Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems

Nicholas C. Harris, Davide Grassani, Angelica Simbula, Mihir Pant, Matteo Galli, Michael Hochberg, Dirk Englund, Daniele Bajoni, and Christophe Galland

1Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy
3Coriant Advanced Technology Group, 1415 West Diehl Road, Naperville, Illinois 60563, USA
4Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
5Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

(Received 30 September 2014; published 19 December 2014)

We demonstrate the generation of quantum-correlated photon pairs combined with the spectral filtering of the pump field by more than 95 dB on a single silicon chip using electrically tunable ring resonators and passive Bragg reflectors. Moreover, we perform the demultiplexing and routing of signal and idler photons after transferring them via an optical fiber to a second identical chip. Nonclassical two-photon temporal correlations with a coincidence-to-accidental ratio of 50 are measured without further off-chip filtering. Our system, fabricated with high yield and reproducibility in a CMOS-compatible process, paves the way toward large-scale quantum photonic circuits by allowing sources and detectors of single photons to be integrated on the same chip.

DOI: 10.1103/PhysRevX.4.041047

Subject Areas: Optics, Photonics, Quantum Information

1. INTRODUCTION

Integrated photonic circuits have emerged as a promising platform for quantum information processing [1–3]. The most mature technology for scalable photonic circuits is based on CMOS-compatible materials such as silicon, silicon nitride, and silica. In these platforms, pairs of quantum-correlated photons produced by spontaneous four-wave mixing (SFWM) are an essential resource for quantum technologies including linear quantum optics experiments [4–7] and quantum sensing [8].

Photon-pair generation via SFWM involves pumping a nonlinear medium (such as silicon) with a strong laser field, which must subsequently be filtered to isolate the much weaker signal and idler fields and perform single-photon detection. However, for scalable integration into quantum optics circuits, two challenges must be solved: the on-chip rejection of the pump field and spectral demultiplexing. In particular, and despite very recent attempts [9,10], the filtering of the pump field, which requires an extinction on the order of approximately 100 dB, has never been achieved without using off-chip filters.

Here, we demonstrate the generation of time-correlated photon pairs in a silicon microring with on-chip rejection of the pump field. We also perform chip-to-chip transfer of the photon pairs via an optical fiber, elimination of the pump field, and signal and idler demultiplexing before off-chip single-photon detection. A set of four single-photon sources with pump rejection and demultiplexing circuitry in a 3.3-mm² area is fabricated in a standard CMOS silicon-photonic process featuring high yield and reproducibility.

The source components are shown in Fig. 1. Photon-pair generation takes place in an electrically tunable ring resonator [11–15] via SFWM [16–21] [Figs. 1(a) and 1(b)]. A first stage of pump rejection by approximately 65 dB is achieved using a notch filter implemented by a 2.576-mm-long distributed Bragg reflector (DBR) consisting of a corrugated waveguide [Fig. 1(c)] [22]. Signal and idler photon demultiplexing is performed using add-drop microring resonators as shown in [Fig. 1(d)]. In a first experiment performed on a single chip [chip A, Fig. 1(e)], two thermally tunable add-drop ring resonators are used to filter the remaining pump light, thereby totaling close to a 100-dB extinction ratio. At the output of chip A, the pump power is less than 1/10 of the combined signal and idler fields.

In a second experiment, we transfer the photon pairs from chip A via a silica-fiber connection to a similar system on a second chip [chip B, Fig. 1(f)] in which we filter any residual pump with the DBR and use the add-drop rings to demultiplex the signal and idler photons [Fig. 1(d)]. These photon pairs are then routed to different waveguides before detection with off-chip superconducting-nanowire single-photon detectors (SNSPDs) and time-correlation...
measurements. The coincidence-to-accidental ratio exceeds 50 for a continuous pump power of approximately 0.3 mW, confirming successful on-chip full suppression of the pump light and demultiplexing of signal and idler photons. Together with previous realizations of (i) integrated laser sources [24–30], (ii) on-chip sources of quantum states of light [17,19,20,75] when the pump (ω_p), signal (ω_s), and idler (ω_i) frequencies match a triplet of ring resonances fulfilling $\omega_i + \omega_s = 2\omega_p$. For a given pump power, the flux of photon pairs produced by SFWM is proportional to the ratio Q^3/R^2, where Q is the quality factor and R the radius of the ring [18,75]. Based on these considerations, we design the pair-generation ring [Fig. 1(b)] with a radius of 15 μm, leading to an expected free spectral range of 6 nm. To allow for spectral tunability without compromising on the quality factor, we add an inner semiring of doped silicon to form a resistive heater.

II. SYSTEM DESIGN

Pair generation.—As a source of photon pairs, we employ a silicon ring resonator evanescently coupled to the input waveguide. (See the Supplemental Material for further details [23]) Field enhancement inside the resonator results in an increased generation of correlated photon pairs (with respect to non-cavity-based generation methods) [17,19,20,75] when the pump (ω_p), signal (ω_s), and idler (ω_i) frequencies match a triplet of ring resonances fulfilling $\omega_i + \omega_s = 2\omega_p$. For a given pump power, the flux of photon pairs produced by SFWM is proportional to the ratio Q^3/R^2, where Q is the quality factor and R the radius of the ring [18,75]. Based on these considerations, we design the pair-generation ring [Fig. 1(b)] with a radius of 15 μm, leading to an expected free spectral range of 6 nm. To allow for spectral tunability without compromising on the quality factor, we add an inner semiring of doped silicon to form a resistive heater.

Pump rejection.—We expect the ratio between the pump power inside the ring resonator and the generated signal and idler beams to be of the order of 10^9 to 10^{10}, and thus, pump rejection of approximately 100 dB is required. Achieving pump-rejection levels on this order constitutes
the most demanding requirement for the system. The center-reflection wavelength of the DBR notch filter \cite{22} is designed to be $\lambda_0 = 2n_{\text{eff}}\Lambda \sim 1536$ nm, as defined by the Bragg period $\Lambda = 320$ nm and the effective index $n_{\text{eff}} \sim 2.4$. We design the width of the reflection band to be smaller than the generation-ring free spectral range [see Fig. 1(c)] but large enough to avoid the need for delicate spectral tuning. This width depends on the refractive-index contrast of the grating (given here by the amplitude of the sidewall corrugation). A 60-nm modulation of the waveguide width is found to yield spectral linewidths of 1–2 nm. The transmission in the reflection band drops exponentially with the number of grating periods. While developing the DBR device, we measure the extinction ratio of approximately 20–25 dB for devices with 2000 periods—prompting the choice of 8000 periods for the system presented here. To reduce the total footprint, we introduce a bend halfway in the DBR waveguide, which leads to weak Fabry-Perot effects.

Signal or idler demultiplexing.—The add-drop ring resonators used to filter the remaining pump and/or route signal and idler photons are designed to cause minimal excess loss and to be thermally tunable by an embedded resistive heater formed by doped silicon regions contacted to the metal interconnect layer. To minimize losses due to free-carrier absorption, we use a low dopant concentration in the waveguide region overlapping with the optical mode. To maximize the collection efficiency in the drop port (where single photons are routed), we design the device to be overcoupled.

Optical in or out coupling.—An array of optimized nonuniform focusing grating couplers \cite{76} offers a convenient and efficient (4-dB insertion loss; see the Supplemental Material \cite{23}) way to couple light between a single-mode fiber array and the silicon waveguides. Moreover, the large-mode field diameter of the grating couplers (10 μm) enables stable optical coupling.

III. FABRICATION

The system is fabricated in a CMOS-compatible foundry service (OpSIS) with 248-nm lithography on an 8-in silicon-on-insulator wafer with a 220-nm-thick epitaxial silicon layer (bulk refractive index $n_{\text{Si}} = 3.48$ at 1550 nm).
on top of 2 μm of buried oxide and covered by 2 μm of oxide cladding (bulk index $n_{\text{SiO}_2} = 1.46$). The grating couplers and rib waveguides are defined by 60- and 130-nm-deep anisotropic dry etching, respectively. A final etch step down to the buried oxide is used to pattern the 500-nm-wide by 220-nm-tall ridge waveguides designed to be single mode in the 1500–1600-nm wavelength range. (These waveguides are used for routing throughout the chip.) N-type doping of the tunable ring resonators is realized by phosphorous implantation on the exposed silicon before oxide cladding. Dopants are activated by a rapid thermal anneal at 1030 °C for 5 s. The back end of the line consists of two levels of aluminum interconnects contacted by aluminum vias. Further technical details on the process can be found in Ref. [77]. A micrograph of the chip area containing four similar complete systems is reproduced in Fig. 2.

IV. SINGLE-CHIP PUMP REJECTION

A high-resolution transmission spectrum of the complete system is shown in Fig. 3(a). This spectrum is acquired using a tunable laser and a high dynamic-range power meter. The dip around 1525 nm is due to the DBR and is detailed in the high-resolution spectrum of Fig. 3(b). Note that weak Fabry-Perot effects in the spectrum are the result of the waveguide-bend section between the sections of DBR. In control experiments, we observe that some of the laser light is directly coupled from the input to the output fibers—without passing through the waveguides—by scattering and reflections in the SiO$_2$ cladding and Si substrate. As a result, the measured rejection of the DBR is reduced with respect to the expected value of 80–100 dB to approximately 65 dB with an insertion loss of approximately 3 dB. Weak Fabry-Perot resonances are visible near the red edge of the stop band due to the cavity formed by the bend separating the two halves of the DBR. Better rejection could be achieved in a future implementation by having a larger spatial separation between the input and output grating couplers to avoid collecting scattered pump light.

The wider Lorentzian resonances in the spectra are due to the two final add-drop rings, with a quality factor (Q) of approximately 4×10^3 and an insertion loss of approximately 1.5 dB. The narrow Lorentzian resonances are due to the photon-pair-generation ring, with a Q of approximately 4×10^4 (corresponding to a photon lifetime of about 30 ps). Such a high quality factor is of fundamental importance in providing a sufficiently high generation rate at an easily achievable mW pump-power level [18] and for ensuring emission of quantum states with narrow bandwidth [79].

The spectrum is attenuated by approximately 1 dB due to a directional coupler designed for monitoring of the system.
under operation. The sinusoidal envelope is due to the
grating-coupler spectral response (measured insertion loss
of 5 dB) and depends on the tilt angle of the input and
output fibers. The transmission from a grating-coupler loop
is also shown in Fig. 3(a) for comparison. The fiber-array
tilt angle is chosen to optimize the coupling around the
pump wavelength (approximately 1525 nm).

The setup for the first experiment is shown in Fig. 1(e).
The external pump laser is cleaned through a tunable band-
pass filter to suppress the sidebands below the expected
SFWM yield. It is coupled to chip A via an eight-port fiber
array aligned with the focusing grating couplers [76]. The
pump laser and the generation ring are tuned in resonance
with each other so that their wavelengths lie within the
DBR stop band [Fig. 3(a)]. Inside the ring, signal and idler
photons are spontaneously generated in pairs at resonance
frequencies symmetrically detuned from the pump. The
pump light is first rejected by the DBR [Fig. 3(b)] and then
filtered by the two add-drop filters, which are tuned on
resonance with the pump wavelength.

The spectrum of the light collected at the common
throughport, for a coupled laser power of 1 mW, is plotted
in Fig. 3(d). Residual light from the pump is still visible
around 1524.7 nm, but it is greatly reduced. We estimate a
total extinction ratio of about 95–100 dB. Notice that part of
the amplified spontaneous emission (ASE) of the laser is still
visible in our spectrum [inset of Fig. 3(d)]. The remaining
ASE could be suppressed by using a filter with narrower
bandwidth (instead of 0.15 nm here) to clean the laser line
(which could easily be implemented on chip, too). The sum
of the intensities in the first five signal peaks (respectively, in
the first five idler peaks) is a factor of 8 (respectively, 10)
larger than the residual laser. Remaining pump photons
follow Poissonian statistics and are not correlated in time;
therefore, this level of suppression is already sufficient for
many quantum optical experiments [80] like heralding of
single photons or entanglement generation.

The dependence of signal and idler intensities on the
pump power is plotted in Fig. 3(e). Both intensities follow
the quadratic dependence on pump power expected for
SFWM, and around 1-mW on-chip pump-power saturation
due to two-photon absorption [15] becomes visible. To
measure the photon rate at the sample output, we have
 calibrated our CCD camera using a high-sensitivity power
meter. The internal generation rate, on the order of several
MHz, is then estimated by subtracting the losses on the path
from the output to the generating ring to the spectrometer.

V. CHIP-TO-CHIP TRANSFER,
DEMULTIPLEXING, AND
CORRELATION MEASUREMENTS

In a second experiment [Fig. 1(f)], we generate photon
pairs and filter the pump beam on chip A using the
generation-microring resonator and DBR. The signal and
the idler demultiplexing rings are both tuned out of
resonance from pump, signal, and idler wavelengths, so
that they transmit all of them to the drop port. The output of
chip A is transferred to a similar system on chip B via an
optical fiber. The DBR of chip B is tuned on resonance with
the pump wavelength (proving an additional approximately
65 dB of pump isolation) by temperature control of the full
chip [see Supplemental Fig. 3(d) [23]], and the add-drop
filters on chip B are tuned individually to perform demulti-
xplexing of the signal and idler photons [see Fig. 1(d)]
while further eliminating residual pump photons. The total
pump isolation in this experiment is approximately 150 dB.
The total loss for the signal (idler) photons collected on
the first (second) SNSPD is 36.14 dB (39.14 dB), as shown
in Table I.

Figures 4(a) and 4(b) show the spectrum of the common
throughport on chip B (a) before and (b) after tuning the
add-drop rings. It demonstrates (i) the efficient generation
of signal and idler photons by SFWM at the resonance
wavelengths of the pair-generation ring and (ii) the almost
complete rejection of the pump beam (missing central peak
around 1525 nm). The pronounced decrease in the intensity
of the generated fields moving away from the pump
wavelength is due to the spectral response of input and
output grating couplers [see Fig. 3(a)].

As desired, the signal and idler emission lines are not
visible in the throughput after tuning. The corresponding
spectra from the signal and idler throughports are shown in
Figs. 4(c) and 4(d), respectively. Each resonance is appropri-
ately routed to an individual drop port, and no trace of the
pump or of the opposite resonance is visible. Our data
indicate the first realization of on-chip SFWM with pump

<table>
<thead>
<tr>
<th>(Chip) Cause</th>
<th>Signal (dB)</th>
<th>Idler (dB)</th>
<th>Total (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) DBR</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(A) 1:2 multi-mode interferometer [81]</td>
<td>0.28</td>
<td>0.28</td>
<td>0.56</td>
</tr>
<tr>
<td>(A) Phase shifter [78]</td>
<td>0.23</td>
<td>0.23</td>
<td>0.46</td>
</tr>
<tr>
<td>(A) Monitoring tap</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(A) Output grating coupler</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>(A) Waveguide loss [77]</td>
<td>0.31</td>
<td>0.31</td>
<td>0.62</td>
</tr>
<tr>
<td>(B) Input grating coupler</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>(B) DBR</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(B) 1:2 multi-mode interferometer [81]</td>
<td>0.28</td>
<td>0.28</td>
<td>0.56</td>
</tr>
<tr>
<td>(B) Phase shifter [78]</td>
<td>0.23</td>
<td>0.23</td>
<td>0.46</td>
</tr>
<tr>
<td>(B) Monitoring tap</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(B) Add-drop filter</td>
<td>1.5</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>(B) Waveguide loss [77]</td>
<td>0.31</td>
<td>0.31</td>
<td>0.62</td>
</tr>
<tr>
<td>(B) Output grating coupler</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>10</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>36.14</td>
<td>39.14</td>
<td>75.28</td>
</tr>
</tbody>
</table>
rejection and signal or idler demultiplexing achieved without any off-chip postfiltering elements.

We measure two-photon time correlations between the two drop-port outputs of chip \(B\) using two SNSPDs with 10% and 5% quantum efficiency, without external filters. The bias current is set to have dark-count rates of the order of 300 Hz. An example of coincidence measurement is shown in Fig. 4(e). A clear coincidence peak is visible at zero time delay. Accidental events outside the central peak are mainly caused by coincidences between dark counts and the detection of only one photon in a pair.

The dependence of the coincidence rate after chip \(B\) on the pump power inside chip \(A\) is shown in Fig. 4(f). The dependence closely follows the combined signal and idler emission rates, reported in the figure after rescaling for clarity. The total losses on the coincidences are given from the product of the total losses on both channels, from the generating ring to the detectors, amounting to a total of 75.28 dB (see the discussion in the Supplemental Material [23]). Finally, in Fig. 4(g), we show the coincidence-to-accidental ratio \([19,80,82]\) as a function of the pump power in chip \(A\). A value of \(50 \pm 6\)—far above the classical limit of 2 and allowing for high-fidelity preparation of entangled-photon pairs or heralded single photons—is achieved under 0.3-mW pump power.

VI. DISCUSSION AND OUTLOOK

Quantum information processing based on linear-optics quantum computing will require efficient single-photon sources and detectors as well as feed-forward operations [71,83]. The potential for multiplexing the emission of parametric single-photon sources [84,85] could enable high-efficiency state preparation for quantum computation. The system presented here permits the integration of single-photon sources and detectors on a single chip, providing a means of achieving large-scale systems for linear-optics quantum computing.

Boson sampling has received significant attention [4,64,67] for its promise to demonstrate the first example of quantum speedup over the fastest known classical algorithm. Leveraging the reproducibility and high yield of integrated photonics, our system could be tiled to enable boson sampling with many sources. The signal photon could be used as a herald for the idler photon (or vice versa) in a scheme such as scattershot boson sampling [86] where the measurements are
postselected based on the number of photons that enter the quantum random walk simultaneously. The dimension of the input state can thereby be scaled up in a probabilistic scheme.

Finally, it has been shown that the type of SFWM source used here produces time-energy entangled-photon pairs [87]. These time-energy entangled-photon pairs generated with our architecture could enable fully integrated quantum-key-distribution emitters and receivers based on time-energy entanglement protocols [63,88]. The geometry of nanoscale silicon waveguides can be engineered to achieve both normal and anomalous dispersion, as necessary to realize this protocol.

VII. CONCLUSION

We have demonstrated, for the first time in a monolithic, tunable silicon-photonic chip, the generation of quantum-correlated photon pairs in an electrically tunable ring resonator and the rejection of the pump field by more than 95 dB using a Bragg reflector and tunable ring filters—enabling the integration of single-photon sources and single-photon detectors on chip [47,48]. Moreover, we achieved complete pump rejection and spatial demultiplexing of signal and idler photons by employing two identical chips connected by an optical fiber link. With no additional off-chip filtering, we measured signal-idler temporal correlations with a coincidence-to-accidental ratio of 50 at the output of the demultiplexing chip, confirming their nonclassical nature. Each source, whose total footprint is the output of the demultiplexing chip, confirming their relations with a coincidence-to-accidental ratio of 50 at chips connected by an optical fiber link. With no additional ing of signal and idler photons by employing two identical achieved complete pump rejection and spatial demultiplexing of quantum-correlated photon pairs in an electrically tunable silicon-photonic chip, the generation of quantum-enabling the integration of single-photon sources and emitters and receivers based on time-energy entangled-photon pairs generated with our architecture could enable fully integrated quantum-key-distribution emitters and receivers based on time-energy entanglement protocols [63,88]. These time-energy entangled-photon pairs generated with our architecture could enable fully integrated quantum-key-distribution emitters and receivers based on time-energy entanglement protocols [63,88]. The geometry of nanoscale silicon waveguides can be engineered to achieve both normal and anomalous dispersion, as necessary to realize this protocol.

ACKNOWLEDGMENTS

N. C. H. acknowledges that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. This work was supported in part under a grant from the Air Force Research Laboratory (AFRL/RITA), Grant No. FA8750-14-2-0120. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the AFRL. The authors are also grateful for the support of Portage Bay Photonics and of Gernot Pomrenke of the AFOSR, who has supported the broader research program of Optoelectronic Systems Integration in Silicon over multiple programs. D. G., D. B., and M. G. acknowledge support from Ministero dell’Istruzione, Università e Ricerca through the Fondo per gli Investimenti della Ricerca di Base “Futuro in Ricerca” project RBFR08XMYV, from the foundation Alma Mater Ticinensis, and by Fondazione Cariplo through Project No. 2010-0523 Nanophotonics for thin-film photo-voltaics. C. G. is supported by an Ambizione Fellowship from the Swiss National Science Foundation. C. G. thanks Sébastien Tanzilli for valuable comments and discussions. N. C. H. and D. G. contributed equally to this work.

