A 440pJ/bit 1Mb/s 2.4GHz multi-channel FBAR-based TX and an integrated pulse-shaping PA

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1109/VLSIC.2012.6243776

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Version
Author's final manuscript

Accessed
Wed Mar 16 17:18:19 EDT 2016

Citable Link
http://hdl.handle.net/1721.1/92831

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/4.0/
A 440pJ/bit 1Mb/s 2.4GHz Multi-Channel FBAR-based TX and an Integrated Pulse-shaping PA
Arun Paidimarri, Phillip M. Nadeau, Patrick P. Mercier, Anantha P. Chandrakasan
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract
A 2.4GHz TX in 65nm CMOS defines three channels using three high-Q FBARs and supports OOK, BPSK and MSK. The oscillators have ~132dBc/Hz phase noise at 1MHz offset, and are multiplexed to an efficient resonant buffer. Optimized for low output power of ~10dBm, a fully-integrated PA implements 7.5dB dynamic output power range using a dynamic impedance transformation network, and is used for amplitude pulse-shaping. Peak PA efficiency is 44.4% and peak TX efficiency is 33%. The entire TX consumes 440pJ/bit at 1Mb/s.

Introduction
Body Area Networks (BANs) for continuous health monitoring applications require radios that are both reliable and energy efficient in order to minimize device size and extend battery lifetime. Due to short transmit distances and an energy-asymmetric star topology, a low output power of ~10dBm is sufficient for the sensor node [1]. Low PA power consumption places stringent power constraints on LO generation and modulation to maintain high overall TX efficiency. Recent work shows that high-Q direct-RF resonators, such as FBAR and SAW, provide low-power and stable LOs [2, 3], avoiding slow-starting, power-hungry PLLs. Low tuning range, however, limits its operation to a single channel. Typical PAs are not optimized for low output power, and this presents additional challenges.

This work proposes a high-Q RF resonator-based frequency generation architecture that scales to multiple channels by multiplexing resonators. A three-channel FBAR-based TX operating in the 2.4GHz ISM band demonstrates the idea. Additionally, a PA optimized for low output power is proposed, with an integrated tunable impedance transformation network capable of amplitude pulse-shaping for improved spectral efficiency.

Multi-Channel Transmitter Architecture
Fig. 1 shows the TX architecture. Three FBAR oscillators are multiplexed to an efficient resonant buffer which directly drives the PA. The buffer stage also incorporates matched delays with inverted phase to provide BPSK modulation. Since the output power is low, overall TX efficiency is critical, and informs the design choices for LO generation, modulation, and channel multiplexing. A low voltage design (0.7V) coupled with rail-to-rail swing on all RF nodes is used for improved power efficiency. Full swing on the oscillator minimizes short-circuit current in the buffers, while full swing at the input of the PA maximizes overdrive. The TX is designed for a datarate of 1Mb/s and supports three simple modulation schemes: OOK, BPSK and MSK, all with pulse-shaping capability.

Fig. 1 also shows the schematic of a Pierce oscillator [2] used for one channel. This inverter-based circuit provides rail-to-rail output swing and reduces power consumption by

\[\frac{1}{2} \mu C_{\text{MOS}} V_{\text{DD}}^2 \]
addition, these capacitor bank settings can be switched dynamically, at rates >10MHz, and are hence used for efficient amplitude pulse-shaping. This is opposed to a power-hungry linear mixer + PA approach. Traditional methods of efficient pulse-shaping like supply modulators [4] can be used in addition to this technique to expand the output power range even further.

Measurement Results

The TX is fabricated in a 65nm CMOS process. A 0.7V supply powers the RF circuits and a 1V supply powers the digital paths. The TX is fabricated in a 65nm CMOS process. A 0.7V supply powers the RF circuits and a 1V supply powers the digital paths. The TX is fabricated in a 65nm CMOS process.

TX Performance Summary

- **TX Peak Eff.**
- **Phase Noise**
- **Data Rate**
- **Startup Time**
- **Num. Channels**
- **Supply**
- **Technology**

Spectra

- **OOK (10x oversampling)**
- **BPSK (SRRC)**
- **GMSK**

References