Search for first generation scalar leptoquarks in the evjj channel in pp collisions at s = 7 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for first generation scalar leptoquarks in the $e\nu jj$ channel in pp collisions at $\sqrt{s} = 7$ TeV

CMS Collaboration

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 26 May 2011
Received in revised form 19 July 2011
Accepted 28 July 2011
Available online 12 August 2011
Editor: M. Doser

Keywords:
LHC
CMS
Physics
Exotica
Leptoquarks

A B S T R A C T

A search for pair-production of first generation scalar leptoquarks is performed in the final state containing an electron, a neutrino, and at least two jets using proton–proton collision data at $\sqrt{s} = 7$ TeV. The data were collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 36 pb$^{-1}$. The number of observed events is in good agreement with the predictions for standard model processes. Prior CMS results in the dielectron channel are combined with this electron + neutrino + jet search. A 95% confidence level combined lower limit is set on the mass of a first generation scalar leptoquark at 339 GeV for $\beta = 0.5$, where β is the branching fraction of the leptoquark to an electron and a quark. These results represent the most stringent direct limits to date for values of β greater than 0.05.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The standard model (SM) of particle physics has an intriguing but ad hoc symmetry between quarks and leptons. In some theories beyond the SM, such as SU(5) grand unification [1], Pati–Salam SU(4) [2], composite models [3], technicolor [4–6], and superstring-inspired E_8 models [7], the existence of a new symmetry relates the quarks and leptons in a fundamental way. These models predict the existence of new bosons, called leptoquarks. The leptoquark (LQ) is coloured, has fractional electric charge, and couples to a lepton and a quark with coupling strength λ. The leptoquark decays to a charged lepton and a quark, with unknown branching fraction β, or a neutrino and a quark, with branching fraction $(1 - \beta)$. A review of LQ phenomenology and searches can be found in Refs. [8,9]. Constraints from experiments sensitive to flavour-changing neutral currents, lepton-family-number violation, and other rare processes [10] favour LQs that couple to quarks and leptons within the same SM generation, for LQ masses accessible to current colliders.

The first generation scalar LQs studied in this Letter have spin 0 and couple only to electron or electron neutrino and up or down quark. Measurements at the HERA electron–proton collider constrain the coupling λ to be less than the electromagnetic coupling for LQ mass, M_{LQ}, less than 300 GeV [11,12]. Prior to the results of the Large Hadron Collider (LHC) experiments, direct limits on the mass of the first generation scalar LQ have also been set by the Tevatron [13,14] and LEP [15–18] experiments, assuming prompt LQ decay. The Compact Muon Solenoid (CMS) experiment published a stricter lower limit of 384 GeV [19] on the mass of first generation scalar LQs for $\beta = 1$ in the dielectron-plus-dijet (eejj) channel, using a sample collected in proton–proton collisions at $\sqrt{s} = 7$ TeV and corresponding to an integrated luminosity of approximately 33 pb$^{-1}$. Recently, the ATLAS experiment at the LHC has also obtained an exclusion on the mass of first generation scalar LQs [20].

This Letter presents the results of a search for pair-production of first generation scalar LQs using events containing an electron, missing transverse energy, and at least two jets (eejj) using proton–proton collision data at $\sqrt{s} = 7$ TeV. In proton–proton collisions at the LHC, LQs are predominantly pair-produced via gluon–gluon fusion with a cross section that depends on the strong coupling constant α_s, but is nearly independent of λ. This cross section depends on the mass of the LQ and has been calculated at the next-to-leading-order (NLO) in QCD [21]. LQs could also be produced singly with a cross section that is dependent on λ. The results of this study are based on the assumption that λ is sufficiently small that single-LQ production can be neglected. The data were collected in 2010 by the CMS detector at the CERN LHC and correspond to an integrated luminosity of 36 pb$^{-1}$. The eejj and evjj combined results are also presented.
2. The CMS detector

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x-axis pointing to the centre of the LHC, the y-axis pointing up (perpendicular to the LHC plane), and the z-axis along the anticlockwise-beam direction. The polar angle \(\theta \) is measured from the positive z-axis and the azimuthal angle \(\phi \) is measured in the xy plane. Pseudorapidity is defined as \(\eta = -\ln(\tan(\theta/2)) \). The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel return yoke. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry. The ECAL has an energy resolution of better than 0.5\% for unconverted photons with transverse energy above 100 GeV, and 3\% or better for electrons of energies above 100 GeV, and 3\% or better for electrons of energies relevant to this analysis. In the region \(|\eta| < 1.74 \), the HCAL cells have granularity \(\Delta \eta \times \Delta \phi = 0.087 \times 0.087 \) (where \(\phi \) is measured in radians). In the \((\eta, \phi)\) plane, and for \(|\eta| < 1.48 \), the HCAL cells map on to 5 × 5 ECAL crystals arrays to form calorimeter towers projecting radially outwards from close to the nominal interaction point. At larger values of \(|\eta| \), the size of the towers increases and the matching ECAL arrays contain fewer crystals. The muons are measured in the pseudorapidity window \(|\eta| < 2.4 \), with detection planes made of three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching the muons to the tracks measured in the silicon tracker results in a transverse momentum \((p_T) \) resolution between 1 and 5\%, for \(p_T \) values up to 1 TeV. The inner tracker measures charged particles within \(|\eta| < 2.5 \). It consists of 1440 silicon pixel and 15148 silicon strip detector modules and provides an impact parameter resolution of \(\sim 15 \) \(\mu \)m and a \(p_T \) resolution of about 1.5\% for 100 GeV particles. Events must pass a first-level trigger made of a system of fast electronics and a high-level trigger that consists of a farm of commercial CPUs running a version of the offline reconstruction software optimized for timing considerations. A detailed description of the CMS detector can be found elsewhere [22].

3. Reconstruction of electrons, muons, jets, and \(E_T \)

Events used in the e\(V\)jj analysis are collected by single-electron triggers without isolation requirements and with \(p_T \) thresholds dependent upon the running period, because of the evolving beam conditions during 2010. The bulk of the data were collected with a trigger requiring an electron with \(p_T > 22 \) GeV. Events are required to contain at least one primary vertex with reconstructed \(z \) position within 24 cm, and \(xy \) position within 2 cm of the nominal center of the detector.

Electron candidates are required to have an electromagnetic cluster in ECAL that is spatially matched to a reconstructed track in the central tracking system in both \(\eta \) and \(\phi \), and to have a shower shape consistent with that of an electromagnetic shower. The ratio \(H/E \), where \(E \) is the energy of the ECAL cluster and \(H \) is the energy in the HCAL cells situated behind it, within a cone of radius \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.15 \) centred on the electron, is required to be less than 5\%. Electron candidates are further required to be isolated from additional energy deposits in the calorimeter and from additional reconstructed tracks (beyond the matched track) in the central tracking system. The sum of the \(p_T \) of the tracks in a hollow cone of external (internal) radius \(\Delta R = 0.3 \) (0.04) is required to be less than 7.5 (15) GeV for electron candidates reconstructed within the barrel (endcap) acceptance. The ECAL isolation variable, \(E_{\text{iso}} \), is defined as the sum of the transverse energy in ECAL cells within a hollow cone of external (internal) radius \(\Delta R = 0.3 \) (3 crystals). When performing the sum, a further rectangular region \((\Delta \eta, \Delta \phi) = (3 \text{ crystals, 0.6 radians}) \) centred on the electron position is excluded in order to remove the contribution from bremsstrahlung photons. The longitudinal segmentation of the HCAL calorimeter is exploited in the isolation. The HCAL isolation variables, \(\text{HAD}_{\text{layer}1} \) and \(\text{HAD}_{\text{layer}2} \), are defined as the sum of transverse energy deposits in a hollow cone of external (internal) radius \(\Delta R = 0.3 \) (0.15), where the sum is performed over the first and second readout layers of the HCAL calorimeter, respectively. In the barrel, where only one HCAL layer is present, electron candidates are required to have \(E_{\text{iso}} + \text{HAD}_{\text{layer}1} \) less than 0.03\(p_{T,e} \) GeV + 2 GeV. In the endcaps, candidates with \(p_{T,e} \) below (above) 50 GeV are required to have \(E_{\text{iso}} + \text{HAD}_{\text{layer}1} \) less than 2.5 GeV (0.03\(p_{T,e} - 50 \) GeV + 2.5 GeV); the isolation variable \(\text{HAD}_{\text{layer}2} \) is also required to be less than 0.5 GeV, independent of the electron \(p_T \). Electrons reconstructed near the crack between ECAL barrel and endcaps (1.44 < \(|\eta| < 1.56 \)) are not considered. More information about electron identification at CMS during this running period can be found in Ref. [23].

Jets are reconstructed by the anti-\(k_T \) algorithm [24] from a list of particles obtained using particle-flow methods and a radius parameter \(R = 0.5 \). The particle-flow algorithm [25] reconstructs a complete, unique list of particles in each event using an optimized combination of information from all CMS subdetectors. Particles that are reconstructed and identified include muons, electrons (with associated bremsstrahlung photons), photons (unconverted and converted), and charged/neutral hadrons. The jet energy corrections are derived using Monte Carlo (MC) simulation and in situ measurements using dijet and photon + jet events [26].

The transverse momentum of the neutrino is estimated from the missing transverse energy \(E_T \), which is the magnitude of the negative vector sum of all particle-flow objects’ transverse momenta. More information about \(E_T \) performance during this running period can be found in Ref. [27].

Muon candidates are reconstructed as tracks in the muon system that are spatially matched to a reconstructed track in the inner tracking system. To ensure a precise measurement of the impact parameter, only muons with tracks containing at least 11 hits in the silicon tracker are considered. To reject cosmic muons, the transverse impact parameter with respect to the beam axis is required to be less than 2 mm. The relative isolation parameter is defined as the scalar sum of the \(p_T \) of all tracks in the tracker and the transverse energies of hits in the ECAL and HCAL in a cone of \(\Delta R = 0.3 \) around the muon track, excluding the contribution from the muon itself, divided by the muon \(p_T \). Muons are required to have a relative isolation value less than 5\%. A veto on the presence of isolated muons in the final state is used to reject tt background events, as described later.

4. Event samples and selection

4.1. MC samples

The dominant sources of e\(V\)jj events from production of standard model particles are pair-production of top quarks and associated production of a W boson with jets. There is also a small contribution from multijet events with a jet misidentified as an electron and spurious missing transverse energy due to mismeasurement of jets, associated production of Z boson with jets, in addition to single top, diboson, \(b \) + jets, and \(W + \) jets production. To compare collision data to MC, the response of the detector was simulated using GEANT4 [28]. The detector geometry description included realistic subsystem conditions such as defunct and
noisy channels. The selection procedure as well as the electron, muon, jet, and ℓ_T reconstructions described for the data are also applied to the MC simulation samples. For the generation of all the MC samples, the CTEQ6L1 [29] parton distribution functions (PDFs) were used. The $W+J$ and $Z+J$ events were generated using ALPGEN [30]. The ℓt, single-top, $b+J$, and $\gamma+J$ events were generated using MadGraph [31,32]. The diboson (WW, ZZ, WZ) events were generated using PYTHIA [33], version 6.422, tune D6T [34,35]. For the MadGraph and ALPGEN samples, parton showering and hadronization were performed with PYTHIA. The QCD multijet background is estimated from data, as described later. Signal samples for LQ masses (M_{LQ}) from 200 to 500 GeV were generated with PYTHIA. The product of single-electron efficiency and acceptance, requiring a minimum electron p_T of 35 GeV, varies from $\sim 76\%$ to $\sim 83\%$ for LQ masses from 200 to 500 GeV.

The total ALPGEN cross section for the $W+J$ (Z+J) sample is rescaled to an inclusive next-to-NLO $W \to e\nu$ ($Z/\gamma \to \ell\ell$) production cross section of 31.314 pb (3135 pb, for $M_{LQ} > 40$ GeV) calculated using FERWZ [36], where $\ell = e, \mu$ or τ. The tt sample is normalized to an inclusive next-to-next-to-leading-logarithmic (NNLL) cross section of 165 pb calculated in Ref. [37]. For the single-top samples, a NNLL cross section of 4.6 pb for the s-channel [38], and NLO cross sections calculated using MCFM [39] of 64.6 pb and 10.6 pb for t-channel and $t\bar{t}$-channel, respectively, are used. The WW, WZ, and ZZ samples are normalized to NLO cross sections of 43, 18.2, and 5.9 pb, respectively, calculated with MCFM. For the $b+J$ and $\gamma+J$ samples LO cross sections calculated with MadGraph are used.

4.2. Preselection

Samples enriched in the aforementioned SM processes are selected to verify the background estimate. The $e\nu\gamma$ preselection requires exactly one electron with $p_T > 35$ GeV and $|\eta| < 2.2$, at least two jets with $p_T > 30$ GeV and $|\eta| < 3.0$, and $\ell_T > 45$ GeV. The electron is also required to be separated from both the two leading jets by a distance $\Delta R > 0.7$. In addition, to reduce the $t\bar{t}$ background, events with at least one isolated muon with $p_T > 10$ GeV are rejected. To reduce the contribution from multijet events and, in general, events with misidentified ℓ_T due to jet mis-measurement, the opening angle in ϕ between the ℓ_T vector and the electron ($\Delta \phi_{e\ell_T}$), and between the ℓ_T vector and the leading (in p_T) jet are required to be greater than 0.8 and 0.5 radians, respectively. The latter two selection criteria have been optimized following the procedure described in Section 4.3. In addition, a preselection requirement $S_T > 250$ GeV is applied, where S_T is defined as the scalar sum of the p_T of the electron, the p_T of the two leading jets, and the ℓ_T. This variable has a large signal-to-background discrimination power since the LQ decay products usually have large p_T.

A sufficient number of data events survive the preselection to allow a comparison with the background predictions. A good agreement is observed between data and background predictions in the shape of all kinematic distributions of the electron, ℓ_T, and jets. Fig. 1 (left) shows the distribution of the transverse mass of the electron and the neutrino, defined as $m_{\ell_T,\ell_T} = \sqrt{2\ell_T e_T (1 - \cos (\Delta \phi_{e\ell_T}))}$, after the preselection. The normalization of the various background sources is discussed in Section 5.

4.3. Final selection

To further reduce backgrounds, the selection criteria are optimized by minimizing the expected upper limit on the leptoquark cross section times the branching fraction $2\beta(1 - \beta)$ in the absence of signal using a Bayesian approach [40] that is well suited for counting experiments in the Poisson regime. The optimal selection requires electron $p_T > 85$ GeV, $\ell_T > 85$ GeV, and $m_{\ell_T,\ell_T} > 125$ GeV. The optimum value of the requirement on S_T was found to vary with the assumed LQ mass. An alternative discovery optimization that maximizes the significance estimator $S/\sqrt{S + B + \sigma_B^2}$, where S (B) is the number of signal (background) events passing the full selection and σ_B is the systematic uncertainty on the background, gives similar results.

Table 1 shows the number of events surviving the different stages of the $e\nu\gamma$ event selection, for 300 GeV mass LQ signal, background, and data samples. Fig. 1 (right) shows the distribution of the S_T variable after the full selection except the optimized S_T cut itself. Table 2 shows the number of surviving events for MC signal, background, and data samples after applying the full selection optimized for different LQ mass hypotheses. The signal selection efficiencies computed in Tables 1 and 2 include the kinematic acceptance and are estimated from MC studies. The systematic uncertainties on the LQ selection efficiency are discussed in Section 6.

5. Background

The tt background is estimated from MC assuming an uncertainty on the inclusive tt production cross section of 14%, taken from the CMS measurement [41]. Since the latter is consistent with NNLL predictions, no rescaling of the tt MC sample is applied. The small contribution from $Z+J$ and single-top, diboson, $b+J$, and $\gamma+J$ is estimated via MC. The QCD multijet background is determined from data. The probability of an isolated electromagnetic cluster being recon-
than 1 or 3) and by calculating the maximum relative variation to predict the QCD multijet contribution to the final selection sample. The Wjj preselection 11, for $p_T > 250 \text{ GeV}$, $S_T > 490$ GeV 6, $\beta = 0.5$), background, and data samples after the full analysis selection. The optimum value of the requirement on S_T is reported in the first column for each LQ mass. All uncertainties are statistical only. The product of signal acceptance and efficiency is also reported for different LQ masses (the statistical uncertainty is less than 1%).

Table 1
Number of evjj events for the first generation LQ signal (300 GeV mass, $\beta = 0.5$), background, and data samples after the full analysis selection. The optimum value of the requirement on S_T is reported in the first column for each LQ mass. All uncertainties are statistical only. The product of signal acceptance and efficiency is also reported for different LQ masses (the statistical uncertainty is less than 1%).

<table>
<thead>
<tr>
<th>Cut</th>
<th>MC LQ300 sample</th>
<th>MC and QCD background samples</th>
<th>Events in data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selected events</td>
<td>Acceptance × efficiency</td>
<td>Selected events in</td>
</tr>
<tr>
<td>evjj preselection</td>
<td>11.52 ± 0.03</td>
<td>0.529</td>
<td>132.9 ± 0.7</td>
</tr>
<tr>
<td>$m_{l\nu}$ > 125 GeV</td>
<td>10.01 ± 0.03</td>
<td>0.459</td>
<td>22.7 ± 0.3</td>
</tr>
<tr>
<td>$\min(p_T, E_T) > 85$ GeV</td>
<td>7.89 ± 0.03</td>
<td>0.362</td>
<td>5.3 ± 0.2</td>
</tr>
<tr>
<td>$S_T > 490$ GeV</td>
<td>6.89 ± 0.03</td>
<td>0.317</td>
<td>1.09 ± 0.07</td>
</tr>
</tbody>
</table>

Table 2
Number of evjj events for the first generation LQ signal ($\beta = 0.5$), background, and data samples after the full analysis selection. The optimum value of the requirement on S_T is reported in the first column for each LQ mass. All uncertainties are statistical only. The product of signal acceptance and efficiency is also reported for different LQ masses (the statistical uncertainty is less than 1%).

<table>
<thead>
<tr>
<th>M_{LQ} (GeV)</th>
<th>MC signal samples</th>
<th>Acceptance × efficiency</th>
<th>MC and QCD background samples</th>
<th>Acceptance × efficiency</th>
<th>Events in data</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 ($S_T > 350$)</td>
<td>34.5 ± 0.2</td>
<td>0.161</td>
<td>3.6 ± 0.1</td>
<td>2.2 ± 0.3</td>
<td>0.48 ± 0.06</td>
</tr>
<tr>
<td>250 ($S_T > 410$)</td>
<td>15.9 ± 0.1</td>
<td>0.255</td>
<td>2.24 ± 0.09</td>
<td>1.7 ± 0.3</td>
<td>0.35 ± 0.05</td>
</tr>
<tr>
<td>280 ($S_T > 460$)</td>
<td>9.54 ± 0.05</td>
<td>0.291</td>
<td>1.43 ± 0.08</td>
<td>1.2 ± 0.2</td>
<td>0.29 ± 0.05</td>
</tr>
<tr>
<td>300 ($S_T > 490$)</td>
<td>6.89 ± 0.03</td>
<td>0.317</td>
<td>1.09 ± 0.07</td>
<td>1.0 ± 0.2</td>
<td>0.27 ± 0.05</td>
</tr>
<tr>
<td>320 ($S_T > 520$)</td>
<td>5.03 ± 0.02</td>
<td>0.339</td>
<td>0.75 ± 0.05</td>
<td>0.8 ± 0.2</td>
<td>0.22 ± 0.05</td>
</tr>
<tr>
<td>340 ($S_T > 540$)</td>
<td>3.73 ± 0.02</td>
<td>0.364</td>
<td>0.65 ± 0.05</td>
<td>0.7 ± 0.2</td>
<td>0.20 ± 0.05</td>
</tr>
<tr>
<td>370 ($S_T > 570$)</td>
<td>2.40 ± 0.01</td>
<td>0.396</td>
<td>0.50 ± 0.04</td>
<td>0.6 ± 0.1</td>
<td>0.18 ± 0.04</td>
</tr>
<tr>
<td>400 ($S_T > 600$)</td>
<td>1.57 ± 0.01</td>
<td>0.426</td>
<td>0.34 ± 0.04</td>
<td>0.5 ± 0.1</td>
<td>0.17 ± 0.04</td>
</tr>
<tr>
<td>450 ($S_T > 640$)</td>
<td>0.797 ± 0.003</td>
<td>0.467</td>
<td>0.26 ± 0.03</td>
<td>0.4 ± 0.1</td>
<td>0.13 ± 0.04</td>
</tr>
<tr>
<td>500 ($S_T > 670$)</td>
<td>0.417 ± 0.001</td>
<td>0.500</td>
<td>0.18 ± 0.03</td>
<td>0.4 ± 0.1</td>
<td>0.12 ± 0.04</td>
</tr>
</tbody>
</table>

Table 3
Summary of the systematic uncertainties on the numbers of signal and background events for a LQ with mass 300 GeV.

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty [%]</th>
<th>Effect on signal [%]</th>
<th>Effect on background [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$ (W + jets) normalization</td>
<td>14 (10)</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>$t\bar{t}$ (W + jets) background shape</td>
<td>28 (49)</td>
<td>–</td>
<td>32</td>
</tr>
<tr>
<td>Jet/E_T energy scale</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Electron energy scale barrel (Endcap)</td>
<td>1 (3)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>MC statistics</td>
<td>[Table 2]</td>
<td>0.4</td>
<td>9</td>
</tr>
<tr>
<td>Electron trigger/Reco/ID/Isolation</td>
<td>6</td>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>4</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>–</td>
<td>35</td>
</tr>
</tbody>
</table>

The $W +$ jets background dominates the evjj preselection sample. At this level of the selection, the ratio $R_W = (N_{data} - N_{BG})/N_W$ is calculated, where N_{data}, N_W, and N_{BG} are the numbers of events in data, $W +$ jets, and other MC backgrounds with $50 < m_{l\nu} < 110$ GeV. The value of R_W is 1.18 ± 0.12; this rescaling factor is used to normalize the $W +$ jets MC sample. The relative uncertainty on this normalization factor, which depends both on the statistical uncertainty on the data and on the systematic uncertainties on the other backgrounds contaminating the preselection sample, is used as the uncertainty on the MC estimate of the $W +$ jets background.

In addition, an uncertainty on the modeling of the $m_{l\nu}$ and S_T shapes of the dominant $t\bar{t}$ and $W +$ jets backgrounds is determined using MADGRAPH samples with renormalization and factorization scales and jet-matching thresholds at the generator level varied by a factor of two in each direction. For the study of the $t\bar{t}$ background shape, an inclusive MC sample generated with MC@NLO [42] is also used. The largest deviation between the aforementioned and the default MC samples is used to assess a 28% (49%) systematic uncertainty on the $t\bar{t}$ (W + jets) background shape.

6. Systematic uncertainties

The impact of the systematic uncertainties on the numbers of signal and background events is summarized in Table 3. The uncertainties on the $t\bar{t}$ and $W +$ jets normalization and background shape are discussed in Section 5. For the energy scales of electrons and jets, the event selection is repeated with the jet and electron energies rescaled by a factor of $1 \pm \delta$, where δ is the relative uncertainty on their energy scales. The uncertainty on the E_T scale is primarily affected by the uncertainty on the jet energy scale. The event-by-event variation in the E_T and jet measurements, due to
the relative changes in the energies of the reconstructed jets, is used to determine the quoted energy scale uncertainty of jets and \(E_T \). The statistical uncertainty on the number of eejj MC events, after the full selection, is summarized in Table 2 for signal and background samples. The systematic uncertainty on trigger, reconstruction, identification, and isolation efficiency for electrons is assessed using \(Z \rightarrow e e \) events from data, using methods similar to those discussed in Ref. [43]. The uncertainty on the integrated luminosity of the data sample is 4\% [44]. The effect of the PDF uncertainties on the signal acceptance is estimated using an event reweighting technique that uses the LHAPDF package [45] and it is found to be negligible (less than 1\%). Uncertainties on the signal acceptance due to the presence of additional hadronic jets produced as a result of QCD radiation in the initial and final states are negligible. For the dominant t\(\bar{t} \) and W + jets backgrounds the uncertainties due to the PDF choice, electron efficiencies, and integrated luminosity are not considered, as those effects are included in the normalization uncertainty.

7. Results

The number of observed events in data passing the full selection criteria is consistent with the prediction from SM processes, as reported in the last two columns of Table 2. An upper limit on the LQ cross section in the absence of the leptoquark signal is therefore set using a Bayesian approach [40] featuring a flat signal prior, Poisson statistics, and log-normal priors to integrate over the systematic uncertainties marginalized as nuisance parameters. The systematic uncertainties for the background are dominated by the t\(\bar{t} \) and W + jets normalization uncertainty and the uncertainty on the W + jets background shape. Systematic uncertainties on the signal efficiency are dominated by the uncertainty on the electron selection efficiencies and the jet energy scale.

Fig. 2 (left) and Table 4 show the 95\% confidence level (CL) upper limit on the LQ pair-production cross section times \(2\beta(1 - \beta) \) as a function of the leptoquark mass. The upper limits are compared to the NLO prediction of the LQ pair-production cross section [21] to set an exclusion of the first generation scalar LQ mass smaller than 320 GeV, assuming \(\beta = 0.5 \), at the 95\% CL. The central value of the NLO prediction is calculated using the PDFs CTEQ6.6 [46]. The theoretical uncertainties on the signal production cross sections due to the choice of the PDFs (from 8 to 22\% for LQ masses from 200 to 500 GeV [21], calculated using CTEQ6.6 [46]) and the choice of renormalization and factorization scales (from 13 to 15\% for all considered LQ masses [21], determined by varying the scales between half and twice the LQ mass) are shown as a band around the central value in Fig. 2 (left). If the observed upper limit is compared with the lower boundary of this theoretical uncertainty, the lower limit on the first generation LQ mass for \(\beta = 0.5 \) becomes 309 GeV.

The eejj channel is combined with the existing CMS results from the eejj analysis [19], thereby improving the reach of this search in the intermediate \(\beta \) range. The likelihoods built for the individual dielectron and electron + neutrino channels are multiplied. The same Bayesian approach used to set the individual limits is then applied to the likelihood product to set the combined limit. While integrating over nuisance parameters, the systematic uncertainties on signal efficiency and background are assumed to be fully correlated and the largest uncertainty amongst the two channels is used. Fig. 2 (right) shows the exclusion limits at 95\% CL on the first generation leptoquark hypothesis in the \(\beta \) versus LQ mass plane, using the central value of the signal cross section, for the individual dielectron and electron + neutrino channels, and their combination. The observed and expected combined lower limits on LQ mass are reported in Table 5 for \(\beta = 0.5 \) and 1.

<table>
<thead>
<tr>
<th>(M_{LQ}) [GeV]</th>
<th>95% CL upper limit on (2\beta(1 - \beta) \times \sigma) [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.092</td>
</tr>
<tr>
<td>250</td>
<td>0.565</td>
</tr>
<tr>
<td>280</td>
<td>0.536</td>
</tr>
<tr>
<td>300</td>
<td>0.421</td>
</tr>
<tr>
<td>320</td>
<td>0.412</td>
</tr>
<tr>
<td>340</td>
<td>0.394</td>
</tr>
<tr>
<td>370</td>
<td>0.287</td>
</tr>
<tr>
<td>400</td>
<td>0.271</td>
</tr>
<tr>
<td>450</td>
<td>0.181</td>
</tr>
<tr>
<td>500</td>
<td>0.169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>Combined 95% CL lower limit on (M_{LQ}) [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>384</td>
</tr>
<tr>
<td>1</td>
<td>339</td>
</tr>
</tbody>
</table>
8. Summary

A search for pair-production of first generation scalar leptoquarks in events with an electron, missing transverse energy, and at least two jets has been presented. The contribution of the main backgrounds has been determined by MC studies and the uncertainty estimated by a comparison with the data. The number of observed events passing a selection optimized for exclusion of the LQ hypothesis is in good agreement with the predictions.

The number of observed events passing a selection optimized for exclusion of the LQ hypothesis is in good agreement with the predictions. The contribution of the main backgrounds has been determined by MC studies and the uncertainty estimated by a comparison with the data. The number of observed events passing a selection optimized for exclusion of the LQ hypothesis is in good agreement with the predictions. The number of observed events passing a selection optimized for exclusion of the LQ hypothesis is in good agreement with the predictions.

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

University of Ioannina, Ioannina, Greece

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

S. Dutta, S. Sarkar

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi 14, S.M. Etesami, A. Fahim 14, M. Hashemi, A. Jafari 14, M. Khakzad, A. Mohammadi 15, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali 16

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

M. Abbrescia a,b, L. Barbone a,b, C. Calabria a,b, A. Colaleo a, D. Creanza a,c, N. De Filippis a,c,1, M. De Palma a,b, L. Fiore a, G. Iselli a,c, L. Lusito a,b, G. Maggi a,c, M. Maggi a, N. Manna a,b, B. Marangelli a,b, S. My a,c, S. Nuzzo a,b, N. Pacifico a,b, G.A. Pierro a, A. Pompili a,b, G. Pugliese a,c, F. Romano a,c, G. Roselli a,b, G. Selvaggi a,b, L. Silvestris a, R. Trentadue a, S. Tupputi a,b, G. Zito a

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

G. Abbiendi a, A.C. Benvenuti a, D. Bonacorsì a, S. Braibant-Giacomelli a,b, L. Brigliadori a, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, M. Cuffiani a,b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, D. Fasanella a, P. Giacomelli a, M. Giunta a, C. Grandi a, S. Marcellini a, G. Masetti b, M. Meneghelli a,b, A. Montanari a, F.L. Navarria a,b, F. Odorici a, A. Perrotta a, F. Primavera a, A.M. Rossi a,b, T. Rovelli a,b, G. Siroli a,b, R. Travaglini a,b

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

g. Albergo a,b, G. Cappello a,b, M. Chiorboli a,b,1, S. Costa a,b, A. Tricomi a,b, C. Tuve a,b

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

G. Barbaglia a, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, S. Frosali a,b, E. Gallo a, S. Gonzi a,b, P. Lenzi a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a,1

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, S. Colafranceschi 17, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

P. Fabbricatore, R. Musenich

INFN Sezione di Genova, Genova, Italy

A. Benaglia a,b, F. De Guio a,b,1, L. Di Matteo a,b, S. Gennai a,b,1, A. Ghezzi a,b, S. Malvezzi a, A. Martelli a,b, A. Massironi a,b, D. Menasca a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, S. Sala a, T. Tabarelli de Fatis a,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempo a, C.A. Carrillo Montoya a,1, N. Cavallo a,18, A. De Cosa a,b, F. Fabozzi a,18, A.O.M. Iorio a,1, L. Lista a, M. Merola a,b, P. Paolucci a

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli “Pederico II”, Napoli, Italy

P. Azzi a, N. Bacchetta a, P. Bellan a,b, D. Bisello a,b, A. Branca a, R. Carlin a,b, P. Checchia a, M. De Mattia a,b, T. Dorigo a, U. Dosselli a, F. Fanzago a, F. Gasparini a,b, U. Gasparini a,b, A. Gozzelino a,b,c, S. Lacaprara a,19, I. Lazzizzera a,c, M. Margoni a,b, M. Mazzucato a, A.T. Meneguzzo a,b, M. Nespole a,1, L. Perrozzi a,1,
N. Pozzobona, P. Ronchesea, b, F. Simonettoa, b, E. Torassaa, M. Tosi a, b, S. Vaninia, b, P. Zottoa, b, G. Zumerlea, b

a INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy

c Università di Trento (Trento), Padova, Italy

P. Baessoa, b, U. Berzana, a, S.P. Ratti, a, b, C. Riccardia, a, b, P. Torrea, a, b, P. Vitulob, a, C. Vivianob

a INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

c Università di Trento (Trento), Padova, Italy

M. Biasinib, G.M. Bileia, B. Caponiera, b, L. Fanob, b, P. Lariccia, a, b, A. Lucaronib, a, b, G. Mantovani, a, b, M. Menichelli, a, A. Nappib, a, b, F. Romeo, a, b, A. Santocchia, a, b, S. Taronib, a, b, M. Valdata, a, b

a INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

P. Azzurri, a, c, G. Bagliesia, J. Bernardini, a, b, T. Boccali, a, b, G. Broccolo, a, c, R. Castaldi, a, R.T. D’Agnolo, a, c, R. Dell’Orsoa, F. Fiorib, a, b, L. Foab, a, c, A. Giassia, A. Kraana, F. Ligabue, a, c, T. Lomtadze, a, L. Martini, a, b, A. Messineoa, a, b, F. Pallaa, G. Segneria, a, T.Serban, a, P. Spagnolo, a, R. Tenchinia, a, b, A. Venturi, a, b, P.G. Verdinia

a INFN Sezione di Pisa, Pisa, Italy
b Università di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

L. Barone, a, b, F. Cavallari, a, D. Del Re, a, b, E. Di Marco, a, b, M. Diemoza, a, D. Franci, a, b, M. Grassia, a, b, E. Longoa, b, P. Meridiana, a, b, S. Nourbakhsha, a, G. Organtinia, a, b, F. Pandolfi, a, b, R. Paramattia, a, b, S. Rahatlou, a, b, C. Rovelli, a, b, b

a INFN Sezione di Roma, Roma, Italy
b Università di Roma “La Sapienza”, Roma, Italy

c INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy

c Università del Piemonte Orientale (Novara), Torino, Italy

N. Amapane, a, b, R. Arcidiaconoa, a, c, S. Argiro, a, b, M. Arneodoa, a, c, C. Biinoa, a, C. Bottab, a, b, N. Cartiglia, a, R. Castello, a, b, M. Costab, a, b, N. Demaria, a, A. Graziano, a, b, C. Mariotti, a, b, M. Marone, a, b, S. Maselli, a, E. Migliore, a, b, G. Milaab, a, b, V. Monaco, a, b, M. Musich, a, b, M.M. Obertino, a, c, N. Pastronea, a, b, M. Pelliccioni, a, b, A. Romero, a, b, M. Ruspa, a, c, R. Sacchi, a, b, V. Solab, a, b, A. Solanob, a, A. Staiano, a, A. Vilela Pereira

a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy

c Università del Piemonte Orientale (Novara), Torino, Italy

S. Belforte, a, F. Cossutta, a, G. Della Ricca, a, b, B. Gobbo, a, D. Montaninob, a, A. Penzo

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

S.G. Heo, S.K. Nam

Kangwon National University, Chunchon, Republic of Korea

Kyungpook National University, Daegu, Republic of Korea

Zero Kim, J.Y. Kim, S. Song

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

Korea University, Seoul, Republic of Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck, J. Tam

University of Auckland, Auckland, New Zealand

P.H. Butler, R. Doesburg, H. Silverwood

University of Canterbury, Christchurch, New Zealand

M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

P. Jindal, N. Parashar
Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian, M. Yan
The Rockefeller University, New York, USA

Rutgers, the State University of New Jersey, Piscataway, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York
University of Tennessee, Knoxville, USA
33 Also at Adiyaman University, Adiyaman, Turkey.
34 Also at The University of Iowa, Iowa City, USA.
35 Also at Mersin University, Mersin, Turkey.
36 Also at Izmir Institute of Technology, Izmir, Turkey.
37 Also at Kafkas University, Kars, Turkey.
38 Also at Suleyman Demirel University, Isparta, Turkey.
39 Also at Ege University, Izmir, Turkey.
40 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
41 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
42 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
43 Also at Utah Valley University, Orem, USA.
44 Also at Institute for Nuclear Research, Moscow, Russia.
45 Also at Los Alamos National Laboratory, Los Alamos, USA.
46 Also at Erzincan University, Erzincan, Turkey.