Search for a W boson decaying to a muon and a neutrino in pp collisions at s = 7 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for a W' boson decaying to a muon and a neutrino in pp collisions at $\sqrt{s} = 7$ TeV

CERN Collaboration

CERN, Geneva, Switzerland

A R T I C L E I N F O

Article history:
Received 1 March 2011
Received in revised form 19 May 2011
Accepted 19 May 2011
Available online 26 May 2011
Editor: M. Doser

Keywords:
CMS
Physics
Software
Computing

A B S T R A C T

A new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass energy of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 pb$^{-1}$. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.

New heavy gauge bosons, generally indicated as Z' and W', are predicted in various extensions of the standard model (SM). Such extensions include Left–Right Symmetric Models [1–3], Composite-ness models [4] and Little Higgs models [5]. The search for a W' is usually performed in the context of the benchmark model of Ref. [6], where the W' boson is considered a heavy analogue of the SM W boson with the same left-handed fermionic couplings. Thus the W' decay modes and branching fractions are similar to those of the W boson, with the notable exception of the $t\bar{t}$ channel, which opens up for W' masses above 180 GeV. No interaction with the SM gauge bosons or with other heavy gauge bosons such as Z' is assumed. In this context, CDF [7] and D0 [8] searched for a W' boson in the decay to an electron and a neutrino, and excluded W' masses below 1.1 TeV at the 95% confidence level (C.L.). Recently, a search in this decay channel by CMS extended the lower limit on the W' mass to 1.36 TeV [9].

In this Letter, the W' decay to a muon and a neutrino with an assumed branching fraction of 8.5% (for all W' masses) is investigated and combined with a similar search in the electron channel [9]. The data sample, collected in 2010 by the CMS detector with pp collisions delivered by the LHC at centre-of-mass energy of 7 TeV, corresponds to 36 pb$^{-1}$.

A more detailed description of CMS can be found elsewhere [10]. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter and the brass/scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. Both barrel and endcap regions are instrumented with four muon stations combining high precision tracking detectors (drift tubes in the barrel and cathode strip chambers in the endcaps) with resistive plate chambers for triggering as well as contributing to the tracking. The muon transverse momentum, p_T, is determined from the curvature of its track, measured as it traverses the magnetized return yoke. Each station consists of a multi-layer chamber, twelve and six layers for the drift and the cathode strip chambers, respectively. All muon stations contribute to the first level trigger and identify the bunch crossing from which the muon originated. A cylindrical coordinate system about the beam axis is used, in which the polar angle θ is measured with respect to the counterclockwise beam direction and the azimuthal angle, ϕ, is measured in the x–y plane. The quantity η is the pseudo-rapidity defined by $\eta = -\ln \tan \theta/2$. Each muon track is matched to a tracker track, measured in the silicon tracker. A global track fit is performed [11], and the resulting muon p_T resolution is 1 to 10% for p_T values up to 1 TeV. The inner tracker measures charged particle trajectories within the pseudorapidity range $|\eta| < 2.5$. It provides an impact parameter resolution of about 15 μm and a transverse momentum p_T resolution of about 1.5% for $p_T = 100$ GeV particles.

The primary sources of background to the $W' \rightarrow \mu \nu$ search include standard model $W \rightarrow \mu \nu$ decays, QCD multi-jet events, tt, ...
Drell–Yan events and cosmic ray muons. Diboson processes (WW, WZ, ZZ) with decays to electrons, muons or taus are also considered. Monte Carlo (MC) signal and background events are generated and processed through the full CMS GEANT4 [12,13] based detector simulation, trigger emulation, and event reconstruction chain. The W’ signal sample is produced with the PYTHIA 6.409 generator [14] and the CTEQ6L1 parton distribution functions (PDF) [15]. Events are generated for W’ masses ranging between 0.6 TeV and 1.5 TeV in steps of 100 GeV and for a W’ mass of 2 TeV. Next-to-next-to-leading order (NNLO) corrections to the W’ production cross sections, called k-factors, are applied [16,17] and range from 1.32 for $m_W = 0.6$ TeV to 1.26 for $m_W = 2$ TeV.

The samples for the electroweak background processes $W \rightarrow \mu \nu$ and $Z \rightarrow \mu^+ \mu^-$ are produced with POWHEG [18–20] interfaced with PYTHIA for showering and hadronization. Samples of $W \rightarrow \mu \nu$, produced with PYTHIA with and without the simulation of pile-up effects, are used for cross-checks. The PYTHIA generator is also used for the production of $W \rightarrow \tau \nu$, $Z \rightarrow \tau^+ \tau^-$, the diboson (ZZ, WW, WW) samples, and QCD multi-jet events. For tt events, the MADGRAPH [21] generator is used in combination with PYTHIA for showering and hadronization. The major background processes (W, Z) are normalized to the integrated luminosity with NNLO cross section calculations. For the remaining backgrounds either the NLO (tt and dibosons) or LO (QCD multi-jet) cross sections are used, and no k-factors are applied. All the simulated backgrounds used in this search and their assumed cross sections can be found in Table 1.

Candidate events with at least one high-pT muon in the pseudorapidity range $|\eta| < 2.1$ are selected with a set of single-muon triggers. Only global muons reconstructed offline with $p_T > 25$ GeV in the range $|\eta| < 2.1$ are used in the analysis; the global muon track is required to have at least eleven hits in the silicon tracker and at least one hit in the pixel detector. The global track is also required to satisfy $\chi^2/N_{\text{dof}} < 10$ and to have at least two matching track segments in different muon stations. Since the segments have multiple hits and are typically found in different muon detectors separated by thick layers of iron, this requirement significantly reduces the amount of hadronic punch-through. The transverse impact parameter $|d_0|$ of a muon track with respect to the beam spot is required to be less than 0.02 cm, in order to reduce the cosmic muon background. Furthermore, the muon is required to be isolated within a $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.3$ cone around its direction. Muon isolation requires that the sum of the deposited transverse energy in the calorimeters and the scalar sum of the transverse momenta of all tracks that originate from the interaction vertex, excluding the muon, is less than 15% of its p_T. An additional requirement that there be no more than one muon in the event with $p_T > 25$ GeV is used to reduce the Z, Drell–Yan and cosmic ray muon backgrounds.

Muon reconstruction, identification, and selection efficiencies, along with their uncertainties, are determined from $Z \rightarrow \mu^+ \mu^-$ decays using tag-and-probe techniques. One lepton candidate, called the “tag”, satisfies the trigger criteria and all identification and isolation requirements. The other lepton candidate, called the “probe”, is used to determine the efficiency of specific criteria under study.

The combined muon identification efficiency is measured to be 95%, including efficiencies for the muon reconstruction, the muon selection requirements, the isolation, and the inner track measured by the silicon strip tracker. The value for the combined efficiency is very similar in data and simulation, with the data/MC ratio being 99%. The trigger efficiency is studied with two complementary methods, the first one using tag-and-probe in dimuon events and the second one using a sample of jet-triggered data, which result in the trigger efficiencies of 92% and 91%, respectively, differing in data and simulation by 4%. Muons from a W’ would have higher momenta than those used in the tag-and-probe studies. So far, only muons up to $p_T = 240$ GeV from pp collisions have been recorded and efficiency studies for O(500) GeV muons are done with simulated W’ samples. The combined efficiency does not depend on p_T despite the fact that the showering probability in the iron yoke increases with the muon energy. This assumption has been checked with cosmic muons up to 1 TeV [11] and is a consequence of the redundancy of the muon system.

The neutrino from a potential W’ signal is not detected, but gives rise to missing transverse energy (E^miss_T) in the detector, which is calculated using the particle flow technique [22]. The technique aims at reconstructing a complete, unique list of particles in each event using all the components of the CMS detector: muons, electrons, photons, and charged and neutral hadrons are all reconstructed individually. The E^miss_T for the event is given by the negative sum of the p_T of all the reconstructed particles in the event, corrected by the muon energy loss in the calorimeters.

The W’ transverse mass, M_T, is thereafter calculated as:

$$M_T = \sqrt{2 \cdot p_T \cdot E^\text{miss}_T \cdot (1 - \cos \Delta \phi_{\mu, \nu})}$$

where $\Delta \phi_{\mu, \nu}$ is the opening azimuthal angle between the muon and the direction of E^miss_T measured in radians.

The two-body decay kinematic properties are exploited to further select events with signal-like topology where the muon and E^miss_T are expected to be nearly back-to-back in the transverse plane and also balanced in transverse energy. A selection on the ratio of the muon p_T and E^miss_T is then applied, $0.4 < p_T/E^\text{miss}_T < 1.5$. Further, the angular difference is required to be $\Delta \phi_{\mu, \nu} > 2.5$. The distributions for p_T/E^miss_T and $\Delta \phi_{\mu, \nu}$ before any kinematics cuts are displayed in Fig. 1. After this selection, the W’ signal efficiency for the explored W’ mass range is found to be between 79% and 82.5% within the muon acceptance of $|\eta| < 2.1$.

Estimated SM backgrounds, based on MC simulations, are shown in Fig. 2 separately for W bosons and for smaller contributions due to QCD, tt, Drell–Yan, and diboson production. The dominant background up to high transverse masses is the $W \rightarrow \mu \nu$ contribution, which is difficult to suppress as it also decays to a muon and a neutrino. The amount of QCD background has been measured in data and is found to be negligible for this analysis. The data are also shown in Fig. 2, in agreement with the SM expectation.

The background in the signal region is estimated using the lower $180 < M_T < 350$ GeV side band region of the high M_T part of the spectrum. A relativistic Breit–Wigner function is used as an ad-hoc empirical shape to fit the M_T distribution in the side band, both in the simulation and the data. The parameters of the fitting

| Table 1 |
| Description and $\sigma \cdot$ BR of the major simulated backgrounds used in this search. |
Process	Generator	Order	$\sigma \cdot$ BR (pb)
$W' \rightarrow \mu^+\nu$	POWHEG	NNLO	6152
$W' \rightarrow \mu^-\nu$	POWHEG	NNLO	4286
$W \rightarrow t\bar{t}$	PYTHIA	NNLO	10438
$Z \rightarrow \mu\mu$	POWHEG	NNLO	6166
$m_{W'} > 20$ GeV	PYTHIA	NNLO	1666
$Z \rightarrow \tau\tau$	PYTHIA	NNLO	1666
$m_{W'} > 20$ GeV	t\bar{t}	NLO	1575
Multi-jet QCD	PYTHIA	LO	84679
$p_T > 20$, $p_T^\mu < 15$	WW	NLO	43
WW	ZZ	PYTHIA	18
ZZ	PYTHIA	NLO	5.9
Distributions of kinematic quantities used for signal selection, the ratio of p_T over E_{miss} (left) and the angle $\Delta \phi$ between them (right).

The M_T distribution after all the selection steps, in the data and in the simulation. A W' signal with two different hypothetical masses is shown.

Function are then used to calculate the number of expected background events in the different bins of M_T outside the side band. The choice of the side band lower and upper limits is made in order to minimize the contribution from a hypothetical W' signal and find a region that gives reliable extrapolations of the background in the signal region, based on simulation studies. According to the simulation, 71 ± 8 events are expected in the side band region for the combination of all SM backgrounds, for an integrated luminosity of 36 pb$^{-1}$. The signal contamination would be 1.63 ± 0.07 or 0.17 ± 0.01 W' events for a mass of 1.0 and 1.4 TeV, respectively. In the data, this region contains 52 events, consistent with the prediction within the systematic uncertainties in luminosity, background composition and theoretical uncertainties. Even though we believe that the fit sideband method gives a good estimate of the number of expected background events, we follow a conservative approach: the difference between the predicted SM background from simulation and the sideband-fit result in the data is taken as the systematic uncertainty in the determination of the expected background in the signal region. The robustness of this method has been tested by varying the binning of the M_T distribution and the interval range defining the sideband region, and it was confirmed that it does not introduce any significant systematic uncertainties.

Unlike in the electron channel [9], high-p_T cosmic ray muons constitute an additional source of background for this analysis. Their spectrum shows a different M_T dependence from that of the dominant W boson contribution. Cosmic ray muons are identified with a transverse impact parameter with respect to the beam spot larger than 0.02 cm. The number of cosmic ray muons expected after this requirement is determined to be between 0.15 \pm 0.04 for $M_T > 350$ GeV and 0.08 \pm 0.03 for $M_T > 600$ GeV.

The numbers of background events expected and observed are reported in Table 2. The uncertainties on the number of background events in Table 2 correspond to the statistical and systematic uncertainties of the side band fit itself, as the background is completely determined from data.

The number of signal events expected is evaluated from simulation and given in the third column of Table 2 for different W' masses along with the total uncertainty. The following sources of systematic uncertainties have been considered.

- Muon p_T resolution and momentum scale: Systematic uncertainties due to the muon p_T resolution and momentum scale are evaluated from detailed studies of the $Z \rightarrow \mu^+ \mu^-$ mass distribution [23] and high-p_T cosmic ray muons [11]. In order to estimate the effect on the number of events expected, the data muon p_T spectrum is scaled and smeared using the values obtained from those studies, the missing transverse energy is recomputed, and finally a distorted M_T distribution is obtained. The fit in the side band is performed again with the new M_T distribution. From comparison with the background estimation obtained from the original undistorted sample, an uncertainty in the final number of expected background events for $M_T > 500$ GeV of approximately 3% is derived. For the signal yield, where higher values of p_T should be considered,
The high M_T region is then used to search for $W' \to \mu \nu$ which would manifest itself as an excess of events in the TeV region of the M_T distribution. No significant excess is observed (Fig. 2). The highest transverse mass event observed has $M_T = 487\text{ GeV}$ and is displayed in Fig. 3.

An upper limit is set on the production cross section times the branching ratio into $\mu \nu$, $\sigma \cdot BR(W' \to \mu \nu)$. Events above a M_T threshold, which is optimized for the best expected limit, are counted and their number (N_{data}) is compared to the expectation. The probability of observing N_{data} events is given by Poisson statistics. In order to derive the posterior probability distribution of the parameter of interest, $\sigma \cdot BR$, the systematic uncertainties are treated as nuisance parameters with log-normal prior shape whereas the prior shape of the parameter of interest is assumed to be flat. The BATCalculator tool, which connects the Bayesian Analysis Toolkit (BAT) [26] to the RooStats package [27], is used to calculate the limit with the help of Markov Chain Monte Carlo methods. The expected and observed 95% C.L. limits for $\sigma \cdot BR$ are shown in Fig. 4 and in Table 2. The one and two sigma band shows the variation of the expected limit when running a large number of pseudo-experiments taking into account systematic and statistical uncertainties, being dominated by the latter given the small event numbers. The uncertainty on the theoretical cross section was determined by re-weighting each event using all the eigenvectors of the CTEQ6 PDF set. The value of the theoretical cross section, shown in Table 2, is used to translate the excluded cross section into a W' mass limit. The existence of a W' with SM-like couplings and a mass below 1.40 TeV is excluded at 95% C.L. with an expected limit of 1.35 TeV. Inclusion of $W' \to \tau \nu$ decays does not appreciably add to the acceptance of the $W' \to \mu \nu$ signal process.

A similar search has been performed in the channel $W' \to e \nu$ [9]. In this channel the signal is based on high energy electrons and E_T^{miss} and the main discriminating variable is again the transverse mass. The kinematic selections on the angle and the energy ratio of both leptons are similar to the muon channel. Different methods for background determination were developed as QCD

![Fig. 3. Display of the highest-M_T event in transverse view (left) and longitudinal view (right). The four barrel muon stations are shown in red, the forward muon stations in blue. Charged particle tracks as well as the deposited energy per calorimeter cell are displayed. The muon with $p_T = 249\text{ GeV}$ is symbolized by a red line moving upward, and the $E_T^{\text{miss}} = 238.6\text{ GeV}$ ("pMet") by a blue line moving downward. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)](image)
remains unchanged. From this combination, a W
be fully correlated between the two channels, the combined limit
cross section. When all background uncertainties are assumed to
as well as the
nels. The uncertainty on the luminosity is taken as fully correlated,
ciencies are assumed to be fully uncorrelated between both chan-
may have a larger impact; the normalization of the main W-boson
and the multi-jet backgrounds are derived from the data, while
the shape for all backgrounds is modeled with simulated samples,
with the exception of the multi-jet QCD which is derived from the
data. The muon channel exhibits slightly higher sensitivity (due
to the larger efficiency of about 79–82%, compared to 64–67% in
the electron channel). No events are observed at high transverse
masses in either channel, and the results of both searches are com-
bined. Identical NNLO signal cross sections with the same
k-factors and the same PDF uncertainties are used for both channels under
the assumption of lepton universality. The search windows are opti-
mized individually for each channel based on the best expected
limit. The search windows for both channels can be found in Ta-
bles. For each channel the likelihood function is determined and
the two likelihood functions are combined.

The limits for the two individual channels as well as the limit
obtained by combining them are shown in Fig. 5. The systematic
uncertainties for resolution, trigger and lepton identification effi-
ciencies are assumed to be fully uncorrelated between both chan-
els. The uncertainty on the luminosity is taken as fully correlated,
as well as the k-factors and PDF uncertainties on the theoretical
cross section. When all background uncertainties are assumed to
be fully correlated between the two channels, the combined limit
remains unchanged. From this combination, a W with SM-like
couplings and with mass below 1.58 TeV is excluded at the 95%
confidence level.

In summary, a search for a new heavy gauge boson W that
decays to a muon and a neutrino has been performed with 36 pb⁻¹
of data collected by the CMS experiment. No evidence has been
found for W boson production assuming SM-like couplings and
95% C.L. upper limits have been set on \(\sigma \cdot BR(W \rightarrow \mu \nu) \). Additionally, a 95% C.L. lower bound on the mass of a W boson
is set at 1.40 TeV. This lower bound is increased to 1.58 TeV when
this analysis is combined with a similar search for W \(\rightarrow e \nu \). This
result represents a significant improvement over previously pub-
lished limits.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator
departments for the excellent performance of the LHC machine.
We thank the technical and administrative staff at CERN and
other CMS institutes, and acknowledge support from: FMSR (Aus-
tria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP
(Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COL-
CIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of
Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP
(Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF
(Germany); GSRT (Greece); OTA, KTH (Hungary); DAE and
DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCJ
(Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-
FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR
(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE
(Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding
Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey);
STFC (United Kingdom); DOE and NSF (USA).
Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebergs, E. Daubie
Université de Mons, Mons, Belgium

G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

N. Darmenov, L. Dimitrov, V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, M. Dyulendarova, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, E. Marinova, M. Mateev, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak
Technical University of Split, Split, Croatia

Z. Antunovic, M. Dzelalija
University of Split, Split, Croatia

V. Brigljevic, S. Duric, K. Kadija, S. Morovic
Institute Rudjer Boskovic, Zagreb, Croatia

A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis
University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr.
Charles University, Prague, Czech Republic
S.G. Heo, S.K. Nam
Kangwon National University, Chunchon, Republic of Korea

Kyungpook National University, Daegu, Republic of Korea

Zero Kim, J.Y. Kim, S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

Korea University, Seoul, Republic of Korea

M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck, J. Tam
University of Auckland, Auckland, New Zealand

P.H. Butler, R. Doesburg, H. Silverwood
University of Canterbury, Christchurch, New Zealand

M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krollkowski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, V. Kaftanov†, M. Kossov1, A. Krokhotin, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Vinogradov

P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic24, M. Djordjevic, D. Krpic24, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

P. Jindal, N. Parashar

Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian, M. Yan

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA
32 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
33 Also at Paul Scherrer Institut, Villigen, Switzerland.
34 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
35 Also at Gaziosmanpasa University, Tokat, Turkey.
36 Also at Adiyaman University, Adiyaman, Turkey.
37 Also at Mersin University, Mersin, Turkey.
38 Also at Izmir Institute of Technology, Izmir, Turkey.
39 Also at Kafkas University, Kars, Turkey.
40 Also at Suleyman Demirel University, Isparta, Turkey.
41 Also at Ege University, Izmir, Turkey.
42 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
43 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
44 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
45 Also at Institute for Nuclear Research, Moscow, Russia.
46 Also at Los Alamos National Laboratory, Los Alamos, USA.
† Deceased.