectively. Single top production is modelled using AcerMC [27] and single top produced in association with a \(W \) boson is modelled with MC@NLO. The main contribution from \(W/Z + \gamma \) events is estimated from events simulated using MadGraph/MadEvent [28]. The CT10 parton distribution function (PDF) set [29] is used for the MC@NLO samples, CTEQ6L1 [30] for the ALPGEN and MadGraph samples, and MRSTMCal [31] for the AcerMC samples.

The shapes of MJ background distributions are modelled using histograms derived from data samples selected in the same way as for the \(H \rightarrow WW \rightarrow \ell\nu jj \) selection, except that the electron identification requirements are loosened and the isolation requirement on muons is inverted. In the loosened selection, electrons satisfying the complete set of identification criteria are not included. Expected contributions from top quark (\(tt \) and single top) production and electroweak boson (including diboson) production to the MJ shape histograms are subtracted using MC predictions.

To normalize the MJ background contribution in a given channel \((\ell\nu jj + 0j, \mu\nu jj + 0j, \ell\nu jj + 1j, \mu\nu jj + 1j, \ell\nu jj + 2j, \mu\nu jj + 2j)\), a fit to the \(E_{T}^{\text{miss}} \) distribution using templates for each background contribution are performed. The \(E_{T}^{\text{miss}} \) template is constructed from the loose lepton control sample after the selection is further relaxed by omitting the \(E_{T}^{\text{miss}} \) criteria. The normalization of this MJ template and the corresponding template for \(W/Z + \text{jets} \) taken from MC are fitted to the observed \(E_{T}^{\text{miss}} \) distribution in data after the final selection without a \(E_{T}^{\text{miss}} \) cut, with other backgrounds estimated using the MC simulation and fixed to their expectation for 4.7 fb\(^{-1}\). The relative contributions from \(W + \text{jets} \) and \(Z + \text{jets} \) into the \(W/Z + \text{jets} \) template are fixed according to the SM cross sections. The scale factors for the MJ and \(W/Z + \text{jets} \) backgrounds are calculated using these fits and used to normalize the MJ and \(W/Z + \text{jets} \) background contributions in comparisons between data and these background expectations.

The MC simulation predicts that \(W/Z + \text{jets} \) events constitute \((72 \pm 14\%) \) of the total background for \(\ell\nu jj + 0/1j \) and \((77 \pm 15\%) \) for \(\ell\nu jj + 2j \), while the top quark backgrounds contribute with \((19 \pm 5\%) \) and \((9 \pm 2\%) \) for \(\ell\nu jj + 0/1j \) and \(\ell\nu jj + 2j \) respectively.

7. \(W/W \) mass reconstruction

To reconstruct the invariant mass \(m(\ell\nu jj) \) of the \(WW \) system, the neutrino momentum is required. Its transverse momentum \(p_T^{\nu} \) is taken from the measured \(E_{T}^{\text{miss}} \) while the neutrino longitudinal momentum \(p_z^{\nu} \) is computed using the second degree equation given by the mass constraint \(m(\ell\nu) = m(W) \). In the case of two real solutions, the solution with smaller neutrino longitudinal momentum \(p_z^{\nu} \) is taken, based on simulation studies. In the case of complex solutions, the event is rejected. This requirement rejects \((20 \pm 1\%) \) of MC signal events at \(m_H = 400 \text{ GeV} \), while for MC \(W + \text{jets} \) the corresponding rejection is \((30 \pm 1\%) \). These estimates include only statistical uncertainties. Larger fractions of events are rejected in \(\ell\nu jj + 1j \) than in \(\ell\nu jj + 0j \) independent of lepton flavour. In collision data \((30 \pm 1\%) \) of the events are rejected by this requirement, consistent with the expectations from the \(W + \text{jets} \) background simulation.

8. Signal and background modelling

The Higgs boson signal is expected to appear as a peak in the \(m(\ell\nu jj) \) distribution. Its width, before detector effects, varies from about 10 GeV at \(m_H = 300 \text{ GeV} \) to about 70 GeV at \(m_H = 550 \text{ GeV} \). The non-resonant background for the \(\ell\nu jj + 0/1j \) channel is modelled by a smooth function of the form \(f(x) = (1/(1 + |a(x - m_H)|^{3})) \times \exp(-c(x - 200)) \), where \(x = m(\ell\nu jj) \) in GeV and \(a, b, c, m \) are free parameters with the appropriate units. In the \(\ell\nu jj + 2j \) channel, the background is modelled by the sum of two exponential functions. The parameters of the fitted function in each of these models are not subjected to any external constraint. The functional form for the background model is well motivated by studies using MC simulation, and is tested by fits to the \(m(\ell\nu jj) \) distributions obtained through event selection in the \(W \) sidebands, with \(m_{jj} \) just below \((45 \text{ GeV} < m_{jj} < 60 \text{ GeV}) \) or
Fig. 1. Fits of the background model described in the text to the reconstructed invariant mass $m(\ell\nu jj)$ when m_{jj} is in the W sidebands for the $\ell\nu jj + 0j$ selection. The left (right) figure shows the electron (muon) channel distribution. The χ^2/dof and χ^2 probability of these fits are also shown in the figure.

Fig. 2. Fits of the background model described in the text to the reconstructed invariant mass $m(\ell\nu jj)$ when the m_{jj} is in the W sidebands for the $\ell\nu jj + 1j$ selection. The left (right) figure shows the electron (muon) channel distributions. The χ^2/dof and χ^2 probability of these fits are also shown in the figure.

just above (100 GeV < m_{jj} < 115 GeV) the W boson peak. Figs. 1 and 2 show fits of the $\ell v jj$ mass to the background model for $\ell v jj + 0j$ and $\ell v jj + 1j$ selections with m_{jj} in the W sidebands. The χ^2 probabilities of these fits are between 25% and 75%, providing support for the background functional form used in this analysis.

MC simulation is used to study the expected Higgs boson contribution to the $m(\ell\nu jj)$ distributions. Both the gluon fusion and the weak boson fusion signal production processes are simulated using the POWHEG [32,33] event generator interfaced to PYTHIA [34] using MRSTMCal [31] PDFs and are normalized to the next-to-next-to-leading order cross sections [35] shown in Table 1. The $m(\ell\nu jj)$ distribution for the expected signal at each hypothesized m_H is modelled using the functional form $1/(a + (x - m_1)^2 + b(x - m_2)^4)$ with parameters $(a, b, m_1$ and $m_2)$ determined from a fit to the MC simulation of the expected Higgs boson signal. The $m(\ell\nu jj)$ fractional resolution is $8.8 \pm 1.3\%$ at $m_H = 400$ GeV, the uncertainty arising mostly from the E_T^{miss} and jet energy scale as described below, and shows a $1/\sqrt{m_H}$ dependence over the range of this analysis.

Table 1

<table>
<thead>
<tr>
<th>m_H [GeV]</th>
<th>$\sigma(gg \rightarrow H)$ [pb]</th>
<th>$\sigma(qq \rightarrow H)$ [pb]</th>
<th>BR($H \rightarrow \ell^+\ell^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>2.4 ± 0.4</td>
<td>0.30 ± 0.01</td>
<td>0.237 ± 0.003</td>
</tr>
<tr>
<td>400</td>
<td>2.0 ± 0.3</td>
<td>0.162 ± 0.005</td>
<td>0.199 ± 0.002</td>
</tr>
<tr>
<td>500</td>
<td>0.85 ± 0.15</td>
<td>0.095 ± 0.003</td>
<td>0.187 ± 0.002</td>
</tr>
<tr>
<td>600</td>
<td>0.33 ± 0.06</td>
<td>0.058 ± 0.002</td>
<td>0.191 ± 0.003</td>
</tr>
</tbody>
</table>

9. Systematic uncertainties

The systematic uncertainty due to the background modelling is included by treating the uncertainties on the background model parameters resulting from fits to the data as nuisance parameters in the statistical interpretation of the data. Both the background model and the sum of signal and background models are found to
be good fits to the data. For $m_H = 400$ GeV, the χ^2 probabilities are 33% and 31% for the background-only and background-plus-signal fits, respectively. Therefore, alternative parameterizations of the background expectation that are consistent with the data will also be consistent with the background model within its uncertainties. This is tested by fitting both the signal region and the sideband regions of the data with two alternative parameterizations that use polynomials of varying order to describe the decreasing background component instead of exponential functions. Differences in the fitted background yield between these parameterizations and the nominal background model are less than 5%, while the uncertainty from the nuisance parameters and statistical uncertainties is 10–12%.

The remaining systematic uncertainties are related to the Higgs boson signal. The fit includes nuisance parameters which account for the uncertainty in the reconstruction efficiency. The trigger efficiencies, the electron and muon reconstruction efficiencies, lepton energy resolution and scale are varied within their uncertainties, giving an uncertainty in the signal efficiency of less than 1%. Varying the jet energy scale [20] within its uncertainties yields an uncertainty of up to 8% in the expected signal in the $\ell\nu jj$ channel for $m_H \geq 400$ GeV. Smearing the jet energies within the uncertainty on their resolutions [38] results in a signal uncertainty of 7% for $m_H = 400$ GeV and 5% for $m_H = 600$ GeV. The reconstructed E_T^{miss} [23] is also affected by the uncertainties on the energy scales and resolutions of reconstructed leptons and jets. The signal uncertainties given above include the propagation of these effects to the reconstructed E_T^{miss}. The propagation to E_T^{miss} adds a small contribution to the overall signal uncertainty. In addition, a 7% uncertainty on the degradation of the E_T^{miss} resolution and scale due to pile-up effects is estimated, which results in a negligible uncertainty on the signal efficiency. The looser selection criteria for the $\ell \nu jj + 2j$ channel result in an 11% uncertainty on the signal efficiency from the jet energy scale at $m_H = 400$ GeV while the uncertainty due to the jet energy resolution is 16%. The uncertainty on the b-tagging efficiency [39] gives a maximum uncertainty of 8% on the signal efficiency and shows no strong dependence on m_H or the selection criteria.

The uncertainties on jet energy resolution and jet energy scale, which also have an impact on E_T^{miss}, lead to systematic uncertainties on the Higgs boson mass resolution (5%) and on the Higgs boson mass scale (2%). These uncertainties are not included since their effect on the fitted Higgs boson yield is considerably smaller than the systematic uncertainty on the signal acceptance due to jet energy scale and resolution.

The Higgs boson signal expectation includes a 3.9% systematic uncertainty due to the luminosity determination [40,41] and a 19.4% uncertainty on the predicted Higgs boson cross section [35], taken to be independent of the mass. Off-shell effects and interference between the signal and background processes are discussed in Refs. [35,42,43]. To account for the uncertainties from these effects, an uncertainty of 150% × m_H^2 (m_H in TeV) on the signal cross section is included in the statistical interpretation of the data, where the m_H^2 form is motivated by the scaling of the Higgs boson width with m_H and the normalization factor of 150% is chosen to give $\sim 30\%$ at $m_H = 600$ GeV [35].

10. Results and conclusions

Figs. 3, 4 and 5 show the $m(\ell\nu jj)$ distributions and the ratio of data to background expectation from MC simulation for the six different final states considered in this analysis, along with bands showing the total background uncertainty. The simulated background is not used in the statistical interpretation of the data. Instead, the parameterizations described in Section 8 are used to model the background.

The Higgs boson signal yield in each final state is determined using a binned maximum likelihood fit to the observed $m(\ell\nu jj)$ distribution in the range 200 GeV < $m(\ell\nu jj)$ < 2000 GeV. As a check, fits over a smaller range (200 GeV < $m(\ell\nu jj)$ < 1000 GeV) were also performed and the results were found to be consistent with the results presented here.

The difference between data and the fitted background is shown in Fig. 6. The expected signals for $m_H = 400$ GeV and $m_H = 600$ GeV are also shown, each scaled to the 95% CL limit on the production cross section.
Fig. 4. The reconstructed invariant mass $m(\ell\nu jj)$ in the data and expected backgrounds using MC simulation for the $\ell\nu jj + 1j$ selection. The left (right) figure shows the electron (muon) channel distribution. The expected Higgs boson signal for $m_H = 400$ GeV is also shown. The bottom panels show the data divided by the MC expectation as markers, and the shaded (orange in the web version) region indicates the systematic uncertainty on the background expectation from MC simulation.

Fig. 5. The reconstructed invariant mass $m(\ell\nu jj)$ in the data and expected backgrounds using MC simulation for the $\ell\nu jj + 2j$ selection. The left (right) figure shows the electron (muon) channel distribution. The expected Higgs boson signal for $m_H = 400$ GeV is also shown, scaled up by a factor of 10 for visibility. The bottom panels show the data divided by the MC expectation as markers, and the shaded (orange in the web version) region indicates the systematic uncertainty on the background expectation from MC simulation.

Fig. 6 shows that there is no indication of a significant excess of data above the background model. Limits on SM Higgs boson production are extracted using the profile likelihood ratio [44] as a test statistic and following the C_L procedure described in Refs. [45,7].

Fig. 7 shows the 95% CL upper bound on the cross section times branching ratio for Higgs boson production with respect to the Standard Model prediction, as a function of m_H. The best sensitivity is reached at $m_H = 400$ GeV, where the 95% confidence level upper bound on the cross section for $H \rightarrow WW$ production using the combined $H + 0j$ and $H + 1j$ channels is observed (expected) to be 2.2 pb (1.9 pb) corresponding to 2.1 (1.6) times the Standard Model prediction. In the $H + 2j$ channel, which is more sensitive to Higgs boson production via weak boson fusion, the 95% confidence level upper bound on the cross section for $H \rightarrow WW$ production with $m_H = 400$ GeV is observed (expected) to be 0.7 pb (0.6 pb) corresponding to 7.9 (6.5) times the Standard Model prediction. Fig. 8 shows the limits obtained when combining the $H + 2j$ channel with the $H + 0/1j$ channels. Fig. 9 shows the probability p_0 to observe a fluctuation in $300 < m(\ell\nu jj) < 600$ GeV at least as
large as the one observed in data if there is no signal contribution, where the signal and background are modelled as described in Section 8. The expected \(p_0 \) for \(H + 0/1j \) if there were a SM Higgs at 400 GeV is 0.091, and the observed value is 0.276. For \(H + 2j \), the expected \(p_0 \) is 0.369 and the observed is 0.293. The significance is computed as \(\sqrt{-2\log \lambda} \), where \(\lambda \) is the likelihood ratio obtained by the fit, and the significance is converted into the probability \(p_0 \) using the Gaussian error function.

In summary, a search for the SM Higgs boson has been performed in the \(H \rightarrow WW \rightarrow \ell\nu jj \) channel using 4.7 fb\(^{-1}\) of \(pp \) collisions at \(\sqrt{s} = 7 \) TeV recorded by the ATLAS detector. No significant excess of events over the expected background has been observed. Exclusion limits on SM Higgs boson production at 95% CL are reported over the Higgs boson mass range of 300–600 GeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.
We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSCMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, GeDNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, France; GSRT, Greek Ministry of Education and Religious Affairs, Greece; ISF, MINERVA, G. D. Donnini Foundation, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russia; RAS and ENSCC, Russia; INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

The crucial computing support from many WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[10] CDF and D0 Collaborations, Tevatron New Phenomena and Higgs Working Group, Combined CDF and D0 upper limits on Standard Model Higgs boson production with up to 8.8 fb⁻¹ of data, arXiv:1107.5518.
102. Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
103. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
104. Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105. Department of Physics, Northern Illinois University, DeKalb, IL, United States
106. Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107. Department of Physics, New York University, New York, NY, United States
108. Ohio State University, Columbus, OH, United States
109. Faculty of Science, Okayama University, Okayama, Japan
110. Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
111. Department of Physics, Oklahoma State University, Stillwater, OK, United States
112. Palacky University, RCPTM, Olomouc, Czech Republic
113. Center for High Energy Physics, University of Oregon, Eugene, OR, United States
114. LAL, Université Paris-Sud et CNRS/IN2P3, Orsay, France
115. Graduate School of Science, Osaka University, Osaka, Japan
116. Department of Physics, University of Oslo, Oslo, Norway
117. Department of Physics, Oxford University, Oxford, United Kingdom
118. INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
119. Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
120. Petersburg Nuclear Physics Institute, Gatchina, Russia
121. INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
123. (a) Laboratorio de Instrumentación e Física Experimental de Partículas – LIP, Lisboa, Portugal; (b) Departamento de Física Teórica y del Cosmos y CAFPE, Universidad de Granada, Granada, Spain
124. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
125. Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
126. Czech Technical University in Prague, Prague, Czech Republic
127. State Research Center Institute for High Energy Physics, Protvino, Russia
128. Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129. Physics Department, University of Regina, Regina, SK, Canada
130. Ritsumeikan University, Kusatsu, Shiga, Japan
131. INFN Sezione di Roma 1; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132. (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133. (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
134. (a) Faculté des Sciences Am Chock, Réseau Universitaire de Physique des Hautes Energies, Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPIHEA, Marrakech; (d) Faculté des Sciences, Université Mohamed Premier et UPPPM, Oujda; (e) Faculté des Sciences, Université Mohammed V, Agdal, Rabat, Morocco
135. DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136. Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
137. Department of Physics, University of Washington, Seattle, WA, United States
138. Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139. Department of Physics, Shinshu University, Nagano, Japan
140. Fachbereich Physik, Universität Siegen, Siegen, Germany
141. Department of Physics, Simon Fraser University, Burnaby, BC, Canada
142. SLAC National Accelerator Laboratory, Stanford, CA, United States
143. (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144. (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145. (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
146. physics Department, Royal Institute of Technology, Stockholm, Sweden
147. Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
148. Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
149. School of Physics, University of Sydney, Sydney, Australia
150. Institute of Physics, Academia Sinica, Taipei, Taiwan
151. Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
152. Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153. Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154. International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155. Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
156. Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
157. Department of Physics, University of Toronto, Toronto, ON, Canada
158. TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
159. Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
160. Science and Technology Center, Tufts University, Medford, MA, United States
161. Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162. Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
163. INFN Gruppo Collegato di Udine; (b) ITP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
164. Department of Physics, University of Illinois, Urbana, IL, United States
165. Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
166. Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
167. Department of Physics, University of British Columbia, Vancouver, BC, Canada
168. Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
169. Department of Physics, University of Warwick, Coventry, United Kingdom
170. Waseda University, Tokyo, Japan
171. Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172. Department of Physics, University of Wisconsin, Madison, WI, United States
173. Fachhochschule für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
174. Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
175. Department of Physics, Yale University, New Haven, CT, United States

Domaine Scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
d Also at TRIUMF Vancouver, BC, Canada.
e Also at Department of Physics, California State University, Fresno, CA, United States.
f Also at Novosibirsk State University, Novosibirsk, Russia.
g Also at Fermilab, Batavia, IL, United States.
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
i Also at Department of Physics, USALP, San Luis Potosi, Mexico.
j Also at Universita di Napoli Parthenope, Napoli, Italy.
k Also at Institute of Particle Physics (IPP), Canada.
l Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
m Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
n Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
o Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
p Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
q Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
r Also at Dipartimento di Fisica, Universita La Sapienza, Roma, Italy.
s Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
t Also at California Institute of Technology, Pasadena, CA, United States.
u Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
w Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
x Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.
y Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
z Also at Department of Physics, Oxford University, Oxford, United Kingdom.
a Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
b Also at Dipartimento di Fisica, Università di Napoli Parthenope, Napoli, Italy.
c Also at Department of Physics, Università di Napoli Parthenope, Napoli, Italy.
d Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
e Also at Section de Physique, Université de Genève, Geneva, Switzerland.
f Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
g Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
h Also at California Institute of Technology, Pasadena, CA, United States.
i Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
j Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
k Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.
l Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
m Also at Department of Physics, Oxford University, Oxford, United Kingdom.
n Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
o Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
p Deceased.