Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized $^{3}$He target

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1103/PhysRevC.90.055201">http://dx.doi.org/10.1103/PhysRevC.90.055201</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Dec 14 07:07:46 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/92270">http://hdl.handle.net/1721.1/92270</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized $^3$He target


(Jefferson Lab Hall A Collaboration)

1 University of Science and Technology of China, Hefei 230026, People’s Republic of China
2 University of Illinois, Urbana-Champaign, Illinois 61801, USA
3 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
5 California State University, Los Angeles, Los Angeles, California 90032, USA
6 University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
7 College of William and Mary, Williamsburg, Virginia 23187, USA
8 Duquesne University, Pittsburgh, Pennsylvania 15282, USA
9 Old Dominion University, Norfolk, Virginia 23529, USA
10 University of Virginia, Charlottesville, Virginia 22904, USA
11 Hampton University, Hampton, Virginia 23668, USA
12 Duke University, Durham, North Carolina 27708, USA
13 INFN, Sezione di Roma, I-00185 Rome, Italy
14 INFN, Sezione di Roma, I-00185 Rome, Italy
15 INFN, Sezione di Roma, I-00185 Rome, Italy
16 INFN, Sezione di Roma, I-00185 Rome, Italy
17 University of Kentucky, Lexington, Kentucky 40506, USA
18 Mississippi State University, Mississippi State, Mississippi 39762, USA
19 Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA
20 Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
21 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
22 Longwood University, Farmville, Virginia 23909, USA
23 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
24 Cairo University, Giza 12613, Egypt
25 INFN, Sezione di Roma Tre, I-00146 Rome, Italy
26 Kyungpook National University, Taegu 702-701, Republic of Korea
27 China Institute of Atomic Energy, Beijing, People’s Republic of China
28 Kent State University, Kent, Ohio 44242, USA
29 University of New Hampshire, Durham, New Hampshire 03824, USA
30 Florida International University, Miami, Florida 33199, USA
31 University of Massachusetts, Amherst, Massachusetts 01003, USA
32 Temple University, Philadelphia, Pennsylvania 19122, USA
33 Université Blaise Pascal/IN2P3, F-63177 Aubière, France
34 Seoul National University, Seoul, South Korea
35 INFN, Sezione di Genova, I-16146 Genova, Italy
36 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
37 Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA
38 Syracuse University, Syracuse, New York 13244, USA
39 Yerevan Physics Institute, Yerevan 375036, Armenia
40 University of Ljubljana, SI-1000 Ljubljana, Slovenia
We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3$He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of $0.1 < x_{bj} < 0.4$ for $K^+$ and $K^-$ production. While the Collins and Sivers moments for $K^+$ are consistent with zero within the experimental uncertainties, both moments for $K^-$ favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. While the $K^+$ Sivers moments are consistent with the prediction, the $K^-$ results differ from the prediction at the 2-sigma level.

DOI: 10.1103/PhysRevC.90.055201

PACS number(s): 24.70.+s, 14.20.Dh, 24.85.+p, 25.30.Rw

I. INTRODUCTION

Significant progress has been made in recent years on our understanding of the transversity distribution as well as transverse-momentum-dependent parton distributions (TMDs) of the nucleons [1,2]. The nucleon transversity distribution [3], which represents the correlation between the quark transverse spin and the nucleon transverse spin, is suppressed in inclusive deep inelastic scattering experiments due to its chiral-odd nature. While it was recognized that polarized Drell-Yan experiments [3,4] and Semi-inclusive deep inelastic scattering (SIDIS) experiments can both access the transversity distribution, our current knowledge on this distribution is mainly obtained from SIDIS.

The SIDIS processes, in which a hadron is detected in coincidence with the scattered lepton [5–9], also involve another chiral-odd object, the so-called Collins fragmentation function [10], to ensure helicity conservation. This allows the extraction of the transversity distribution, provided that the Collins fragmentation function is sizable. The Collins fragmentation functions were extracted to be significant by experiments at Belle [11] and at BaBar [12].

Pioneering efforts have been devoted towards the measurement of transversity distributions by the HERMES and COMPASS Collaborations in dedicated SIDIS experiments using transversely polarized targets [13–15]. A modulation of the form $\sin(\phi_h + \phi_S)$, the Collins moment, where $\phi_h$ and $\phi_S$ are the azimuthal angles of the detected hadron and the nucleon spin with respect to the lepton scattering plane, corresponds to a convolution of the transversity distribution and the Collins fragmentation function. Another important leading-twist TMD is the so-called Sivers function [16], which represents the correlation between the nucleon transverse spin and the quark transverse momentum. It can be extracted through another angular modulation called the Sivers moment with the form of $\sin(\phi_h - \phi_S)$. Although the Sivers function is odd under the time-reversal operation without exchanging the initial and final states [10], it is allowed in the presence of QCD final-state interactions (FSI) between the outgoing quark and the target remnant [17–20].

Results from the HERMES and COMPASS experiments have clearly shown the presence of the $\sin(\phi_h + \phi_S)$ and $\sin(\phi_h - \phi_S)$ modulations from proton targets [13–15]. In remarkable contrast, much smaller modulations were found from deuteron targets [21], suggesting that the process is flavor dependent. To shed new light on the flavor structure of the transversity and Sivers functions, it is important to extend SIDIS measurements to a polarized $^3$He target, whose spin comes predominantly from the neutron.

The first such measurement was carried out on a polarized $^3$He target in Hall A at the Jefferson Laboratory, and results for the charged pion SIDIS production have already been reported [22,23]. In this paper, we present the results on the azimuthal asymmetries in charged kaon SIDIS production. Since kaons contain strange quarks, the role of sea quarks in the nucleons with respect to the Collins and Sivers effects can be explored. The HERMES Collaboration [14] observed that the Collins effect from the proton target for $K^+$ is larger than that for $\pi^+$, while for $K^-$ the Collins effect is small and consistent with zero. They also reported that the Sivers effect for $K^+$ from the proton target is large and positive, but very small for $K^-$ [13]. The COMPASS Collaboration reported that the Collins and Sivers effects for $K^+$ and $K^-$ production from the polarized deuteron target are consistent with zero [21]. Results from this work using a polarized $^3$He target will provide important new information to study the flavor-dependent behavior of the Collins and Sivers effects.

II. EXPERIMENT

The data were collected during experiment E06-010 at Jefferson Lab, Hall A. The experiment was conducted from November 2008 to February 2009 using a 5.9-GeV electron beam with an average current of 12 $\mu$A and a transversely polarized $^3$He target. Scattered electrons were detected in the BigBite spectrometer which was at 30° to the beam right (facing the beam dump) with a momentum acceptance from 0.6 to 2.5 GeV/c. Coincident charged hadrons ($\pi^\pm$, $K^\pm$ and protons) were detected in the High Resolution Spectrometer (HRS) [24], which was at 16° to the beam left with a central momentum of 2.35 GeV/c. The electron beam helicity was flipped at a rate of 30 Hz. The unpolarized beam was achieved by summing the two helicity states, which differ by less than 100 ppm per 1-hour run in beam charge.
The polarized $^3$He target consisted of a 40-cm-long glass cell containing $\sim 10$ atm of $^3$He and a small amount of N$_2$ to reduce depolarization [24,25]. The ground state of the $^3$He nuclear wave function is dominated by the $S$ state, in which the proton spins cancel each other and the nuclear spin is mostly carried by the neutron [26]. Three pairs of Helmholtz coils were used in the experiment for producing the holding magnetic field in any direction. During the experiment, the target spin was oriented to transverse the holding magnetic field in any direction. The target spin direction was flipped every 20 minutes through adiabatic fast passage. An average in-beam target polarization of $(55.4 \pm 2.8)\%$ was achieved during the experiment.

The BigBite spectrometer consisted of a single open dipole magnet, eighteen planes of multiwire drift chambers organized in three groups and a scintillator plane sandwiched between lead-glass preshower and shower calorimeters. The magnetic field from the dipole, combined with tracking information from the drift chambers, was used to reconstruct the momenta of charged particles. Timing information for the scattered electrons was provided by the scintillators, and the electron trigger was formed by summing signals from two overlapping rows of preshower and shower blocks [28]. The angular acceptance of the BigBite spectrometer was about 64 m$^2$sr for timing and triggering, a CO$_2$ gas Čerenkov detector, and two drift chambers for tracking, two scintillator planes for less than 1%.

Angular coverage and vertical directions in order to enlarge the azimuthal angular acceptance of the BigBite spectrometer. The angular coverage for hadrons, given the small ($\sim 6$ m$^2$sr) angular acceptance of the HRS. A clean sample of electrons was achieved by using two-dimensional cuts on the preshower energy $E_{ps}$ and the momentum-dependent ratio $E/p$ in which $E$ and $p$ are the total energy deposit in the calorimeter and the reconstructed momentum, respectively. After combining all the cuts, the $\pi^-$ contamination in the electron sample was less than 1%.

The HRS configured for hadron detection consisted of two drift chambers for tracking, two scintillator planes for timing and triggering, a CO$_2$ gas Čerenkov detector, and two layers of lead-glass calorimeter for electron rejection, an aerogel Čerenkov detector for pion rejection, and a ring imaging Čerenkov detector for hadron (pion, kaon, proton) identification [29]. In addition, coincidence time of flight (CTOF) between scattered electrons and hadrons was also recorded for hadron identification. Figure 1 shows the CTOF spectrum. It describes the difference between the measured time of flight of the hadron and that of the expected kaon based on the electron timing. Therefore, the kaon peak is centered at zero and the proton, which is slower than the kaon, is peaked at a negative value. By applying a "pion rejection" cut on the aerogel detector, pions were strongly suppressed, and the contamination of $\pi^-$ ($\pi^+$) in the $K^+$ ($K^-$) sample was less than 2% (5%). The random coincidence contamination in the $K^+$ ($K^-$) sample was less than 4% (1%), and the coincidental proton contamination in the $K^+$ sample was negligible.

III. DATA ANALYSIS

The SIDIS event sample for the analysis was selected by requiring (1) four-momentum-transfer squared $Q^2 > 1$ GeV$^2$, (2) virtual photon-nucleon invariant mass $W > 2.3$ GeV, and (3) the missing mass of undetected final-state particles $W' > 1.6$ GeV. The kinematics coverage for $K^+$ is shown in Fig. 2. After all the cuts, the total number of accepted SIDIS events were about 10 000 and 2000 for $K^+$ and $K^-$, respectively. The data were analyzed by using an azimuthally unbinned maximum likelihood estimator (MLE) [30]. Due to the low statistics of the $K^-$ sample, the data were binned in one kinematical bin, while for $K^+$ the data were binned in four bins of $x_{bj}$. The central values for various kinematical variables are listed in Table I.

The likelihood was formed by the $\phi_h$ and $\phi_S$ dependent yield as shown in Eq. (1).

$$\text{yield}(\phi_h, \phi_S) = \rho \sigma a_{\pm}(\phi_h, \phi_S) \left( 1 + P \sum_{j=1}^{2} \epsilon_j A_j(\phi_h, \phi_S) \right).$$ (1)

FIG. 1. (Color online) $^3$He($e,e'\gamma$)$X$ coincidence timing spectrum after a cut on the aerogel detector to remove pions, where $h$ represents detected hadron. The kaon selection cuts are shown as the two vertical lines. The top right subplot shows only $K^+$ and $\pi^+$ peaks in a relatively small CTOF range.

FIG. 2. (Color online) Correlation between $x_{bj}$ and kinematics variables ($Q^2$, $P_t$, $z$) for $K^+$, where $x_{bj} = \frac{q^2}{2P_t}$, $P_t = \sqrt{P_h^2 - (\frac{Q^2}{2})^2}$, $z = \frac{P_h^2}{P_t^2}$, $P$ is the four-momentum of the initial nucleon, $q$ is the four-momentum of the virtual photon, $P_h$ is the four-momentum of the detected hadron.
where $\rho$ is the target density, $\sigma$ is the unpolarized cross section, $A_{\pm}(\phi_h, \phi_S)$ is the acceptance for target spin state $\pm$, $A_{\phi}(\phi_h, \phi_S)$ is the $j$th azimuthal angular modulation, $\sin(\phi_h + \phi_S)$ or $\sin(\phi_h - \phi_S)$, $P$ is the target polarization, and $e_j$ is the amplitude of each modulation. The $\phi_h$ and $\phi_S$ definition follows the Trento conventions [31]. The ML method has been used for charged pion analysis [23] and has been checked through Monte Carlo simulations. The results extracted from MLE take into account the unbalanced beam charge associated with two target spin directions and the data acquisition live-time. The $^3$He Collins and Sivers moments were then obtained by correcting the dilution from unpolarized $N_2$ gas in the target cell. The nitrogen dilution factor is defined as

$$f_{N_2} \equiv \frac{\rho_{N_2}\sigma_{N_2}}{\rho_{^3He}\sigma_{^3He} + \rho_{N_2}\sigma_{N_2}},$$

where $\rho$ is the density of the gas in the production target cell and $\sigma$ is the unpolarized SIDIS cross section. The ratio of unpolarized cross sections $\sigma_{N_2}/\sigma_{^3He}$ was measured in dedicated runs on targets filled with known amounts of unpolarized $N_2$ or $^3$He gas. The $f_{N_2}$ in this experiment was determined to be about 10%.

The dominant systematic uncertainty in our measurement was the contamination from photon-induced charge-symmetric $e^\pm$ pairs, of which the $e^-$ was detected in BigBite. The yield of ($e^+, K^\pm$) coincidences was measured directly by reversing the magnetic field of BigBite, and hence the contamination of photon-induced electrons in the electron sample was determined. The contamination for $K^-$ detection was $14 \pm 7\%$. Hardly any events were observed in the latter three bins for $K^+$ detection from calibration runs which indicated that the contamination in these bins was small. To be conservative, the contaminations were given by a limit in these bins with the assumption that the contamination decreases linearly through four bins. The photon-induced electron contamination for $K^+$ was determined to be $18.6 \pm 8.3\%$, $<10\%$, $<5\%$, $<3\%$, respectively for the four $x_{bj}$ bins. Since this contamination is primarily from photon-induced pair production, it carries the same asymmetry as photon production. The asymmetry contamination correction for $K^+$ and the first bin of $K^+$ was given by the asymmetry from high energy $\gamma-K^\pm$ coincidence events. Additional experimental systematic uncertainties include (1) $\pi^-$ contamination in the electron sample, (2) $\pi^\pm$ contamination in the $K^\pm$ sample, (3) random coincidence contamination in the ($e^-, K^\pm$) coincidence sample, (4) target density fluctuations, (5) detector response drift caused by radiation damage to the BigBite calorimeter, (6) target polarization, and (7) bin-centering effects. The quadrature sum of these uncertainties is quoted as the “experimental” systematic uncertainty for our measurement.

For the asymmetry extraction from Eq. (1), we only included $\sin(\phi_h + \phi_S)$ and $\sin(\phi_h - \phi_S)$ modulations by neglecting other modulations, including $\sin(3\phi_h - \phi_S)$ modulation at twist 2 [32], $\sin(\phi_S)$ and $\sin(2\phi_h - \phi_S)$ modulations at twist 3, Cahn $\cos(\phi_h)$ and Boer-Mulders $\cos(2\phi_h)$ modulations from unpolarized cross section. The leakage from the longitudinal polarized target single spin asymmetry ($A_{UL}$) due to the small longitudinal component of the target polarization was also neglected. These effects were estimated by varying each term within an allowed range derived from the HERMES proton data [33], assuming that the magnitude of each term for the neutron is similar to that of the proton. These effects were summed in quadrature to yield the “fit” systematic uncertainty, which is dominated by the $\sin(\phi_S)$ term.

### IV. RESULTS

The extracted $^3$He Collins and Sivers moments are shown in Fig. 3 and tabulated in Table II. The error bars represent statistical uncertainties. Experimental systematic uncertainties combined in quadrature from different sources are shown as a band labeled “Exp.”. Systematic uncertainties due to neglecting other modulations are shown as a band labeled “Fit”. The $K^+$ Collins and Sivers moments are consistent with zero within error bars, while for $K^-$ these moments are found to favor negative values at the 2-sigma level. In addition, the asymmetries presented in this paper are from $^3$He. To obtain the polarized neutron asymmetries, one needs to take into account the dilution effect due to scattering of electrons from the protons inside $^3$He [34].

The Sivers moments from the $^3$He target are compared to theoretical predictions from a phenomenological fit to the world data [35,36]. While the $K^-$ results contain contributions from unfavored fragmentation processes, the $K^+$ results contain contributions from both favored and unfavored

| TABLE I. Tabulated central values for kinematical variables $x_{bj}$, $y$, $z$, $Q^2$, $P_T$, $W$, $W'$, where $y = \frac{Q^2}{P_T}$, $W = \sqrt{(P + q)^2}$, $W' = \sqrt{(q + P - P_h)^2}$, and $l$ is the four-momentum of the incoming lepton.
<table>
<thead>
<tr>
<th>$x_{bj}$</th>
<th>$y$</th>
<th>$z$</th>
<th>$Q^2$ (GeV$^2$)</th>
<th>$P_T$ (GeV)</th>
<th>$W$ (GeV)</th>
<th>$W'$ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+$</td>
<td>0.137</td>
<td>0.85</td>
<td>0.48</td>
<td>1.29</td>
<td>0.46</td>
<td>3.0</td>
</tr>
<tr>
<td>$K^+$</td>
<td>0.190</td>
<td>0.81</td>
<td>0.51</td>
<td>1.69</td>
<td>0.40</td>
<td>2.85</td>
</tr>
<tr>
<td>$K^+$</td>
<td>0.250</td>
<td>0.77</td>
<td>0.53</td>
<td>2.11</td>
<td>0.33</td>
<td>2.69</td>
</tr>
<tr>
<td>$K^+$</td>
<td>0.324</td>
<td>0.73</td>
<td>0.56</td>
<td>2.60</td>
<td>0.26</td>
<td>2.51</td>
</tr>
<tr>
<td>$K^-$</td>
<td>0.210</td>
<td>0.80</td>
<td>0.51</td>
<td>1.83</td>
<td>0.38</td>
<td>2.80</td>
</tr>
</tbody>
</table>
SINGLE SPIN ASYMMETRIES IN CHARGED KAON ...


