Draft Genome Sequences of Eight Enterohepatic Helicobacter Species Isolated from Both Laboratory and Wild Rodents

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1128/genomeA.01218-14</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Society for Microbiology</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Apr 04 07:43:56 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/92735</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Draft Genome Sequences of Eight Enterohepatic Helicobacter Species Isolated from Both Laboratory and Wild Rodents

Alexander Sheh, Zeli Shen, James G. Fox

Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

A.S. and Z.S. are co-first authors.

The draft genome sequences of eight enterohepatic Helicobacter species, *H. muridarum*, *H. trogontum*, *H. typhlonius*, and five unnamed helicobacters, are presented here. Using laboratory mice pervasively infected with helicobacters, we characterized the presence of known virulence factors.

TABLE 1 Genome characteristics and accession numbers of eight rodent helicobacters

<table>
<thead>
<tr>
<th>Strain</th>
<th>GenBank accession no.</th>
<th>Host</th>
<th>Fold coverage</th>
<th>G+C content (%)</th>
<th>Estimated genome length (bp) using Velvet</th>
<th>No. of contigs using PGAP</th>
<th>No. of genes using PGAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. muridarum ST1</td>
<td>JRPD0000000000</td>
<td>Mouse</td>
<td>56</td>
<td>33</td>
<td>2,354,445</td>
<td>92</td>
<td>2,351</td>
</tr>
<tr>
<td>H. trogontum (“Flexispira rappini taxon 6”) ATCC 700114</td>
<td>JRPLO0000000000</td>
<td>Rat</td>
<td>48</td>
<td>34</td>
<td>2,762,714</td>
<td>129</td>
<td>1,922</td>
</tr>
<tr>
<td>H. typhlonius MIT strain 97-6810</td>
<td>JRPF0000000000</td>
<td>Mouse</td>
<td>62</td>
<td>38.5</td>
<td>1,899,179</td>
<td>25</td>
<td>2,520</td>
</tr>
<tr>
<td>Helicobacter sp. MIT strain 01-6451</td>
<td>JRMQ0000000000</td>
<td>Mouse</td>
<td>89</td>
<td>37.5</td>
<td>2,056,937</td>
<td>48</td>
<td>2,064</td>
</tr>
<tr>
<td>Helicobacter sp. MIT strain 03-1614</td>
<td>JRMU0000000000</td>
<td>Mouse</td>
<td>36</td>
<td>37.5</td>
<td>1,927,676</td>
<td>172</td>
<td>2,057</td>
</tr>
<tr>
<td>Helicobacter sp. MIT strain 03-1616</td>
<td>JROV0000000000</td>
<td>Mouse</td>
<td>37</td>
<td>39</td>
<td>1,880,582</td>
<td>176</td>
<td>1,974</td>
</tr>
<tr>
<td>Helicobacter sp. MIT strain 05-5293</td>
<td>JROZ0000000000</td>
<td>Wild mouse</td>
<td>65</td>
<td>38</td>
<td>2,016,563</td>
<td>101</td>
<td>2,097</td>
</tr>
<tr>
<td>Helicobacter sp. MIT strain 11-5569</td>
<td>JRPB0000000000</td>
<td>Mouse</td>
<td>80</td>
<td>35</td>
<td>2,024,356</td>
<td>83</td>
<td>2,135</td>
</tr>
</tbody>
</table>

Enterohepatic *Helicobacter* species (EHS) are Gram-negative, microaerophilic, spiral-shaped bacteria that colonize the mucosa of the gastrointestinal tract and/or the livers of mammals, including humans, and birds (1, 2). Natural enterohepatic Helicobacter sp. infection is prevalent in 88% of research mouse colonies worldwide (3). Our previous work reported the high prevalence of Helicobacter hepaticus, Helicobacter rodentium, Helicobacter bilis, and Helicobacter typhlonius in research mouse facilities (3). Previously, we have sequenced multiple EHS, including *H. bilis*, *Helicobacter pullorum*, *H. hepaticus*, *Helicobacter cinaedi*, and *Helicobacter canadensis* (4, 5). While most infected mice develop minimal pathological changes, susceptible strains exhibit typhlocolitis and hepatitis, which can progress to colon cancer and hepatocellular carcinoma (6). Previous studies have shown that Helicobacter infections can affect experimental outcomes in cancer studies and confound study results (7–9).

Furthermore, studies have highlighted the potential zoonotic nature of EHS species, as EHS isolated in rodents or birds, such as *H. cinaedi*, *H. canadensis*, *H. bilis*, and *H. pullorum*, have been identified in patients with diarrhea, cholecystitis, and biliary neoplasm (10–12), and it is well-documented that EHS can also infect other animal species, such as dogs, cats, geese, rhesus macaques, hamsters, gerbils, guinea fowl, and chickens (13–31).

In this report, we announce the whole-genome sequencing of eight EHS, including Helicobacter muridarum ST1, Helicobacter trogontum, *H. typhlonius*, as well as unnamed Helicobacter species (Massachusetts Institute of Technology [MIT] strains 01-6451, 03-1614, 03-1616, 05-5293, and 11-5569). These isolates were obtained from cecal, colon, and fecal samples of either laboratory or wild mice and rats. The isolates were sequenced using Illumina MiSeq sequencing technology, as described previously (32). The 250-bp paired-end sequencing reads generated by MiSeq were assembled into contigs using Velvet (33). The sequences were annotated using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (34). The G+C contents ranged from 33 to 39%, and between 1,922 and 2,520 genes were annotated per genome (Table 1).

Due to the ability of EHS to interfere with biomedical research involving rodents, we evaluated the presence of known Helicobacter virulence determinants, such as gamma-glutamyl transpeptidase (ggt), cytotoxic distending toxin subunit B (cdtB), and components of both the type IV and type VI secretion systems. Both
H. muridarum and H. trogontum ATCC 700144 possess gtt, a Helicobacter pylori virulence factor that leads to cell cycle arrest, necrosis, and apoptosis (35). cdtB is present in H. muridarum, H. typhlonius, and the unnamed MIT strains 01-6451, 03-1614, 03-1616, and 05-5293. The entire cdtABC cluster was found in H. muridarum and the unnamed MIT strains 01-6451, 03-1614, 03-1616, and 05-5293. Multiple type IV secretion genes (virB2-virB11 or virD4) were found in all species presented, excluding H. muridarum and MIT strain 01-6451. Type VI genes (hcp, icmF, vusD, and vgrG), associated with pathogenicity (36, 37), were less common. icmF, vusD, and vgrG were found in H. trogontum ATCC 700114 and the unnamed MIT strain 03-1614. vgrG was found in H. typhlonius and several unnamed species (01-6451, 03-1616, and 11-5569).

Nucleotide sequence accession numbers. The genome sequences have been submitted to GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

This project has been funded in part with federal funds from the National Institutes of Health, under grants R01CA067529, R01OD011141, P01CA26731, and P30ES020190 (all to J.G.F.).

REFERENCES

