Polyvinylferrocene for Noncovalent Dispersion and Redox-Controlled Precipitation of Carbon Nanotubes in Nonaqueous Media

Citation

As Published
http://dx.doi.org/10.1021/la401440w

Publisher
American Chemical Society (ACS)

Version
Author's final manuscript

Accessed
Sat Jun 24 08:38:46 EDT 2017

Citable Link
http://hdl.handle.net/1721.1/92366

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Polyvinylferrocene for noncovalent dispersion and redox-controlled precipitation of carbon nanotubes in nonaqueous media

Xianwen Mao, Gregory C. Rutledge*, and T. Alan Hatton*

Department of Chemical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA

*Corresponding Author. Email: tahatton@mit.edu

KEYWORDS: stimuli-responsive; carbon nanotube; dispersion; metallocene; noncovalent interaction

ABSTRACT

We report noncovalent dispersion of carbon nanotubes (CNTs) in organic liquids with extremely high loading (~2 mg mL⁻¹) using polyvinylferrocene (PVF). In contrast to common dispersants, PVF does not contain any conjugated structures or ionic moieties. PVF is also shown to be effective in controlling nanotube dispersion and re-precipitation because it exhibits redox-switchable affinity for solvents, while maintaining stable physical attachment to CNTs during redox transformation. This switchability provides a novel approach to creating CNT-functionalized surfaces. The material systems described here offer new opportunities for applications of CNTs in nonaqueous media, such as nanotube-polymer composites and organic liquid-based optical limiters, and expand the means of tailoring nanotube dispersion behavior via external stimuli, with potential applications in switching
devices. The PVF/CNT hybrid system with enhanced redox response of ferrocene may also find applications in high-performance biosensors and pseudo-capacitors.

INTRODUCTION

Effective dispersion of carbon nanotubes (CNTs) in solvents and polymer matrices remains a major challenge for both fundamental research and practical applications since pristine nanotubes form large bundles due to strong van der Waals interactions. The common strategies to disperse CNTs fall into two general categories: chemical functionalization and noncovalent surface modification. Chemical treatment inevitably involves disruption of the long-range π conjugation of the nanotube, leading to partial loss of electronic properties and mechanical strength. Therefore the noncovalent approach is considered advantageous in that it maintains the sp²-conjugated structures of CNTs and therefore preserves their intrinsic properties and performance.

Exploring new chemical structures that can noncovalently disperse pristine carbon nanotubes is of immense significance, since it allows niche design of a great variety of novel dispersants to extend and diversify applications of CNTs in various media. Chemical moieties commonly employed to disperse CNTs based on noncovalent interactions include nucleotide bases, pyrenes, porphyrins and long-range conjugated polymeric structures such as poly(3-alkylthiophene), poly(m-phenylene vinylene), and poly(arylene ethynylene). Noncovalent dispersion of CNTs in water dominates the literature, mainly because common dispersants contain large, rigid conjugated structures and/or ionic moieties. Conjugated structures typically have solubility or miscibility issues in organic solvents due to strong inter-chain π-π interactions, while ionic moieties give rise to a high level of hydrophilicity and thus low solubility in nonaqueous media. Therefore, highly effective dispersion of CNTs in nonaqueous media remains a great challenge; the CNT concentrations achieved in organic liquids using noncovalent-type dispersants are generally less than 0.1 mg mL⁻¹. The dispersion efficiency of nanotubes in organic solvents has been improved by
introducing an unconjugated segment to a conjugated polymer to increase its solubility in organic solvents, and by using a phase transfer catalyst to dissolve a hydrophilic ionic dispersant in nonaqueous media. Still, there exists no general chemical structure that can noncovalently disperse CNTs with high loading in organic solvents.

Furthermore, there has been growing interest in stimuli-responsive CNT dispersants for regulating dispersion and aggregation of nanotubes in solvents in order to develop nanotube-based responsive systems such as switching devices and sensors. Noncovalent-type dispersants that respond to light, pH, temperature, CO₂, and solvent polarity have been reported. To achieve highly effective control over dispersion and aggregation of nanotubes in solvents, the desired dispersant should exhibit remarkable change of affinity for solvents upon application of stimuli, while maintaining stable attachment to CNTs. For instance, poly(N-isopropylacrylamide) is a well-known thermo-responsive polymer, however, its physical interaction with CNTs is weak and not sufficient for effective stabilization of CNTs and/or control over their dispersion state. In contrast, pyrene-functionalized poly(N-cyclopropylacrylamide) (p-PNCPA) shows an improved ability to manipulate the dispersion state of CNTs by temperature since the PNCPA backbones exhibit thermo-responsive affinity for the solvent, while the pyrene side groups can attach stably to the nanotube surface during the temperature-induced transition. However, few attempts have been made to regulate the dispersion and aggregation behavior of CNTs using redox-responsive systems, possibly due to lack of redox moieties that exhibit strong noncovalent interactions with CNTs.

Here we report a redox-responsive, unconjugated, non-ionic polymer, polyvinylferrocene (PVF), that can noncovalently disperse pristine carbon nanotubes in organic solvents to a high degree, generating fully exfoliated CNT dispersions composed largely of individualized tubes and with extremely high nanotube solubility (~ 2 mg mL⁻¹). We also demonstrate that PVF is highly effective in controlling nanotube dispersion and aggregation because of its dual ability
to exhibit dramatic affinity change for organic solvents in response to redox stimuli39 as well as to maintain stable physical attachment to CNTs during redox transformation. Covalent functionalization of CNTs by ferrocene derivatives has been reported,40-43 however, there is no study dealing with noncovalent dispersion of pristine CNTs using ferrocene. Although physical mixtures of ferrocene and CNTs have been prepared and used for electrochemical sensing,44-47 it is not clear that efficient noncovalent dispersion of pristine CNTs by ferrocene was achieved in these reports. First, before mixing with ferrocene, the CNTs were subject to harsh acid treatment,44-47 which may already have disrupted seriously the sp²-conjugated structures of the nanotubes. Therefore, these preparation methods failed to preserve the intrinsic properties of pristine nanotubes. Second, the ability of ferrocene to disperse nanotubes was not demonstrated unambiguously. In the work by Huang et al.,44 the CNT suspension was obtained at a very low concentration (~10⁻⁵ mg mL⁻¹, which is 10⁵ times lower than the value we have obtained); at such a low concentration, the acid-treated CNTs may be dispersed merely by sonication without ferrocene as the dispersant. Also, the CNT suspension obtained in that study consisted of large nanotube bundles, indicating poor dispersion quality; in contrast, our work shows that PVF can disperse untreated, pristine CNTs into individualized tubes. In the other three reports,45-47 the ferrocene/CNT hybrid was merely a solid mixture of the two components, and no stable CNT dispersion was ever obtained. Therefore, our work provides the first experimental evidence that ferrocene-containing molecular systems can noncovalently disperse pristine carbon nanotubes with high efficiency.

Our study points to a new direction for the development of next-generation noncovalent-type dispersants that do not rely on any conjugated or ionic structures, since ferrocene moieties can be easily introduced to a variety of surfactants and polymers via facile synthetic protocols. This work also indicates a number of exciting, distinct functions of PVF for expanding CNT technologies that may be unattainable with previously reported dispersants.
First, in contrast to most water-based dispersants, PVF can disperse large amounts of CNTs in organic solvents with excellent dispersion quality. This is useful for realizing high CNT loading in polymers (e.g., polystyrene48), processing of which is often carried out in nonaqueous media, and for producing high-concentration nanotube dispersions in organic liquids for the design of CNT-based switchers, mode lockers, and optical limiters.49 Second, PVF’s redox-responsiveness allows for controlling dispersion and aggregation of nanotubes in organic solvents, which cannot be achieved using most stimuli-responsive dispersants due to their hydrophilicity; these include lysozyme,34 poly(acrylic acid),33 poly(N-isopropylacrylamide),35 poly-L-lysine,35 pyrene-functionalized poly(N-cyclopropylacrylamide),36 poly(ethylene glycol)-terminated malachite green,32 and a pyrene-containing amidinium cation.37 More interestingly, unlike other types of stimuli (e.g. pH, temperature, light and solvent polarity), redox stimuli can be effected \textit{locally} by electrochemical methods. A localized oxidative environment created by applying a proper electrochemical potential can induce deposition of PVF-wrapped nanotubes to conductive substrates, and electrochemical conditions can be used to manipulate this surface modification process. This provides a novel and controllable approach to creating CNT-functionalized surfaces with many potential applications such as nanotube-based catalysis and sensing. Third, combining conductive CNTs with PVF can facilitate electron transport in the polymer/nanotube hybrid system, leading to efficient utilization of ferrocene moieties with enhanced current response. Since ferrocene can undergo reversible and fast redox reactions and functions as a redox mediator for enzymes, the PVF/CNT hybrid may contribute to the development of high-performance pseudo-capacitors and biosensors, respectively.

EXPERIMENTAL SECTION

\textit{Materials}

Polyvinylferrocene (PVF, molecular weight = 50,000 g mol-1) was obtained from Polysciences and used as received. Multi-walled carbon nanotubes (MWCNTs) with a
diameter of 6 to 9 nm and purity of 95%, and single-walled carbon nanotubes (SWCNTs) with a diameter of 1.2 to 1.5 nm and purity of 70%, were obtained from Sigma Aldrich, and were used as received throughout the study, without further purification or modification unless otherwise noted.

Characterization

Transmission electron microscopy (TEM) images were taken using a JEOL-2010 TEM. Atomic force microscopy (AFM) images were taken with a Veeco Nanoscope V AFM with Dimension 3100 using the tapping mode in ambient air with silicon tips. The dynamic light scattering (DLS) measurement was performed using a Brookhaven BI-200SM light scattering system. Optical microscopy (OM) images were taken using a Carl Zeiss Axio Observer. Fourier transform infrared (FTIR) measurements were performed on a Nicolet Nexus 870 ESP spectrometer. X-ray photoelectron spectra (XPS) were recorded with a Kratos Axis Ultra instrument equipped with a monochromatic Al Kα source operated at 150 W. Scanning electron microscopy (SEM) images were taken using a Zeiss Supra-40 SEM. A Horiba Jobin Yvon Labram HR800 spectrometer was used for recording the Raman spectra using a 633 nm laser source. Thermogravimetric analysis (TGA) experiments were carried out using a TA Q50 instrument. UV-Vis absorption spectra were obtained using a Hewlet Packard 8453 spectrophotometer. Electrochemical experiments were performed using an AutoLab PGSTAT 30 potentiostat with GPES software.

Additional experimental details are provided in the Supporting Information.

RESULTS AND DISCUSSION

Dispersion efficiency of CNTs by PVF. With a PVF/CNT mass ratio of 2:1, stable CNT dispersions in chloroform were achieved readily via gentle bath sonication for 45 min at 0 °C without any pretreatment of the pristine nanotubes. Transmission electron microscopy (TEM) was used to examine the dispersion quality of CNTs by PVF in solution. The TEM image of a
PVF/multi-walled CNT (MWCNT) dispersion (Figure 1a) shows that the majority of MWCNTs were de-bundled individual nanotubes. As for the PVF/single-walled CNT (SWCNT) dispersion, the major component (Figure 1b) is believed to be completely de-bundled nanotubes with an average diameter around 2 to 5 nm, co-existing with another group of slightly bundled SWCNTs with an average diameter around 10 to 12 nm. Moreover, the CNT loadings obtained by using PVF as the dispersant (2.3 ± 0.1 mg mL⁻¹ for SWCNTs and 2.2 ± 0.1 mg mL⁻¹ for MWCNTs) exceeded significantly most of the reported values for CNT dispersions in organic solvents using other noncovalent-type dispersants²³⁻³⁰,⁴⁸ (Figure 1c). The method of determining the CNT solubility is presented in the Supporting Information (SI) Section S1.1. The PVF/CNT dispersions exhibited excellent long-term stability with negligible concentration change of dispersed nanotubes after four months standing at room temperature. This stability was monitored by light absorbance of the dispersions (for experimental details, see SI Section S1.2). We also demonstrate that the dispersion quality of CNTs in a hydrophobic polymer matrix, polystyrene, was improved through using PVF as the dispersant (SI Section S2). This is of great interest since the performance and function of CNT-polymer composites depend strongly upon the dispersibility of the nanotubes in polymer media.¹,⁴,²³,⁴⁸,⁵⁰

Noncovalent functionalization of CNTs by PVF. The PVF-modified CNTs were prepared by multiple cycles of sonication and centrifugation of the PVF/CNT dispersion to remove the unadsorbed polymers until no PVF was detectable by UV-Vis spectroscopy in the supernatant (for experimental details, see SI Section S1.4). Some representative high-resolution TEM (HR-TEM) images of PVF-modified MWCNTs (Figure 2a) reveal clearly the presence of self-assembled ferrocene clusters with an average diameter around 2 nm on the nanotube surfaces, indicating effective surface functionalization of CNTs by PVF. In contrast, the pristine MWCNTs (Figure 2b) exhibited clean surfaces. We suspect that multiple polymer chains adsorbed to one single MWCNT, possibly because PVF, which has a hydrodynamic
diameter of 7.4 nm in chloroform (as determined by dynamic light scattering (DLS), see SI Section S1.5), is not sufficiently long to wrap around one nanotube. Atomic force microscopy (AFM)-based phase imaging in air is a powerful tool to elucidate variations in material properties such as adhesion, friction, and viscoelasticity, and therefore can be used to distinguish between different materials. The AFM phase image of a PVF-modified MWCNT (Figure 2c) shows that it displayed a somewhat undulated surface with remarkable phase variations at several selected locations along the length of the nanotube. In contrast, the as-received MWCNTs (Figure 2d) had smooth surfaces with flat phase profiles. This suggests that the nanotube surface in the former case was covered by a different type of material, most likely the polymers. The Fourier transform infrared (FTIR) spectra of PVF-modified MWCNTs (Figure 2e) and SWCNTs (Figure 2f) showed characteristic ferrocene peaks around 1105, 1022, 1001 and 801 cm$^{-1}$. As a control, the FTIR spectrum for PVF is shown in Figure S10. High-resolution Fe 2p X-ray photoelectron spectra (XPS) for PVF-modified MWCNTs (Figure 2g) and SWCNTs (Figure 2h) exhibited two bands around 721 and 708 eV, corresponding to the Fe 2p$_{1/2}$ and Fe 2p$_{3/2}$ orbitals, respectively. Moreover, based on quantitative analyses of the XPS survey scans (see SI Section S1.6), the Fe/C ratio (atom %) was 0.5 % for PVF-modified SWCNTs, 0.9 % for PVF-modified MWCNTs, and 2.1 % for pure PVF. The Fe content was zero for as-received SWCNTs and MWCNTs based on their XPS survey scans. The FTIR and XPS analyses confirm the presence of ferrocene molecules in the PVF-modified CNTs, indicating that PVF was attached to both SWCNTs and MWCNTs.

Molecular-level interactions between PVF and CNTs. Raman spectroscopy was used to assess the electronic structure of CNTs before and after functionalization with PVF. The characteristic Raman bands of as-received SWCNTs and PVF-modified SWCNTs are shown in Figure 3a, from which we observed that, after treatment with PVF, the tangential vibrational mode (G band) and the second disordered band (D^* band) of SWCNTs upshifted
significantly from 1581.6 to 1588.9 cm\(^{-1}\) and from 2614.2 to 2626.7 cm\(^{-1}\), respectively (also see Figure 3b and 3c), while the radial breathing modes (RBM) and the first disordered band (D band) shifted slightly from 164.2 to 166.3 cm\(^{-1}\) and from 1318.5 to 1320.6 cm\(^{-1}\), respectively. Similar upshifts have also been observed in other SWCNT/dispersant systems and attributed to the molecular-level charge-transfer interactions between SWCNTs and dispersants.\(^{23,48,52}\)

The π-π stacking interactions between the cyclopentadiene rings of PVF and the nanotube surfaces were probed by UV-Vis spectroscopy for the change of the energy absorption of PVF after interacting with SWCNTs in solution, based on the procedure proposed by Costanzo et al.\(^ {53}\) (for details, see SI Section 1.7). PVF has a characteristic energy absorption band around 240 nm that corresponds to the \(\pi \rightarrow \pi^*\) transition of the cyclopentadiene ring of the ferrocene molecule.\(^ {54}\) We expect to see a change in the intensity of this band if the π-electrons of the cyclopentadiene rings interact with the π-conjugated CNT surfaces. To examine the energy absorption change, two different kinds of samples were prepared: (1) four samples in which only PVF was dissolved in tetrahydrofuran (THF) at concentrations of 20, 30, 40, and 50 µg mL\(^{-1}\) (named, reference samples); (2) another four samples in which a fixed quantity of SWCNTs (5 µg mL\(^{-1}\)) was present while the polymer concentrations were kept the same as the reference samples (i.e., 20, 30, 40, and 50 µg mL\(^{-1}\)). The absorption spectra of the four reference samples and the four SWCNT-containing samples are shown in Figure 3d. The intensities of the \(\pi \rightarrow \pi^*\) transition bands of the CNT-containing samples are suppressed remarkably relative to those of the reference samples, indicating strong π-π stacking interactions between the π-electron-rich cyclopentadiene rings of PVF and the CNTs.

Redox-controlled dispersion and precipitation of CNTs using PVF. Previous work in our group has shown that the affinity of ferrocene moieties for organic solvents is reduced significantly upon oxidation to ferrocenium ions.\(^ {39}\) Therefore we expect that well-dispersed PVF/CNT complexes in chloroform will become solvophobic upon oxidation of ferrocene,
leading to coprecipitation of polyvinylferrocenium (PVF\(^+\)) and carbon nanotubes. Since ferrocene can undergo highly reversible and fast redox reactions, with both the reduced and oxidized forms being chemically stable\(^ {55,56}\), we can take advantage of this behavior to manipulate reversibly the dispersion and precipitation of the PVF/CNT complexes. The redox-controlled dispersion/precipitation process is illustrated schematically in Figure 4a. We also demonstrate the ability of PVF to maintain stable attachment to the nanotubes during redox transformation by applying electrochemical stimuli.

We found that PVF exhibited switchable affinity for chloroform through the use of FeCl\(_3\) and KI\(^ {57}\) to oxidize and reduce, respectively, the ferrocene moieties (see SI Section S3). Based upon this behavior, we used the same redox stimuli to regulate the dispersion and precipitation of the PVF/CNT complexes in chloroform (Figure 4b). Well-dispersed PVF/MWCNT complexes (0.01 mg mL\(^{-1}\), PVF:CNT = 1:1 by mass) in chloroform precipitated out immediately upon addition of an equimolar amount of FeCl\(_3\) with respect to ferrocene. The weight loss of this precipitate during thermogravimetric analysis (TGA, Figure S11) was 57 % at 550 °C, whereas the weight losses of untreated MWCNTs and pure PVF under the same experimental conditions were 1 and 92 %, respectively. The TGA results indicate that the PVF/CNT ratio in the precipitate was about 1:1 (wt/wt). This ratio is consistent with the initial composition of the dispersion, confirming complete coprecipitation of CNTs and PVF upon oxidation. Sonication alone was insufficient to redisperse the aggregated CNTs. Addition of an equimolar amount of KI to reduce PVF\(^+\), followed by sonication for 5 min, resulted in well-dispersed PVF/CNT complexes again. The dispersion-precipitation-redispersion cycle could be repeated at least 10 times without observable changes.

To investigate whether PVF dissociates from CNTs after oxidation, the PVF/CNT complex in the dispersion was subjected to electrochemical oxidation, which can provide a localized oxidative environment on the electrode surface. A potential of 0.8 V versus
Ag/AgCl (which can provide full conversion of ferrocene to ferrocenium) was applied to a carbon paper (CP) electrode that was immersed in the PVF/CNT dispersion, with 0.1 M tetrabutylammonium perchlorate (TBAP) as the background electrolyte. For comparison, electrochemical oxidation under the same experimental conditions was also performed in dispersions containing PVF alone and MWCNTs alone, respectively. Figures 4c-e give schematic illustrations of the electrochemical oxidation processes in different dispersions and corresponding scanning electron microscopy (SEM) images of the electrode surfaces after oxidation for 30 min (higher-magnification images are shown in Figure S12). See SI Section S1.9 for experimental details.

When comparing the surface morphology of an untreated CP electrode (Figure S13) to that of the CP electrode treated by electrochemical oxidation in the PVF/chloroform solution (Figure 4c and S12a), we observed the formation of polymer layers on the electrode surface due to the precipitation of PVF⁺. This is expected because the polymer becomes solvophobic once it arrives at the electrode surface and is oxidized. The existence of PVF on the electrode surface was also verified by cyclic voltammetry (CV), as discussed later.

The fiber morphology of the CP electrode after oxidation in the MWCNT/chloroform dispersion (Figure 4d and S12b) was the same as that of the pristine CP electrode (Figure S13). This suggests that MWCNTs alone could not be deposited oxidatively onto the electrode. The absence of CNTs on the electrode surface in this case was also confirmed by Raman spectroscopy, as discussed later.

When electrochemical oxidation is applied to the PVF/CNT dispersion, an important consideration is whether the CNTs can be deposited together with their polymer shells. If PVF were detached from the nanotubes during oxidation, the electrode surface after oxidation would not contain CNTs, because the CNTs alone, without the attached PVF layers, cannot be deposited. Therefore, the successful co-deposition of CNTs and PVF would suggest stable attachment of PVF to CNTs during redox transformation. Figure 4e (also, Figure S12c)
shows that, when the PVF/CNT dispersion was subjected to the electrochemical oxidation, a solid film that was morphologically different from the pure polymer film (Figure 4c and Figure S12a) was formed on the electrode surface. A high-resolution SEM (HR-SEM) image of this solid film reveals clearly the interconnected CNTs distributed uniformly in the polymer film (Figure 4f). Notably, this successful deposition of nanotubes also indicates a novel, convenient route towards preparation of CNT-functionalized surfaces through the use of a redox-responsive nanotube dispersant.

Raman spectroscopy was used to confirm the presence of MWCNTs on the CP electrode treated by electrochemical oxidation in the PVF/CNT dispersion. Different types of carbonaceous materials can be easily distinguished by the R_I-values obtained from their Raman spectra (Figure 4g), which is defined as the intensity of the D-band around 1330 cm$^{-1}$ divided by that of the G-band around 1585 cm$^{-1}$.58 The pristine CP electrode had an R_I-value of 0.5. After oxidation at 0.8 V for 30 min in a control solution (i.e., chloroform with only the background electrolyte), the D-band disappeared and the oxidation-treated CP electrode had an R_I-value of zero (see the spectrum in Figure 4g labelled as “ox-CP”). One possible explanation for this could be that the edge-plane sites of the carbon paper were affected by the electrochemical oxidation process, and the D-band intensity of carbonaceous materials is very sensitive to the density of the edge-plane sites. The CP electrode electrochemically treated in a MWCNT/chloroform dispersion, representing the deposition process shown in Figure 4d, had a Raman spectrum (labelled as “d-CP”) that was very similar to that of ox-CP. This further confirms that this electrode (d-CP) did not have any CNTs deposited, in accord with the SEM image in Figure 4d. In contrast, the PVF/CNT co-deposited CP electrode exhibited a pronounced D peak and an increased R_I-value (0.9), compared to those of the pristine CP, ox-CP and d-CP. This was due to the deposited nanotubes, which had a strong D peak and a high R_I-value of 1.4 in their pristine state. For calculation of the R_I-values, see SI Section S1.10.
The incorporation of nanotubes into the PVF film was also verified by comparing the current response of the PVF/CNT co-deposited electrode with that of the PVF deposited electrode. The current responses were measured by CV in 0.5 M NaClO₄ aqueous solution (for experimental details, see SI Section S1.11). The quantities of PVF deposited on both electrodes were kept the same by controlling the charge passed on the electrode surfaces at 80 mC during electrochemical deposition. As shown in Figure 4h, the CV curve of the PVF/CNT co-deposited electrode obtained at a scan rate of 0.1 V s⁻¹ exhibited an anodic peak current of 1.0 mA at 0.43 V and a cathodic peak current of −1.1 mA at 0.21 V, whereas the CV curve of the PVF-deposited electrode obtained at the same scan rate showed an anodic peak current of 0.4 mA at 0.41 V and a cathodic peak current of −0.4 mA at 0.24 V. The peak positions are in good agreement with the reported values for PVF. This confirms the successful deposition of PVF onto the carbon paper electrodes in both cases, and complements the observed morphological changes in the SEM images (Figure 4c and 4e). More importantly, the peak currents of the PVF/CNT co-deposited electrode were amplified to about twice the values obtained on the PVF deposited electrode. This increase in the current response was attributed to the incorporation of highly conductive nanotubes into the PVF film, which may facilitate electron transport throughout the polymer matrix and therefore allow more efficient redox transformation of ferrocene. The CV curves obtained at various scan rates (Figure S14a and S14b) showed that both electrodes exhibited well-defined voltammetric responses of PVF; the anodic peak currents at all scan rates obtained on the PVF/CNT co-deposited electrode were significantly higher than the values obtained on the PVF deposited electrode (Figure S14c).

CONCLUSION

In summary, we show that PVF can noncovalently disperse CNTs to individualized tubes with extremely high concentrations in organic solvents. This offers new opportunities for the design of new noncovalent-type ferrocene-based dispersants that do not rely on any conjugated or ionic moiety, and expands CNT technologies in nonaqueous media such as
CNT-polymer composites and organic liquid-based optical limiters. We also demonstrate that PVF’s redox-tunable affinity for organic solvents, together with its stable attachment to the nanotubes during redox transformation, allows for controllable dispersion and aggregation of nanotubes, opening up new avenues for tailoring CNT dispersion behavior via external stimuli, with potential applications in nanotube-based responsive systems such as switching devices. This behavior further provides an electrochemically-controlled approach to generating CNT-functionalized surfaces of different shapes, which can be used for sensing and catalysis. Moreover, since ferrocene is a well-known redox mediator for biosensing and can undergo reversible and fast redox reactions, the PVF/CNT hybrid system, with its greatly enhanced current response, can be potentially used for high-performance biosensor and pseudo-capacitive energy storage devices.

ASSOCIATED CONTENT

Supporting Information. Additional experimental details, improved dispersion quality of CNTs in polystyrene by PVF, PVF’s redox-switchable affinity for chloroform, and supplementary figures. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*T.A.H. (Email: tahatton@mit.edu)

ACKNOWLEDGMENT

We gratefully acknowledge the financial support by U.S. Department of Energy.

REFERENCES

Figure 1. Dispersion of CNTs by PVF. (a, b) TEM images of (a) a PVF/MWCNT dispersion and (b) a PVF/SWCNT dispersion. The PVF/CNT mass ratio in both cases is 2:1. (c) Comparison of CNT dispersibility in organic solvents using various noncovalent-type dispersants.
Figure 2. Noncovalent functionalization of CNTs by PVF. (a, b) HR-TEM images of (a) PVF-modified MWCNTs and (b) untreated MWCNTs, showing the self-assembled ferrocene clusters on the nanotube surface in the former case. (c, d) AFM phase images of (c) a PVF-modified MWCNT and (d) untreated MWCNTs, together with the phase profiles of the marked locations, showing the difference in phase variation between the two cases. (e, f) FTIR spectra of (e) PVF-modified MWCNTs and untreated MWCNTs, (f) PVF-modified SWCNTs and untreated SWCNTs. (g, h) High resolution XPS Fe 2p spectra for (g) PVF-modified MWCNTs and (h) PVF-modified SWCNTs.
Figure 3. Molecular-level interactions between PVF and CNTs. (a) Raman spectra of pristine SWCNTs and PVF-modified SWCNTs. Magnifications of the G and D' bands are shown in (b) and (c), respectively, showing the significant upshifts of the maxima of the G and D' bands of the SWCNTs after treatment with PVF. (d) Energy absorption bands from the $\pi \rightarrow \pi^*$ transition of the cyclopentadiene rings of PVF for the reference samples (solid lines) and the CNT-containing samples (dash lines) showing the suppression of the energy bands when SWCNTs were present. The reference sample and the CNT-containing sample labeled by the same color contain the same PVF concentration. The numbers with different colors indicate the concentrations of PVF in units of μg mL$^{-1}$. The concentrations of SWCNTs in the CNT-containing samples were 5 μg mL$^{-1}$.
Figure 4. Redox-controlled dispersion and precipitation of CNTs using PVF. (a) Conceptual illustration of the redox-controlled dispersion and precipitation of the PVF/CNT complexes based on PVF’s switchable affinity for the solvent. Blue and red colors indicate the reduced and oxidized state of PVF, respectively. (b) Photographs of a PVF/MWCNT dispersion, the same dispersion after addition of FeCl₃, showing the precipitated nanotubes, and the same dispersion after addition of KI followed by 5 min sonication, showing the redispersed nanotubes. (c) – (e) Schematic representations of the electrochemical oxidation processes and corresponding SEM images of the electrode surfaces obtained from different solutions containing (c) PVF, (d) pristine MWCNTs, and (e) PVF/ MWCNT complexes. Higher magnification images are shown in Figure S13. (f) A HR-SEM image of the surface of the PVF/MWCNT co-deposited electrode. (g) Raman spectra of the untreated carbon paper (CP) electrode (black), the oxidation-treated CP electrode in a control solution with only chloroform and background electrolyte (ox-CP, blue), the CP electrode treated in a MWCNT/chloroform solution as shown in Figure 3d (d-CP, purple), the PVF/MWCNT co-deposited CP electrode (green), and the pristine MWCNTs (red). (h) Cyclic voltammograms obtained on a PVF deposited electrode and a PVF/MWCNT co-deposited electrode in 0.5 M NaClO₄ aqueous solution at a scan rate of 0.1 V s⁻¹. The quantities of deposited PVF in both cases are the same.
Sonication

Oxidation

Reduction

PVF

PVF

+ 0.8 V
Electrode

+ 0.8 V
Electrode

+ 0.8 V
Electrode

TOC Figure