Families and Springer’s correspondence

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.2140/pjm.2014.267.431</td>
</tr>
<tr>
<td>Publisher</td>
<td>Mathematical Sciences Publishers</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Dec 21 20:20:18 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/93075</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
FAMILIES AND SPRINGER’S CORRESPONDENCE

G. Lusztig

INTRODUCTION

0.1. Let G be a connected reductive algebraic group over an algebraically closed field k of characteristic p. Let W be the Weyl group of G; let $\text{Irr} W$ be a set of representatives for the isomorphism classes of irreducible representations of W over $\overline{\mathbb{Q}}_l$, an algebraic closure of the field of l-adic numbers (l is a fixed prime number $\neq p$).

Now $\text{Irr} W$ is partitioned into subsets called families as in [L1, Sec.9], [L3, 4.2]. Moreover to each family F in $\text{Irr} W$, a certain set X_F, a pairing $\{,\} : X_F \times X_F \to \overline{\mathbb{Q}}_l$, and an imbedding $F \to X_F$ was canonically attached in [L1],[L3, Ch.4]. (The set X_F with the pairing $\{,\}$, which can be viewed as a nonabelian analogue of a symplectic vector space, plays a key role in the classification of unipotent representations of a finite Chevalley group [L3] and in that of unipotent character sheaves on G). In [L1],[L3] it is shown that $X_F = M(G_F)$ where G_F is a certain finite group associated to F and, for any finite group Γ, $M(\Gamma)$ is the set of all pairs (g, ρ) where g is an element of Γ defined up to conjugacy and ρ is an irreducible representation over $\overline{\mathbb{Q}}_l$ (up to isomorphism) of the centralizer of g in Γ; moreover $\{,\}$ is given by the “nonabelian Fourier transform matrix” of [L1, Sec.4] for G_F.

In the remainder of this paper we assume that p is not a bad prime for G. In this case a uniform definition of the group G_F was proposed in [L3, 13.1] in terms of special unipotent classes in G and the Springer correspondence, but the fact that this leads to a group isomorphic to G_F as defined in [L3, Ch.4] was stated in [L3, (13.1.3)] without proof. One of the aims of this paper is to supply the missing proof.

To state the results of this paper we need some definitions. For $E \in \text{Irr} W$ let $a_E \in \mathbb{N}, b_E \in \mathbb{N}$ be as in [L3, 4.1]. As noted in [L2], for $E \in \text{Irr} W$ we have

(a) $a_E \leq b_E$;

we say that E is special if $a_E = b_E$.

For $g \in G$ let $Z_G(g)$ or $Z(g)$ be the centralizer of g in G and let $A_G(g)$ or $A(g)$ be the group of connected components of $Z(g)$. Let C be a unipotent conjugacy class in G and let $u \in C$. Let B_u be the variety of Borel subgroups of G that contain

Supported in part by National Science Foundation grant DMS-0758262.

Typeset by \texttt{AMS-\LaTeX}
u; this is a nonempty variety of dimension, say, e_C. The conjugation action of $Z(u)$ on B_u induces an action of $A(u)$ on $S_u := H^{2e_C}(B_u, \mathbb{Q}_l)$. Now W acts on S_u by Springer’s representation $[Spr]$; however here we adopt the definition of the W-action on S_u given in [L4] which differs from Springer’s original definition by tensoring by sign. The W-action on S_u commutes with the $A(u)$-action. Hence we have canonically $S_u = \bigoplus_{E \in \text{Irr} W} E \otimes V_E$ (as $W \times A(u)$-modules) where V_E are finite dimensional \mathbb{Q}_l-vector spaces with $A(u)$-action. Let $\text{Irr}_C W = \{ E \in \text{Irr} W; V_E \neq 0 \}$; this set does not depend on the choice of u in C. By [Spr], the sets $\text{Irr}_C W$ (for C variable) form a partition of $\text{Irr} W$; also, if $E \in \text{Irr}_C W$ then V_E is an irreducible $A(u)$-module and, if $E \neq E'$ in $\text{Irr}_C W$, then the $A(u)$-modules $V_E, V_{E'}$ are not isomorphic. By [BM] we have

(b) $e_C \leq b_E$ for any $E \in \text{Irr}_C W$

and the equality $b_E = e_C$ holds for exactly one $E \in \text{Irr}_C W$ which we denote by E_C (for this E, V_E is the unit representation of $A(u)$).

Following [L3, (13.1.1)] we say that C is special if E_C is special. (This concept was introduced in [L2, Sec.9] although the word “special” was not used there.) From (b) we see that C is special if and only if $a_{EC} = e_C$.

Now assume that C is special. We denote by $\mathcal{F} \subset \text{Irr} W$ the family that contains E_C. (Note that $C \mapsto \mathcal{F}$ is a bijection from the set of special unipotent classes in G to the set of families in $\text{Irr} W$.) We set $\text{Irr}_C^* W = \{ E \in \text{Irr}_C W; E \in \mathcal{F} \}$ and

$$\mathcal{K}(u) = \{ a \in A(u); a \text{ acts trivially on } V_E \text{ for any } E \in \text{Irr}_C^* W \}.$$

This is a normal subgroup of $A(u)$. We set $\tilde{A}(u) = A(u)/\mathcal{K}(u)$, a quotient group of $A(u)$. Now, for any $E \in \text{Irr}_C^* W$, V_E is naturally an (irreducible) $\tilde{A}(u)$-module. Another definition of \tilde{A}_u is given in [L3, (13.1.1)]. In that definition $\text{Irr}_C^* W$ is replaced by $\{ E \in \text{Irr}_C W; a_E = e_C \}$ and $\mathcal{K}(u), \tilde{A}(u)$ are defined as above but in terms of this modified $\text{Irr}_C^* W$. However the two definitions are equivalent in view of the following result.

Proposition 0.2. Assume that C is special. Let $E \in \text{Irr}_C W$.

(a) We have $a_E \leq e_C$.

(b) We have $a_E = e_C$ if and only if $E \in \mathcal{F}$.

This follows from [L8, 10.9]. Note that (a) was stated without proof in [L3, (13.1.2)] (the proof I had in mind at the time of [L3] was combinatorial).

0.3. The following result is equivalent to a result stated without proof in [L3, (13.1.3)].

Theorem 0.4. Let C be a special unipotent class of G, let $u \in C$ and let \mathcal{F} be the family that contains E_C. Then we have canonically $X_{\mathcal{F}} = M(\tilde{A}(u))$ so that the pairing $\{ , \}$ on $X_{\mathcal{F}}$ coincides with the pairing $\{ , \}$ on $M(\tilde{A}(u))$. Hence $G_{\mathcal{F}}$ can be taken to be $\tilde{A}(u)$.

This is equivalent to the corresponding statement in the case where G is adjoint, which reduces immediately to the case where G is adjoint simple. It is then enough
to prove the theorem for one G in each isogeny class of semisimple, almost simple algebraic groups; this will be done in §3 after some combinatorial preliminaries in §1, §2. The proof uses the explicit description of the Springer correspondence: for type A_n, G_2 in [Spr]; for type B_n, C_n, D_n in [S1] (as an algorithm) and in [L4] (by a closed formula); for type F_4 in [S2]; for type E_n in [AL], [Sp1].

An immediate consequence of (the proof of) Theorem 0.4 is the following result which answers a question of R. Bezrukavnikov.

Corollary 0.5. In the setup of 0.4 let $E \in \text{Irr}_c^\tau W$ and let V_E be the corresponding $A(u)$-module viewed as an (irreducible) $A(u)$-module. The image of E under the canonical imbedding $F \to X_F = M(A(u))$ is represented by the pair $(1, V_E) \in M(A(u)).$ Conversely, if $E \in F$ and the image of E under $F \to X_F = M(A(u))$ is represented by the pair $(1, \rho) \in M(A(u))$ where ρ is an irreducible representation of $A(u)$, then $E \in \text{Irr}_c^\tau W$ and $\rho \cong V_E.$

0.6. Corollary 0.5 has the following interpretation. Let Y be a (unipotent) character sheaf on G whose restriction to the regular semisimple elements is $\neq 0$; assume that in the usual parametrization of unipotent character sheaves by $\sqcup_{X_F} X_F, Y$ corresponds to $(1, \rho) \in M(A(u))$ where C is the special unipotent class corresponding to a family $F, u \in C$ and ρ is an irreducible representation of $A(u).$ Then $Y|_C$ is (up to shift) the irreducible local system on C defined by $\rho.$

A parametrization of unipotent character sheaves on G in terms of restrictions to various conjugacy classes of G is outlined in §4.

0.7. **Notation.** If A, B are subsets of N we denote by $A \cup B$ the union of A and B regarded as a multiset (each element of $A \cap B$ appears twice). For any set \mathcal{X}, we denote by $P(\mathcal{X})$ the set of subsets of \mathcal{X} viewed as an F_2-vector space with sum given by the symmetric difference. If $\mathcal{X} \neq \emptyset$ we note that $\{\emptyset, \mathcal{X}\}$ is a line in $P(\mathcal{X})$ and we set $\mathcal{P}(\mathcal{X}) = P(\mathcal{X})/\{\emptyset, \mathcal{X}\},$ $P_{ev}(\mathcal{X}) = \{L \in P(\mathcal{X}); |L| = 0 \mod 2\};$ let $\mathcal{P}_{ev}(\mathcal{X})$ be the image of $P_{ev}(\mathcal{X})$ under the obvious map $P(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ (thus $P_{ev}(\mathcal{X}) = P(\mathcal{X})$ if $|\mathcal{X}|$ is odd and $P_{ev}(\mathcal{X})$ is a hyperplane in $P(\mathcal{X})$ if $|\mathcal{X}|$ is even).

Now if $\mathcal{X} \neq \emptyset,$ the assignment $L, L' \mapsto |L \cap L'| \mod 2$ defines a symplectic form on $P_{ev}(\mathcal{X})$ which induces a nondegenerate symplectic form $(,)$ on $\mathcal{P}_{ev}(\mathcal{X})$ via the obvious linear map $P_{ev}(\mathcal{X}) \to \mathcal{P}_{ev}(\mathcal{X})$.

For $g \in G$ let $g_s \ (\text{resp.} \ g_u)$ be the semisimple (resp. unipotent) part of $g.$

For $z \in (1/2)\mathbb{Z}$ we set $[z] = z \ (\text{resp.} \ [z] = z - (1/2) \ \text{if} \ z \in \mathbb{Z} + (1/2).$

Erratum to [L3]. On page 86, line -6 delete: "$b' < b$" and on line -4 before "In the language..." insert: "The array above is regarded as identical to the array obtained by interchanging its two rows."

On page 343, line -5, after "respect to M'" insert: "and where the group G_F defined in terms of (u', M) is isomorphic to the group G_F defined in terms of (u, G)".

Erratum to [L4]. In the definition of A_n, B_n in [L4, 11.5], the condition $I \in \alpha$ should be replaced by $I \in \alpha'$ and the condition $I \in \alpha'$ should be replaced by $I \in \alpha.$
1. Combinatorics

1.1. Let N be an even integer ≥ 0. Let $a := (a_0, a_1, a_2, \ldots, a_N) \in \mathbb{N}^{N+1}$ be such that $a_0 = a_1 \leq a_2 \leq \cdots \leq a_N$, $a_0 < a_2 < a_4 < \cdots$, $a_1 < a_3 < a_5 < \cdots$. Let $J = \{i \in [0, N] ; a_i \text{ appears exactly once in } a\}$. We have $J = \{i_0, i_1, \ldots, i_{2M}\}$ where $M \in \mathbb{N}$ and $i_0 < i_1 < \cdots < i_{2M}$ satisfy $i_s = s \mod 2$ for $s \in [0, 2M]$. Hence for any $s \in [0, 2M - 1]$ we have $i_{s+1} = i_s + 2m_s + 1$ for some $m_s \in \mathbb{N}$. Let E be the set of $b := (b_0, b_1, b_2, \ldots, b_N) \in \mathbb{N}^{N+1}$ such that $b_0 < b_2 < b_4 < \cdots$, $b_1 < b_3 < b_5 < \cdots$ and such that $|b| = |a|$ (we denote by $|b|, |a|$ the multisets $\{b_0, b_1, \ldots, b_N\}, \{a_0, a_1, \ldots, a_N\}$). We have $a \in E$. For $b \in E$ we set

\[\hat{b} = (\hat{b}_0, \hat{b}_1, \hat{b}_2, \ldots, \hat{b}_N) = (b_0, b_1+1, b_2+1, b_3+2, b_4+2, \ldots, b_{N-1}+(N/2), b_N+(N/2)). \]

Let \hat{b} be the multiset $\{\hat{b}_0, \hat{b}_1, \hat{b}_2, \ldots, \hat{b}_N\}$.

For $s \in \{1, 3, \ldots, 2M-1\}$ we define $a^{(s)} = (a_0^{(s)}, a_1^{(s)}, a_2^{(s)}, \ldots, a_N^{(s)}) \in E$ by

\[
(a_0^{(s)}, a_1^{(s)}, a_2^{(s)}, \ldots, a_N^{(s)}) = (a_{i_0}, a_{i_1}, a_{i_2}+1, a_{i_3}+2, a_{i_4}+3, \ldots, a_{i_s}+2m_s, a_{i_{s+1}}+2m_{s+1})
\]

and $a_i^{(s)} = a_i$ if $i \in [0, N] - [i_s, i_{s+1}]$. More generally for $X \subset \{1, 3, \ldots, 2M-1\}$ we define $a^X = (a_0^X, a_1^X, a_2^X, \ldots, a_N^X) \in E$ by $a_i^X = a_i^{(s)}$ if $s \in X$, $i \in [i_s, i_{s+1}]$, and $a_i^X = a_i$ for all other $i \in [0, N]$. Note that $|a^X| = |\hat{a}|$. Conversely, we have the following result.

Lemma 1.2. Let $b \in E$ be such that $|\hat{b}| = |\hat{a}|$. There exists $X \subset \{1, 3, \ldots, 2M-1\}$ such that $b = a^X$.

The proof is given in 1.3-1.5.

1.3. We argue by induction on M. We have

\[a = (y_1 = y_1 < y_2 = y_2 < \cdots < y_r = y_r < a_{i_0} < \cdots) \]

for some r. Since $|b| = |a|$, we must have

\[(b_0, b_2, b_4, \ldots) = (y_1, y_2, \ldots, y_r, \ldots), (b_1, b_3, b_5, \ldots) = (y_1, y_2, \ldots, y_r, \ldots). \]

Thus,

(a) $b_i = a_i$ for $i < i_0$.

We have $a = (\cdots > a_{2M} > y_1' = y_1 = y_2 < y_2 < \cdots < y_r' = y_r')$ for some r'. Since $|b| = |a|$, we must have

\[(b_0, b_2, b_4, \ldots) = (y_1', y_2', \ldots, y_r'), (b_1, b_3, b_5, \ldots) = (y_1', y_2', \ldots, y_r'). \]

Thus,

(b) $b_i = a_i$ for $i > i_{2M}$.

If $M = 0$ we see that $b = a$ and there is nothing further to prove. In the rest of the proof we assume that $M \geq 1$.

1.4. From 1.3 we see that
\[(a_0, a_1, a_2, \ldots, a_{i_{2M}}) = (\ldots, a_{i_{2M-1}} < x_1 = x_2 = x_2 < \cdots < x_q = x_q < a_{i_{2M}})\]
(for some \(q\)) has the same entries as \((b_0, b_1, b_2, \ldots, b_{i_{2M}})\) (in some order). Hence the pair
\[(\ldots, b_{i_{2M}-5}, b_{i_{2M}-3}, b_{i_{2M}-1}), (\ldots, b_{i_{2M}-4}, b_{i_{2M}-2}, b_{i_{2M}})\]
must have one of the following four forms.
\[
\begin{align*}
(a) & \quad (\ldots, a_{i_{2M-1}}, x_1, x_2, \ldots, x_q), (\ldots, x_1, x_2, \ldots, x_q, a_{i_{2M}}), \\
(b) & \quad (\ldots, x_1, x_2, \ldots, x_q, a_{i_{2M}}), (\ldots, a_{i_{2M-1}}, x_1, x_2, \ldots, x_q, a_{i_{2M}}), \\
(c) & \quad (\ldots, a_{i_{2M-1}}, x_1, x_2, \ldots, x_q, a_{i_{2M}}), (\ldots, x_1, x_2, \ldots, x_q, a_{i_{2M}}), \\
(d) & \quad (\ldots, a_{i_{2M-1}}, x_1, x_2, \ldots, x_q, a_{i_{2M}}), (\ldots, x_1, x_2, \ldots, x_q, a_{i_{2M}}).
\end{align*}
\]
Hence \((\ldots, b_{i_{2M}-2}, b_{i_{2M}-1}, b_{i_{2M}})\) must have one of the following four forms.
\[
\begin{align*}
(I) & \quad (\ldots, a_{i_{2M-1}}, x_1, x_1, x_2, x_2, \ldots, x_q, a_{i_{2M}}, x_2, \ldots, x_q, a_{i_{2M}}), \\
(II) & \quad (\ldots, x_1, x_1, x_2, x_1, x_3, x_2, \ldots, x_q, x_q-1, a_{i_{2M}}, x_q, a_{i_{2M}}, x_q), \\
(III) & \quad (\ldots, a_{i_{2M-1}}, z, x_1, x_1, x_2, x_2, \ldots, x_q, x_q, x_q, a_{i_{2M}}, x_q), \\
(IV) & \quad (\ldots, a_{i_{2M-1}}, z', x_1, z'', x_2, x_1, x_3, x_2, \ldots, x_q, x_q-1, a_{i_{2M}}, x_q).
\end{align*}
\]
where \(a_{i_{2M-1}} > z, a_{i_{2M-1}} > z'' > z'\) and all entries in \(\ldots\) are < \(a_{i_{2M-1}}\). Correspondingly, \((\ldots, \hat{b}_{i_{2M}-2}, \hat{b}_{i_{2M}-1}, \hat{b}_{i_{2M}})\) must have one of the following four forms.
\[
\begin{align*}
(I) & \quad (\ldots, a_{i_{2M-1}} + h - q, x_1 + h - q, x_1 + h - q + 1, x_2 + h - q + 1, x_2 + h - q + 2, \ldots, x_q + h - 1, x_q + h, a_{i_{2M}} + h), \\
(II) & \quad (\ldots, x_1 + h - q, a_{i_{2M-1}} + h - q, x_2 + h - q + 1, x_1 + h - q + 1, x_3 + h - q + 2, x_2 + h - q + 1, \ldots, x_q + h - 1, x_q + h, a_{i_{2M}} + h), \\
(III) & \quad (\ldots, a_{i_{2M-1}} + h - q - 1, z + h - q, x_1 + h - q, x_1 + h - q + 1, x_2 + h - q + 1, x_2 + h - q + 2, \ldots, x_q + h - 1, x_q + h, a_{i_{2M}} + h), \\
(IV) & \quad (\ldots, a_{i_{2M-1}} + h - q - 1, z' + h - q - 1, x_1 + h - q, z'' + h - q, x_2 + h - q + 1, x_1 + h - q + 1, x_3 + h - q + 2, x_2 + h - q + 1, \ldots, x_q + h - 1, x_q + h, a_{i_{2M}} + h, x_q + h)
\end{align*}
\]
where \(h = i_{2M}/2\) and in case (III) and (IV), \(a_{i_{2M-1}} + h - q\) is not an entry of \((\ldots, \hat{b}_{i_{2M}-2}, \hat{b}_{i_{2M}-1}, \hat{b}_{i_{2M}})\).

Since \((\ldots, \hat{a}_{i_{2M-2}}, \hat{a}_{i_{2M-1}}, \hat{a}_{i_{2M}})\) is given by (I) we see that \(a_{i_{2M-1}} + h - q\) is an entry of \((\ldots, \hat{a}_{i_{2M-2}}, \hat{a}_{i_{2M-1}}, \hat{a}_{i_{2M}})\). Using 1.3(b) we see that
\[
\{\ldots, \hat{a}_{i_{2M-2}}, \hat{a}_{i_{2M-1}}, \hat{a}_{i_{2M}}\} = \{\ldots, b_{i_{2M}-2}, b_{i_{2M}-1}, b_{i_{2M}}\}
\]
as multisets. We see that cases (III) and (IV) cannot arise. Hence we must be in case (I) or (II). Thus
we have either
\[
\begin{align*}
(a) & \quad (b_{i_{2M}-1}, b_{i_{2M}-1}+1, \ldots, b_{i_{2M}-2}, b_{i_{2M}-1}, b_{i_{2M}}) \\
& \quad = (a_{i_{2M-1}}, a_{i_{2M-1}}+1, \ldots, a_{i_{2M}-2}, a_{i_{2M}-1}, a_{i_{2M}}), \\
(b) & \quad (b_{i_{2M}-1}, b_{i_{2M}-1}+1, \ldots, b_{i_{2M}-2}, b_{i_{2M}-1}, b_{i_{2M}}) \\
& \quad = (a_{i_{2M}-1}+1, a_{i_{2M}-1}, a_{i_{2M}-1}+3, a_{i_{2M}-1}+2, \ldots, a_{i_{2M}}, a_{i_{2M}-1}).
\end{align*}
\]
1.5. Let $a' = (a_0, a_1, a_2, \ldots, a_{i_2M-1})$, $b' = (b_0, b_1, b_2, \ldots, b_{i_2M-1})$,

\[a' = (a_0, a_1 + 1, a_2 + 1, a_3 + 2, a_4 + 2, \ldots, a_{i_2M-1} + (i_2M-1)/2), \]

\[b' = (b_0, b_1 + 1, b_2 + 1, b_3 + 2, b_4 + 2, \ldots, b_{i_2M-1} + (i_2M-1)/2). \]

From $[b] = [a]$ and 1.3(b), 1.4(a),(b) we see that the multiset formed by the entries of a' coincides with the multiset formed by the entries of b'. Using the induction hypothesis we see that there exists $X' \subset \{1, 3, \ldots, 2M - 3\}$ such that $b' = a'X'$

where $a'X'$ is defined in terms of a', X' in the same way as aX was defined (see 1.1) in terms of a, X. We set $X = X'$ if we are in case 1.4(a) and $X = X' \cup \{2M - 1\}$ if we are in case 1.4(b). Then we have $b = aX$ (see 1.4(a),(b)), as required. This completes the proof of Lemma 1.2.

1.6. We shall use the notation of 1.1. Let \mathcal{I} be the set of all unordered pairs $(\mathcal{A}, \mathcal{B})$ where \mathcal{A}, \mathcal{B} are subsets of $\{0, 1, 2, \ldots\}$ and $\mathcal{A} \cup \mathcal{B} = (a_0, a_1, a_2, \ldots, a_N)$ as multisets. For example, setting $\mathcal{A}_0 = (a_0, a_2, a_4, \ldots, a_N)$, $\mathcal{B}_0 = (a_1, a_3, \ldots, a_{N-1})$, we have $(\mathcal{A}_0, \mathcal{B}_0) \in \mathcal{I}$. For any subset a of \mathcal{J} we consider

\[\mathcal{A}_a = ((\mathcal{J} - a) \cap \mathcal{A}_0) \cup (a \cap \mathcal{B}_0) \cup (\mathcal{A}_0 \cap \mathcal{B}_0), \]

\[\mathcal{B}_a = ((\mathcal{J} - a) \cap \mathcal{B}_0) \cup (a \cap \mathcal{A}_0) \cup (\mathcal{A}_0 \cap \mathcal{B}_0). \]

Then $(\mathcal{A}_a, \mathcal{B}_a) \in \mathcal{I}$ and the map $a \mapsto (\mathcal{A}_a, \mathcal{B}_a)$ induces a bijection $\mathcal{P}(\mathcal{J}) \leftrightarrow \mathcal{I}$. (Note that if $a = \emptyset$ then $(\mathcal{A}_a, \mathcal{B}_a)$ agrees with the earlier definition of $(\mathcal{A}_0, \mathcal{B}_0)$.)

Let \mathcal{I}' be the set of all $(\mathcal{A}, \mathcal{B}) \in \mathcal{I}$ such that $|\mathcal{A}| = |\mathcal{A}_0|, |\mathcal{B}| = |\mathcal{B}_0|$. Let $\mathcal{P}(\mathcal{J})_0$ be the subspace of $\mathcal{P}_{ev}(\mathcal{J})$ spanned by the 2-element subsets

\[\{a_{i_0}, a_{i_1}\}, \{a_{i_2}, a_{i_3}\}, \ldots, \{a_{i_{2M-2}}, a_{i_{2M-1}}\} \]

of \mathcal{J}. Let $\mathcal{P}(\mathcal{J})_1$ be the subspace of $\mathcal{P}_{ev}(\mathcal{J})$ spanned by the 2-element subsets

\[\{a_{i_1}, a_{i_2}\}, \{a_{i_3}, a_{i_4}\}, \ldots, \{a_{i_{2M-1}}, a_{i_{2M}}\} \]

of \mathcal{J}.

Let $\mathcal{P}(\mathcal{J})_0$ (resp. $\mathcal{P}(\mathcal{J})_1$) be the image of $\mathcal{P}(\mathcal{J})_0$ (resp. $\mathcal{P}(\mathcal{J})_1$) under the obvious map $\mathcal{P}(\mathcal{J}) \to \mathcal{P}(\mathcal{J})$. Note that

(a) $\mathcal{P}(\mathcal{J})_0$ and $\mathcal{P}(\mathcal{J})_1$ are opposed Lagrangian subspaces of the symplectic vector space $\mathcal{P}(\mathcal{J})$, $(,)$. (see 0.7); hence $(,)$ defines an identification $\mathcal{P}(\mathcal{J})_0 = \mathcal{P}(\mathcal{J})_1^*$

where $\mathcal{P}(\mathcal{J})_1^*$ is the vector space dual to $\mathcal{P}(\mathcal{J})_1$.

Let \mathcal{I}_0 (resp. \mathcal{I}_1) be the subset of \mathcal{I} corresponding to $\mathcal{P}(\mathcal{J})_0$ (resp. $\mathcal{P}(\mathcal{J})_1$) under the bijection $\mathcal{P}(\mathcal{J}) \leftrightarrow \mathcal{I}$. Note that $\mathcal{I}_0 \subset \mathcal{I}'$, $\mathcal{I}_1 \subset \mathcal{I}'$, $|\mathcal{I}_0| = |\mathcal{I}_1| = 2^M$.

For any $X \subset \{1, 3, \ldots, 2M - 1\}$ we set $a_X = \cup_{a \in X}\{a_{i_0}, a_{i_{i+1}}\} \in \mathcal{P}(\mathcal{J})$. Then $(\mathcal{A}_a, \mathcal{B}_a) \in \mathcal{I}_1$ is related to a^X in 1.1 as follows:

\[\mathcal{A}_a = \{a_0^X, a_2^X, a_4^X, \ldots, a_N^X\}, \mathcal{B}_a = \{a_1^X, a_3^X, \ldots, a_{N-1}^X\}. \]
1.7. We shall use the notation of 1.1. Let \(T \) be the set of all ordered pairs \((A, B)\) where \(A \) is a subset of \(\{0, 1, 2, \ldots\} \), \(B \) is a subset of \(\{1, 2, 3, \ldots\} \), \(A \) contains no consecutive integers, \(B \) contains no consecutive integers, and \(A \cup B = (\hat{a}_0, \hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N) \) as multisets. For example, setting \(A_\emptyset = (\hat{a}_0, \hat{a}_2, \hat{a}_4, \ldots, \hat{a}_N) \), \(B_\emptyset = (\hat{a}_1, \hat{a}_3, \ldots, \hat{a}_{N-1}) \), we have \((A_\emptyset, B_\emptyset) \in T\).

For any \((A, B) \in T\) we define \((A^-, B^-)\) as follows: \(A^- \) consists of \(x_0 < x_1 - 1 < x_2 - 2 < \cdots < x_{p-1} < x_p \) where \(x_0 < x_1 < \cdots < x_p \) are the elements of \(A \); \(B^- \) consists of \(y_1 - 1 < y_2 - 2 < \cdots < y_q - q \) where \(y_1 < y_2 < \cdots < y_q \) are the elements of \(B \).

We can enumerate the elements of \(T \) as in [L4, 11.5]. Let \(J \) be the set of all \(c \in \mathbb{N} \) such that \(c \) appears exactly once in the sequence

\[(\hat{a}_0, \hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N) = (a_0, a_1 + 1, a_2 + 1, a_3 + 2, a_4 + 2, \ldots, a_{N-1} + (N/2), a_N + (N/2)).\]

A nonempty subset \(I \) of \(J \) is said to be an interval if it is of the form \(\{i, i + 1, i + 2, \ldots, j\} \) with \(i - 1 \notin J, j + 1 \notin J \) and with \(i \neq 0 \). Let \(\mathcal{I} \) be the set of intervals of \(J \). For any \(s \in \{1, 3, \ldots, 2M - 1\} \), the set \(I_s := \{\hat{a}_{i_1}, \hat{a}_{i_1} + 1, \hat{a}_{i_1} + 2, \ldots, \hat{a}_{i_s + 2m_s + 1}\} \) is either a single interval or a union of intervals \(I_s^1 \sqcup I_s^2 \sqcup \ldots \sqcup I_s^{t_s} \) \((t_s \geq 2)\) where \(\hat{a}_{i_1} \in I_s^1, \hat{a}_{i_1 + 2m_s + 1} \in I_s^{t_s}, |I_s^h|, |I_s^{h'}| \) are odd, \(|I_s^h| \) are even for \(h \in [2, t_s - 1] \) and any element in \(I_s^e \) is \(<\) than any element in \(I_{s'}^e \) for \(e < e' \). Let \(\mathcal{I}_s \) be the set of all \(I \in \mathcal{I} \) such that \(I \subset I_s \). We have a partition \(\mathcal{I} = \sqcup_{s \in \{1, 3, \ldots, 2M - 1\}} \mathcal{I}_s \). Let \(H \) be the set of elements of \(c \in J \) such that \(c < a_{i_1} \) (that is such that \(c \) does not belong to any interval). For any subset \(\alpha \subset \mathcal{I} \) we consider

\[A_\alpha = \bigcup_{I \in \mathcal{I} - \alpha}(I \cap A_\emptyset) \cup (H \cap \alpha) \cup (A_\emptyset \cap \alpha),\]
\[B_\alpha = \bigcup_{I \in \mathcal{I} - \alpha}(I \cap B_\emptyset) \cup (H \cap \alpha) \cup (A_\emptyset \cap \alpha).\]

Then \((A_\alpha, B_\alpha) \in T\) and the map \(\alpha \mapsto (A_\alpha, B_\alpha) \) is a bijection \(\mathcal{P}(\mathcal{I}) \leftrightarrow T \). (Note that if \(\alpha = \emptyset \) then \((A_\alpha, B_\alpha)\) agrees with the earlier definition of \((A_\emptyset, B_\emptyset)\).)

Let \(T' = \{(A, B) \in T; |A| = |A_\emptyset|, |B| = |B_\emptyset|\}, T_1 = \{(A, B) \in T'; A^- \cup B^- = A^-_\emptyset \cup B^-_\emptyset\} \). Let \(\mathcal{P}(\mathcal{I})' \) (resp. \(\mathcal{P}(\mathcal{I})_1 \)) be the subset of \(\mathcal{P}(\mathcal{I}) \) corresponding to \(T' \) (resp. \(T_1 \)) under the bijection \(\mathcal{P}(\mathcal{I}) \leftrightarrow T \).

Now let \(X \) be a subset of \(\{1, 3, \ldots, 2M - 1\} \). Let \(\alpha_X = \cup_{s \in X} \mathcal{I}_s \in \mathcal{P}(\mathcal{I}) \). From the definitions we see that

(a) \(A^-_{\alpha_X} = \mathfrak{A}_{\alpha_X}, B^-_{\alpha_X} = \mathfrak{B}_{\alpha_X} \) (notation of 1.6). In particular we have \((A_{\alpha_X}, B_{\alpha_X}) \in T_1 \). Thus \(|T_1| \geq 2^M \). Using Lemma 1.2 we see that

(b) \(|T_1| = 2^M \) and \(T_1 \) consists of the pairs \((A_{\alpha_X}, B_{\alpha_X})\) with \(X \subset \{1, 3, \ldots, 2M - 1\} \).

Using (a),(b) we deduce:

(c) The map \(T_1 \to \Sigma_1 \) given by \((A, B) \mapsto (A^-, B^-)\) is a bijection.

2. Combinatorics (continued)

2.1. Let \(N \in \mathbb{N} \). Let

\[a := (a_0, a_1, a_2, \ldots, a_N) \in \mathbb{N}^{N+1}\]
be such that \(a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_N, a_0 < a_2 < a_4 < \ldots, a_1 < a_3 < a_5 < \ldots \) and such that the set \(\mathcal{J} := \{ i \in [0, N]; a_i \) appears exactly once in \(a \} \) is nonempty. Now \(\mathcal{J} \) consists of \(\mu + 1 \) elements \(i_0 < i_1 < \cdots < i_\mu \) where \(\mu \in \mathbb{N}, \mu = N \mod 2. \)

We have \(i_s = s \mod 2 \) for \(s \in [0, \mu] \). Hence for any \(s \in [0, \mu - 1] \) we have \(i_s + 1 = i_s + 2m_s + 1 \) for some \(m_s \in \mathbb{N} \). Let \(\mathcal{E} \) be the set of \(b := (b_0, b_1, b_2, \ldots, b_N) \in \mathbb{N}^{N+1} \) such that \(b_0 < b_2 < b_4 < \ldots, b_1 < b_3 < b_5 < \ldots \) and such that \([b] = [a]\) (we denote by \([b], [a]\) the multisets \(\{b_0, b_1, \ldots, b_N\}, \{a_0, a_1, \ldots, a_N\}\). We have \(a \in \mathcal{E} \). For \(b \in \mathcal{E} \) we set

\[
\tilde{b} = (\tilde{b}_0, \tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_N) = (b_0, b_1, b_2 + 1, b_3 + 1, b_4 + 2, b_5 + 2, \ldots) \in \mathbb{N}^{N+1}.
\]

Let \([\tilde{b}]\) be the multiset \(\{\tilde{b}_0, \tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_N\} \). For any \(s \in [0, \mu - 1] \in 2\mathbb{N} \) we define \(a^{\{s\}} = (a^{\{s\}}_0, a^{\{s\}}_1, a^{\{s\}}_2, \ldots, a^{\{s\}}_N) \in \mathcal{E} \) by

\[
(a^{\{s\}}_i, a^{\{s\}}_{i+2}, a^{\{s\}}_{i+3}, \ldots, a^{\{s\}}_{i+2m_s+1}) = (a_{i+s}, a_{i+s+3}, a_{i+s+2}, \ldots, a_{i+s+2m_s+1})
\]

and \(a^{\{s\}}_i = a_i \) if \(i \in [0, N] - [i_s, i_s+1] \). More generally for a subset \(X \) of \([0, \mu - 1] \cap 2\mathbb{N} \) we define \(a^X = (a^X_0, a^X_1, a^X_2, \ldots, a^X_N) \in \mathcal{E} \) by \(a^X_i = a^{\{s\}}_i \) if \(s \in X, i \in [i_s, i_s+1] \), and \(a^X_i = a_i \) for all other \(i \in [0, N] \). Note that \([a^X] = [a]\). Conversely, we have the following result.

Lemma 2.2. Let \(b \in \mathcal{E} \) be such that \([\tilde{b}] = [\tilde{a}]\). Then there exists \(X \subset [0, \mu - 1] \cap 2\mathbb{N} \) such that \(b = a^X \).

The proof is given in 2.3-2.5.

2.3. We argue by induction on \(\mu \). By the argument in 1.3 we have

(a) \(b_i = a_i \) for \(i < i_0 \),

(b) \(b_i = a_i \) for \(i > i_\mu \).

If \(\mu = 0 \) we see that \(b = a \) and there is nothing further to prove. In the rest of the proof we assume that \(\mu \geq 1 \).

2.4. From 2.3 we see that \((a_{i_0}, a_{i_0+1}, \ldots, a_N) = (a_{i_0} < x_1 < x_2 < x_4 < \cdots < x_p = x_p < a_{i_1} < \ldots) \) (for some \(p \)) has the same entries as \((b_{i_0}, b_{i_0+1}, \ldots, b_N)\) (in some order). Hence the pair \((b_{i_0}, b_{i_0+2}, \ldots, b_N), (b_{i_0+1}, b_{i_0+3}, b_{i_0+5}, \ldots)\) must have one of the following four forms:

\[
(a_{i_0}, x_1, x_2, \ldots, x_p, \ldots), (x_1, x_2, \ldots, x_p, a_{i_1}, \ldots),
(x_1, x_2, \ldots, x_p, a_{i_1}, \ldots), (a_{i_0}, x_1, x_2, \ldots, x_p, \ldots),
(a_{i_0}, x_1, x_2, \ldots, x_p, a_{i_1}, \ldots), (x_1, x_2, \ldots, x_p, a_{i_1}, \ldots),
(x_1, x_2, \ldots, x_p, \ldots), (a_{i_0}, x_1, x_2, \ldots, x_p, a_{i_1}, \ldots).
\]

Hence \((b_{i_0}, b_{i_0+2}, \ldots, b_N)\) must have one of the following four forms.

(I) \((a_{i_0}, x_1, x_1, x_2, \ldots, x_p, x_p, a_{i_1}, \ldots)\),
(II) \((x_1, a_{i_0}, x_2, x_1, x_3, x_2, \ldots, x_p, x_{p-1}, a_{i_1}, x_p, \ldots)\),

(III) \((a_{i_0}, x_1, x_2, x_2, \ldots, x_p, x_{p}, z, a_{i_1}, \ldots)\),

(IV) \((x_1, a_{i_0}, x_2, x_1, x_3, x_2, \ldots, x_p, x_{p-1}, z', x_p, z'', a_{i_1}, \ldots)\)

where \(a_{i_1} < z, a_{i_1} < z' \leq z''\) and all entries in \(\ldots\) are \(> a_{i_1}\). Correspondingly,

\((b_{i_0}, b_{i_0+1}, b_{i_0+2}, \ldots, b_N)\) must have one of the following four forms.

(I) \((a_{i_0} + h, x_1 + h, x_1 + h + 1, x_2 + h + 1, x_2 + h + 2, \ldots, x_p + h + p - 1, x_p + h + p, a_{i_1} + h + p, \ldots)\),

(II) \((x_1 + h, a_{i_0} + h, x_2 + h + 1, x_1 + h + 1, x_3 + h + 2, x_2 + h + 2, \ldots, x_p + h + p - 1, x_{p-1} + h + p - 1, a_{i_1} + h + p, x_p + h + p, \ldots)\),

(III) \((a_{i_0} + h, x_1 + h, x_1 + h + 1, x_2 + h + 1, x_2 + h + 2, \ldots, x_p + h + p - 1, x_p + h + p, z + p, a_{i_1} + h + p + 1, \ldots)\),

\((x_1 + h, a_{i_0} + h, x_2 + h + 1, x_1 + h + 1, x_3 + h + 2, x_2 + h + 2, \ldots, x_p + h + p - 1, x_p + h + p - 1, x_{p-1} + h + p - 1, a_{i_1} + h + p + 1, \ldots)\)

where \(h = i_0 / 2\) and in case (III) and (IV) \(a_{i_1} + h + p\) is not an entry of

\((\hat{b}_{i_0}, \hat{b}_{i_0+1}, \hat{b}_{i_0+2}, \ldots)\).

Since \((\hat{a}_{i_0}, \hat{a}_{i_0+1}, \hat{a}_{i_0+2}, \ldots)\) is given by (I) we see that \(a_{i_1} + h + p\) is an entry of

\((\hat{a}_{i_0}, \hat{a}_{i_0+1}, a_{i_0+2}, \ldots)\). Using 2.3 we see that

\[\{\hat{a}_{i_0}, \hat{a}_{i_0+1}, \hat{a}_{i_0+2}, \ldots\} = \{\hat{b}_{i_0}, \hat{b}_{i_0+1}, \hat{b}_{i_0+2}, \ldots\}\]

as multisets. We see that cases (III) and (IV) cannot arise. Hence we must be in case (I) or (II). Thus

we have either

(a) \((b_{i_0}, b_{i_0+1}, b_{i_0+2}, \ldots, b_{i_1}) = (a_{i_0}, a_{i_0+1}, a_{i_0+2}, \ldots, a_{i_1})\)

or

(b) \((b_{i_0}, b_{i_0+1}, b_{i_0+2}, \ldots, b_{i_1}) = (a_{i_0+1}, a_{i_0}, a_{i_0+3}, a_{i_0+2}, \ldots, a_{i_1}, a_{i_1-1})\).

. From 2.3 and (a),(b) we see that if \(\mu = 1\) then Lemma 2.2 holds. Thus in the rest of the proof we can assume that \(\mu \geq 2\).

2.5. Let \(a' = (a_{i_1+1}, a_{i_1+2}, \ldots, a_N), b' = (b_{i_1+1}, b_{i_1+2}, \ldots, b_N)\),

\[\hat{a}' = (a_{i_1+1}, a_{i_1+2}, a_{i_1+3} + 1, a_{i_1+4} + 1, a_{i_1+5} + 2, a_{i_1+6} + 2, \ldots),\]

\[\hat{b}' = (b_{i_1+1}, b_{i_1+2}, b_{i_1+3} + 1, b_{i_1+4} + 1, b_{i_1+5} + 2, b_{i_1+6} + 2, \ldots).\]
From $[\hat{0}] = [\hat{a}]$ and 2.3(a),2.4(a),(b) we see that the multiset formed by the entries of \hat{a}' coincides with the multiset formed by the entries of \hat{b}'. Using the induction hypothesis we see that there exists $X' \subset [2, \mu - 1] \cap 2\mathbb{N}$ such that $b' = a^\ast X'$ where $a^\ast X'$ is defined in terms of a', X' in the same way as a^X (see 2.1) was defined in terms of a, X. We set $X = X'$ if we are in case 2.4(a) and $X = \{0\} \cup X'$ if we are in case 2.4(b). Then we have $b = a^X$ (see 2.4(a),(b)), as required. This completes the proof of Lemma 2.2.

2.6. We shall use the notation of 2.1. Let \mathcal{I} be the set of all unordered pairs $\langle \mathcal{A}, \mathcal{B} \rangle$ where \mathcal{A}, \mathcal{B} are subsets of $\{0, 1, 2, \ldots \}$ and $\mathcal{A} \cup \mathcal{B} = (a_0, a_1, a_2, \ldots, a_N)$ as multisets. For example, setting $\mathcal{A}_0 = \{a_i; i \in [0, N] \cap 2\mathbb{N}\}$, $\mathcal{B}_0 = \{a_i; i \in [0, N] \cap (2\mathbb{N} + 1)\}$, we have $\langle \mathcal{A}_0, \mathcal{B}_0 \rangle \in \mathcal{I}$. For any subset \mathcal{A} of \mathcal{J} we consider

$$\mathcal{A}_a = ((\mathcal{J} - a) \cap \mathcal{A}_0) \cup (a \cap \mathcal{B}_0) \cup (\mathcal{A}_0 \cap \mathcal{B}_0),$$

$$\mathcal{B}_a = ((\mathcal{J} - a) \cap \mathcal{B}_0) \cup (a \cap \mathcal{A}_0) \cup (\mathcal{A}_0 \cap \mathcal{B}_0).$$

Then $\langle \mathcal{A}_a, \mathcal{B}_a \rangle = (\mathcal{A}_{\mathcal{J} - a}, \mathcal{B}_{\mathcal{J} - a}) \in \mathcal{I}$ and the map $a \mapsto (\mathcal{A}_a, \mathcal{B}_a)$ induces a bijection $\mathcal{P}(\mathcal{J}) \leftrightarrow \mathcal{I}$. (Note that if $a = \emptyset$ then $\langle \mathcal{A}_a, \mathcal{B}_a \rangle$ agrees with the earlier definition of $\langle \mathcal{A}_\emptyset, \mathcal{B}_\emptyset \rangle$.)

Let \mathcal{I}' be the set of all $\langle \mathcal{A}, \mathcal{B} \rangle \in \mathcal{I}$ such that $|\mathcal{A}| = |\mathcal{A}_0|, |\mathcal{B}| = |\mathcal{B}_0|$. Let $\mathcal{P}(\mathcal{J})_1$ be the subspace of $\mathcal{P}(\mathcal{J})$ spanned by the following 2-element subsets of \mathcal{J}:

$$\{a_{i_1}, a_{i_2}, \{a_{i_3}, a_{i_4}\}, \ldots, \{a_{i_{\mu - 2}}, a_{i_{\mu - 1}}\}\}$$

(if N is odd)

or

$$\{a_{i_1}, a_{i_2}, \{a_{i_3}, a_{i_4}\}, \ldots, \{a_{i_{\mu - 2}}, a_{i_{\mu - 1}}\}\}$$

(if N is even).

Let $\mathcal{P}(\mathcal{J})_0$ be the subspace of $\mathcal{P}(\mathcal{J})$ spanned by the following 2-element subsets of \mathcal{J}:

$$\{a_{i_0}, a_{i_1}, \{a_{i_2}, a_{i_3}\}, \ldots, \{a_{i_{\mu - 2}}, a_{i_{\mu - 1}}\}\}$$

(if N is odd)

or

$$\{a_{i_0}, a_{i_1}, \{a_{i_2}, a_{i_3}\}, \ldots, \{a_{i_{\mu - 2}}, a_{i_{\mu - 1}}\}\}$$

(if N is even).

Let $\mathcal{P}(\mathcal{J})_0$ (resp. $\mathcal{P}(\mathcal{J})_1$) be the image of $\mathcal{P}(\mathcal{J})_0$ (resp. $\mathcal{P}(\mathcal{J})_1$) under the obvious map $\mathcal{P}(\mathcal{J}) \to \mathcal{P}(\mathcal{J})$.

Note that

(a) $\mathcal{P}(\mathcal{J})_0$ and $\mathcal{P}(\mathcal{J})_1$ are opposed Lagrangian subspaces of the symplectic vector space $\mathcal{P}_{ev}(\mathcal{J}), (,)$, (see 0.7); hence $(,)$ defines an identification $\mathcal{P}(\mathcal{J})_1 = \mathcal{P}(\mathcal{J})_0^\ast$

where $\mathcal{P}(\mathcal{J})_0^\ast$ is the vector space dual to $\mathcal{P}(\mathcal{J})_0$.

Let \mathcal{I}_0 (resp. \mathcal{I}_1) be the subset of \mathcal{I} corresponding to $\mathcal{P}(\mathcal{J})_0$ (resp. $\mathcal{P}(\mathcal{J})_1$) under the bijection $\mathcal{P}(\mathcal{J}) \leftrightarrow \mathcal{I}$. Note that $\mathcal{I}_0 \subset \mathcal{I}', \mathcal{I}_1 \subset \mathcal{I}'$, $|\mathcal{I}_0| = |\mathcal{I}_1| = 2^{|\mu/2|}$.

For any $X \subset [0, \mu - 1] \cap 2\mathbb{N}$ we set $\mathcal{A}_X = \cup_{a \in X}\{a_{i_1, a_{i_{\mu - 1}}}\} \in \mathcal{P}(\mathcal{J})$. Then $(\mathcal{A}_a, \mathcal{B}_a)$ is related to a^X in 2.1 as follows:

$$\mathcal{A}_{a_X} = \{a_0^X; i \in [0, N] \cap 2\mathbb{N}\}, \mathcal{B}_{a_X} = \{a_i^X; i \in [0, N] \cap (2\mathbb{N} + 1)\}.$$
2.7. We shall use the notation of 2.1. Let T be the set of all unordered pairs (A, B) where A is a subset of $\{0, 1, 2, \ldots\}$, B is a subset of $\{1, 2, 3, \ldots\}$, A contains no consecutive integers, B contains no consecutive integers, and $A \cup B = (\hat{a}_0, \hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N)$ as multisets. For example, setting

$$A_0 = \{\hat{a}_i; i \in [0, N] \cap 2\mathbb{N}\}, B_0 = (\tilde{a}_i; i \in [0, N] \cap (2\mathbb{N} + 1)),$$

we have $(A_0, B_0) \in T$.

For any $(A, B) \in T$ we define (A^-, B^-) as follows: A^- consists of $x_1 < x_2 - 1 < x_3 - 2 < \cdots < x_p - p + 1$ where $x_1 < x_2 < \cdots < x_p$ are the elements of A; B^- consists of $y_1 < y_2 - 1 < \cdots < y_q - q + 1$ where $y_1 < y_2 < \cdots < y_q$ are the elements of B.

We can enumerate the elements of T as in [L4, 11.5]. Let J be the set of all $c \in \mathbb{N}$ such that c appears exactly once in the sequence

$$(\hat{a}_0, \hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N) = (a_0, a_1, a_2 + 1, a_3 + 1, a_4 + 2, a_5 + 2, \ldots).$$

A nonempty subset I of J is said to be an interval if it is of the form $\{i, i+1, i+2, \ldots, j\}$ with $i - 1 \notin J, j + 1 \notin J$. Let \mathcal{I} be the set of intervals of J. For any $s \in [0, \mu - 1] \cap 2\mathbb{N}$, the set $I_s := \{\hat{a}_i, \hat{a}_{i+1}, \hat{a}_{i+2}, \ldots, \hat{a}_{i+2m_s + 1}\}$ is either a single interval or a union of intervals $I_s^1 \sqcup I_s^2 \sqcup \cdots \sqcup I_s^{t_s}$ ($t_s \geq 2$) where $\hat{a}_i \in I_s^1$, $\hat{a}_{i+2m_s + 1} \in I_s^{t_s}$, $|I_s^h|$ are odd, $|I_s^h|$ are even for $h \in [2, t_s - 1]$ and any element in $I_s^{t_s}$ is $<$ than any element in $I_s^{e'}$ for $e < e'$. Let \mathcal{I}_s be the set of all $I \in \mathcal{I}$ such that $I \subset I_s$. We have a partition $\mathcal{I} = \sqcup_{s \in [0, \mu - 1] \cap 2\mathbb{N}} \mathcal{I}_s$. For any subset $\alpha \subset \mathcal{I}$ we consider

$$A_\alpha = \sqcup_{I \in \mathcal{I}_s - \alpha} (I \cap A_0) \cup \sqcup_{I \in \alpha} (I \cap B_0) \cup (A_0 \cap B_0),$$

$$B_\alpha = \sqcup_{I \in \mathcal{I}_s - \alpha} (I \cap B_0) \cup \sqcup_{I \in \alpha} (I \cap A_0) \cup (A_0 \cap B_0).$$

Then $(A_\alpha, B_\alpha) \in T$ and the map $\alpha \mapsto (A_\alpha, B_\alpha)$ is a bijection $\mathcal{P}(\mathcal{I}) \leftrightarrow T$. (Note that if $\alpha = \emptyset$ then (A_α, B_α) agrees with the earlier definition of (A_0, B_0).)

Let $T' = \{(A, B) \in T; |A| = |A_0|, |B| = |B_0|\}$, $T_1 = \{(A, B) \in T'; A^- \cup B^- = A_0^- \cup B_0^-\}$. Let $\mathcal{P}(\mathcal{I})'$ (resp. $\mathcal{P}(\mathcal{I}_1)$) be the subset of $\mathcal{P}(\mathcal{I})$ corresponding to T' (resp. T_1) under the bijection $\mathcal{P}(\mathcal{I}) \leftrightarrow T$.

Now let X be a subset of $[0, \mu - 1] \cap 2\mathbb{N}$. Let $\alpha_X = \sqcup_{s \in X} \mathcal{I}_s \in \mathcal{P}(\mathcal{I})$. From the definitions we see that

(a) $A_{\alpha_X} = A_{\alpha_X}$, $B_{\alpha_X} = B_{\alpha_X}$

(note of 2.6). In particular we have $(A_{\alpha_X}, B_{\alpha_X}) \in T_1$. Thus $|T_1| \geq 2^{\mu/2}$.

Using Lemma 2.2 we see that

(b) $|T_1| = 2^{\mu/2}$ and T_1 consists of the pairs $(A_{\alpha_X}, B_{\alpha_X})$ with $X \subset [0, \mu - 1] \cap 2\mathbb{N}$.

Using (a),(b) we deduce:

(c) The map $T_1 \rightarrow \mathcal{I}_1$ given by $(A, B) \mapsto (A^-, B^-)$ is a bijection.
3. Proof of Theorem 0.4 and of Corollary 0.5

3.1. If G is simple adjoint of type A_n, $n \geq 1$, then 0.4 and 0.5 are obvious: we have $A(u) = \{1\}$, $\hat{A}(u) = \{1\}$.

3.2. Assume that $G = Sp_{2n}(k)$ where $n \geq 2$. Let N be a sufficiently large even integer. Now $u : k^{2n} \to k^{2n}$ has i_e Jordan blocks of size e ($e = 1, 2, 3, \ldots$). Here i_1, i_3, i_5, \ldots are even. Let $\Delta = \{e \in \{2, 4, 6, \ldots\}; i_e \geq 1\}$. Then $A(u)$ can be identified in the standard way with $P(\Delta)$. Hence the group of characters $\hat{A}(u)$ of $A(u)$ (which may be canonically identified with the F_2-vector space dual to $P(\Delta)$) may be also canonically identified with $P(\Delta)$ itself (so that the basis given by the one element subsets of Δ is self-dual).

To the partition $1i_1 + 2i_2 + 3i_3 + \ldots$ of $2n$ we associate a pair (A, B) as in [L4, 11.6] (with $N, 2m$ replaced by $2n, N$). We have $A = (\hat{a}_0, \hat{a}_2, \hat{a}_4, \ldots, \hat{a}_N)$, $B = (\hat{a}_1, \hat{a}_3, \ldots, \hat{a}_{N-1})$, where $\hat{a}_0 \leq \hat{a}_1 \leq \hat{a}_2 \leq \cdots \leq \hat{a}_N$ is obtained from a sequence $a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_N$ as in 1.1. (Here we use that C is special.) Now the definitions and results in §1 are applicable. As in [L3, 4.5] the family F is in canonical bijection with Ξ' in 1.6.

We arrange the intervals in I in increasing order $I_{(1)}, I_{(2)}, \ldots, I_{(f)}$ (any element in $I_{(1)}$ is smaller than any element in $I_{(2)}$, etc.). We arrange the elements of Δ in increasing order $e_1 < e_2 < \cdots < e_f$; then $f = f'$ and we have a bijection $I \leftrightarrow \Delta$, $I_{(h)} \leftrightarrow e_h$; moreover we have $|I_{(h)}| = i_{e_h}$ for $h \in [1, f]$; see [L4, 11.6]. Using this bijection we see that $A(u)$ and $\hat{A}(u)$ are identified with the F_2-vector space $P(I)$ with basis given by the one element subsets of I. Let $\pi : P(I) \to P(I)^*_1$ (with $P(I)^*_1$ as in 1.7(c)) be the (surjective) F_2-linear map which to $X \subset I$ associates the linear form $L \mapsto |X \cap L| \mod 2$ on $P(I)_1$. We will show that

(a) $\ker \pi = K(u)$ ($K(u)$ as in 0.1).

We identify $\text{Irr}_C W$ with T' (see 1.7) via the restriction of the bijection in [L4, 12.2.4] (we also use the description of the Springer correspondence in [L4, 12.3]). Under this identification the subset $\text{Irr}^*_C W$ of $\text{Irr}_C W$ becomes the subset T_1 (see 1.7) of T'. Via the identification $P(I)' \leftrightarrow T'$ in 1.7 and $\hat{A}(u) \leftrightarrow P(I)$ (see above), the map $E \mapsto \nu_E$ from T' to $\hat{A}(u)$ becomes the obvious imbedding $P(I)' \hookrightarrow P(I)$ (we use again [L4, 12.3]). By definition, $K(u)$ is the set of all $X \in P(I)$ such that for any $L \in P(I)_1$ we have $|X \cap L| = 0 \mod 2$. Thus, (a) holds.

Using (a) we have canonically $\hat{A}(u) = P(I)^*_1$ via π. We define an F_2-linear map $P(I)_1 \to P(J)_1$ (see 1.6) by $I_s \mapsto \{a_{i_s}, a_{i_{s+1}}\}$ for $s \in \{1, 3, \ldots, 2M - 1\}$ (I_s as in 1.7). This is an isomorphism; it corresponds to the bijection 1.7(c) under the identification $T_1 \leftrightarrow P(I)_1$ in 1.7 and the identification $\Xi_1 \leftrightarrow P(J)_1$ in 1.6. Hence we can identify $P(I)^*_1$ with $P(J)^*_1$ and with $P(J)_0$ (see 1.6(a)). We obtain an identification $\hat{A}(u) = P(J)_0$.

By [L3, 4.5] we have $X_F = P(J)$. Using 1.6(a) we see that $P(J) = M(P(J)_0) = M(\hat{A}(u))$ canonically so that 0.4 holds in our case. From the arguments above we see that in our case 0.5 follows from 1.7(c).

3.3. Assume that $G = SO_n(k)$ where $n \geq 7$. Let N be a sufficiently large integer
such that $N = n \mod 2$. Now $u : k^n \to k^n$ has i_e Jordan blocks of size e ($e = 1, 2, 3, \ldots$). Here i_2, i_4, i_6, \ldots are even. Let $\Delta = \{e \in \{1, 3, 5, \ldots\}; i_e \geq 1\}$. If $\Delta = \emptyset$ then $A(u) = \{1\}, \hat{A}(u) = \{1\}$ and $G_F = \{1\}$ so that the result is trivial.

In the remainder of this subsection we assume that $\Delta \neq \emptyset$. Then $A(u)$ can be identified in the standard way with the F_2-subspace $P_{ev}(\Delta)$ of $P(\Delta)$ and the group of characters $\hat{A}(u)$ of $A(u)$ (which may be canonically identified with the F_2-vector space dual to $A(u)$) becomes $\hat{P}(\Delta)$; the obvious pairing $A(u) \times \hat{A}(u) \to F_2$ is induced by the inner product $L, L' \mapsto |L \cap L'| \mod 2$ on $P(\Delta)$.

To the partition $1i_1 + 2i_2 + 3i_3 + \ldots$ of n we associate a pair (A, B) as in [L4, 11.7] (with N, M replaced by n, N). We have $A = \{\hat{a}_i; i \in [0, N] \cap 2N\}$, $B = \{\hat{a}_i; i \in [0, N] \cap (2N + 1)\}$ where $\hat{a}_0 \leq \hat{a}_1 \leq \hat{a}_2 \leq \cdots \leq \hat{a}_N$ is obtained from a sequence $a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_N$ as in 2.1. (Here we use that C is special.)

Now the definitions and results in §2 are applicable. As in [L3, 4.5] (if N is even) or [L3, 4.6] (if N is odd) the family F is canonically bijective with \mathfrak{X} in 2.6.

We arrange the intervals in I in increasing order $I_{(1)}, I_{(2)}, \ldots, I_{(j)}$ (any element in $I_{(1)}$ is smaller than any element in $I_{(2)}$, etc.). We arrange the elements of Δ in increasing order $e_1 < e_2 < \cdots < e_{\mu'}$; then $f = f'$ and we have a bijection $I \leftrightarrow \Delta$, $I_{(h)} \leftrightarrow e_h$; moreover we have $I_{(h)} = e_h$ for $h \in [1,f]$; see [L4, 11.7]. Using this bijection we see that $A(u)$ is identified with $P_{ev}(I)$ and $\hat{A}(u)$ is identified with $\hat{P}(I)$. For any $X \in P_{ev}(I)$, the assignment $L \mapsto |X \cap L| \mod 2$ can be viewed as an element of $P(I)_{\hat{1}}$ (the dual space of $\hat{P}(I)$ in 2.7 which by 2.7(b) is an F_2-vector space of dimension $2^{[\mu/2]}$). This induces a (surjective) F_2-linear map $\pi : P_{ev}(I) \to P(I)_{\hat{1}}$. We will show that

(a) $\ker \pi = \mathcal{K}(u) (\mathcal{K}(u)$ as in 0.1).

We identify $\text{Irr}_C W$ with T' (see 2.7) via the restriction of the bijection in [L4, (13.2.5)] if N is odd or [L4, (13.2.6)] if N is even (we also use the description of the Springer correspondence in [L4, 13.3]). Under this identification the subset $\text{Irr}_C W$ of $\text{Irr}_C W$ becomes the subset T_1 (see 2.7) of T'. Via the identification $P(I)' \leftrightarrow T'$ in 2.7 and $\hat{A}(u) \leftrightarrow P(I)$ (see above), the map $E \leftrightarrow \mathcal{V}_E$ from T' to $\hat{A}(u)$ becomes the obvious imbedding $P(I)_0 \to P(I)$ (we use again [L4, 13.3]). By definition, $\mathcal{K}(u)$ is the set of all $X \in P_{ev}(I)$ such that for any $L \in P(I)$ representing a vector in $P(I)_1$ we have $|X \cap L| = 0 \mod 2$. Thus, (a) holds.

Using (a) we have canonically $\hat{A}(u) = P(I)_{\hat{1}}$ via π. We have an F_2-linear map $P(I)_1 \to P(J)_0$ (see 2.6) induced by $I_s \to \{a_{i_s}, a_{i_{s+1}}\}$ for $s \in [0, \mu - 1] \cap 2N$ (I_s as in 2.7). This is an isomorphism; it corresponds to the bijection 2.7(c) under the identification $T_1 \leftrightarrow P(I)_1$ in 2.7 and the identification $X_1 \leftrightarrow P(J)_0$ in 2.6. Hence we can identify $P(I)_{\hat{1}}$ with $P(J)_0$ and with $P(J)_1$ (see 2.6(a)). We obtain an identification $\hat{A}(u) = P(J)_1$.

By [L3, 4.6] we have $X_F = P_{ev}(J)$. Using 2.6(a) we see that $P(J) = M(\hat{P}(J)_1) = M(\hat{A}(u))$ canonically so that 0.4 holds in our case. From the arguments above we see that in our case 0.5 follows from 2.7(c).

3.4. In 3.5-3.9 we consider the case where G is simple adjoint of exceptional type.
In each case we list the elements of the set \(\text{Irr}_C W \) for each special unipotent class \(C \) of \(G \); the elements of \(\text{Irr}_C W - \text{Irr}^* C W \) are enclosed in \([\]\). (The notation for the various \(C \)'s is as in [Sp2]; the notation for the objects of \(\text{Irr} W \) is as in [Sp2] (for type \(E_n \)) and as in [L3, 4.10] for type \(F_4 \).) In each case the structure of \(A(u), \bar{A}(u) \) (for \(u \in C \)) is indicated; here \(S_n \) denotes the symmetric group in \(n \) letters. The order in which we list the objects in \(\text{Irr}_C W \) corresponds to the following order of the irreducible representations of \(A(u) = S_n \):

1, \(\epsilon \) (\(n = 2 \)); 1, \(r, \epsilon \) (\(n = 3, G \neq G_2 \)); 1, \(r \) (\(n = 3, G = G_2 \)); 1, \(\lambda^1, \lambda^2, \sigma \) (\(n = 4 \)); 1, \(\nu, \lambda^1, \nu', \lambda^2, \lambda^3 \) (\(n = 5 \))

(notification of [L3, 4.3]). Now 0.4 and 0.5 follow in our case from the tables in 3.5-3.9 and the definitions in [L3, 4.8-4.13]. (In those tables \(S_n \) is the symmetric group in \(n \) letters.)

3.5. Assume that \(G \) is of type \(E_8 \).

\[\begin{align*}
\text{Irr}_{E_8} W & = \{1\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{E_8(a_1)} W & = \{81\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{E_8(a_2)} W & = \{352\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{E_8(A_1)} W & = \{1123, 288\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{D_8} W & = \{2104, 1607\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{E_7(a_1), A_1} W & = \{560_5, [50_8]\}; \ A(u) = S_2, \bar{A}(u) = \{1\} \\
\text{Irr}_{E_7(a_1)} W & = \{567_6\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_7(a_1)} W & = \{700_6, 300_8\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{E_7(a_2), A_1} W & = \{1400_7, 1008_9, 561_9\}; \ A(u) = S_3, \bar{A}(u) = S_3 \\
\text{Irr}_{A_8} W & = \{1400_9, 1575_10, 350_14\}; \ A(u) = S_3, \bar{A}(u) = S_3 \\
\text{Irr}_{D_7(a_1)} W & = \{3240_9, [1050_10]\}; \ A(u) = S_2, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_7(a_3)} W & = \{2240_10, [175_12], 840_13\}; \ A(u) = S_3, \bar{A}(u) = S_2 \\
\text{Irr}_{D_6 A_1} W & = \{2268_10, 1296_13\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{E_6(a_1), A_1} W & = \{4096_{11}, 4096_{12}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{E_6} W & = \{5251_12\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_7(a_2)} W & = \{4200_{12}, 3360_{13}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{E_6(a_1)} W & = \{2800_{13}, 2100_{16}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{D_5 A_2} W & = \{4536_{13}, [840_14]\}; \ A(u) = S_2, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_6(a_1), A_1} W & = \{6075_{14}, [700_16]\}; \ A(u) = S_2, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_6 A_1} W & = \{2835_{14}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_6} W & = \{4200_{15}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_6(a_1)} W & = \{5600_{15}, 2400_{17}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{2A_4} W & = \{4480_{16}, 4536_{18}, 5670_{18}, 1400_{20}, 1680_{22}, 70_{32}\}; \ A(u) = S_5, \bar{A}(u) = S_5 \\
\text{Irr}_{D_5} W & = \{2100_{20}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{(A_5, A_1)^{+}} W & = \{5600_{21}, 2400_{23}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{D_4 A_2} W & = \{4200_{15}, [168_24]\}; \ A(u) = S_2, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_4 A_2, A_1} W & = \{2835_{22}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_4 A_2} W & = \{4536_{23}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_5(a_1)} W & = \{2800_{25}, 2100_{28}\}; \ A(u) = S_2, \bar{A}(u) = S_2
\end{align*} \]
3.6. Assume that G is adjoint of type E_7.

\begin{align*}
\text{Irr}_{A_2A_1} W &= \{4200_{24}, 3360_{25}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{D_1} W &= \{525_{36}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_1A_2} W &= \{4096_{26}, 4096_{27}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{A_2} W &= \{2268_{30}, 1296_{33}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{D_4(a_1)A_1} W &= \{2240_{28}, 840_{31}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{A_3A_2} W &= \{3240_{31}, [972_{32}]\}; \ A(u) = S_2, \bar{A}(u) = \{1\} \\
\text{Irr}_{D_4(a_1)A_1} W &= \{1400_{32}, 1575_{34}, 350_{38}\}; \ A(u) = S_3, \bar{A}(u) = S_3 \\
\text{Irr}_{D_4(a_1)} W &= \{1400_{37}, 1008_{39}, 56_{40}\}; \ A(u) = S_3, \bar{A}(u) = S_3 \\
\text{Irr}_{2A_2} W &= \{700_{42}, 300_{44}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{A_2} W &= \{567_{46}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_2A_1} W &= \{560_{47}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_2A_1} W &= \{210_{52}, 160_{55}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{A_2} W &= \{112_{63}, 28_{68}\}; \ A(u) = S_2, \bar{A}(u) = S_2 \\
\text{Irr}_{2A_1} W &= \{35_{74}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{A_2} W &= \{8_{91}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\} \\
\text{Irr}_{0} W &= \{1_{120}\}; \ A(u) = \{1\}, \bar{A}(u) = \{1\}
\end{align*}
3.8. Assume that G is of type E_6.

$\text{Irr}_{E_6} W = \{10\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{E_6(a_1)} W = \{61\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{D_6} W = \{20\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_2} W = \{303, 153\}; A(u) = S_2, \bar{A}(u) = S_2$

$\text{Irr}_{A_2(a_1)} W = \{64\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_2} W = \{605\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_3} W = \{81\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_2} W = \{601\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_2} W = \{6413\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_3} W = \{3015, 1517\}; A(u) = S_2, \bar{A}(u) = S_2$

$\text{Irr}_{A_2} W = \{2010\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_1} W = \{625\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_0 W = \{136\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

3.8. Assume that G is of type F_4.

$\text{Irr}_{F_4} W = \{1\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{F_4(a_1)} W = \{42, 23\}; A(u) = S_2, \bar{A}(u) = S_2$

$\text{Irr}_{F_4(a_2)} W = \{91\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{B_4} W = \{81\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{C_5} W = \{83\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{F_4(a_3)} W = \{121, 93, 62, 13\}; A(u) = S_4, \bar{A}(u) = S_4$

$\text{Irr}_{A_2} W = \{82\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_2} W = \{84, 12\}; A(u) = S_2, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_1} \bar{A}_1 W = \{94\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$

$\text{Irr}_{A_1} W = \{45, 22\}; A(u) = S_2, \bar{A}(u) = S_2$

$\text{Irr}_0 W = \{14\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$
3.9. Assume that G is of type G_2.

$\text{Irr}_{G_2} W$ is the unit representation; $A(u) = \{1\}, \bar{A}(u) = \{1\}$.

$\text{Irr}_{G_2(a_1)} W$ consists of the reflection representation and the one dimensional representation on which the reflection with respect to a long (resp. short) simple coroot acts nontrivially (resp. trivially); $A(u) = S_3, \bar{A}(u) = S_3$.

$\text{Irr}_0 W = \{\text{sgn}\}; A(u) = \{1\}, \bar{A}(u) = \{1\}$.

3.10. This completes the proof of Theorem 0.4 and that of Corollary 0.5.

We note that the definition of G_F given in [L3] (for type C_n, B_n) is $\bar{\mathcal{P}}(\mathcal{J})_1$ (in the setup of 3.2) and $\bar{\mathcal{P}}(\mathcal{J})_0$ (in the setup of 3.3) which is noncanonically isomorphic to $\bar{A}(u)$, unlike the definition adopted here that is, $\mathcal{P}(\mathcal{J})_0$ (in the setup of 3.2) and $\mathcal{P}(\mathcal{J})_1$ (in the setup of 3.3) which makes G_F canonically isomorphic to $\bar{A}(u)$.

4. Character sheaves

4.1. Let \hat{G} be a set of representatives for the isomorphism classes of character sheaves on G. For any conjugacy class D in G let $D_\omega := \{g_\omega; g \in D\}$, a unipotent class in G. For any unipotent class C in G let S_C be the set of conjugacy classes D of G such that $D_\omega = C$. It is likely that the following property holds.

(a) Let $K \in \hat{G}$. There exists a unique unipotent class C of G such that

- for any $D \in S_C$, $K|_D$ is a local system (up to shift);
- for some $D \in S_C$, we have $K|_D \neq 0$;
- for any unipotent class C' of G such that $\dim C' \geq \dim C$, $C' \neq C$ and any $D \in S_{C'}$ we have $K|_D = 0$.

We say that C is the unipotent support of K.

(The uniqueness part is obvious.) Note that [L8, 10.7] provides some support (no pun intended) for (a).

We shall now try to make (a) more precise in the case where $K \in \hat{G}_{un}$, the subset of \hat{G} consisting of unipotent character sheaves (that is $\hat{G}_{un} = \hat{G}_{Q_k}$ with the notation of [L7, 4.2]). As in [L7, 4.6] we have a partition $\hat{G}_{un} = \bigsqcup \tilde{\mathcal{F}} \hat{G}_{\mathcal{F}}^{un}$ where \mathcal{F} runs over the families of W.

In the remainder of this section we fix a family \mathcal{F} of W and we denote by C the special unipotent class of G such that $E_C \in \mathcal{F}$, see 0.1; let $u \in C$. Let $\Gamma = \bar{A}(u)$ and let $Z(u) \xrightarrow{j'} A(u) \xrightarrow{h} \Gamma$ be the obvious (surjective) homomorphisms; let $j = h j'$: $Z(u) \rightarrow \Gamma$. Let $[\Gamma]$ be the set of conjugacy classes in $A(u)$. For $D \in S_C$ let $\phi(D)$ be the conjugacy class of $j(g_s)$ in Γ where $g \in D$ is such that $g_\omega = u$; clearly such g exists and is unique up to $Z(u)$-conjugacy so that the conjugacy class of $j(g_s)$ is independent of the choice of g. Thus we get a (surjective) map $\phi : S_C \rightarrow [\Gamma]$. For $\gamma \in [\Gamma]$ we set $S_{C, \gamma} = \phi^{-1}(\gamma)$. We now select for each $\gamma \in [\Gamma]$ an element $x_\gamma \in \gamma$ and we denote by $\text{Irr} Z_{\Gamma}(x_\gamma)$ a set of representatives for the isomorphism classes of irreducible representations of $Z_{\Gamma}(x_\gamma) := \{y \in \Gamma; y x_\gamma = x_\gamma y\}$ (over \mathbb{Q}_l). Let $D \in S_{C, \gamma}, E \in \text{Irr} Z_{\Gamma}(x_\gamma)$. We can find $g \in D$ such that $g_\omega = u, j(g_s) = x_\gamma$ (and another choice for such g
must be of the form bgb^{-1} where $b \in Z(u)$, $j(b) \in Z_G(x_{\gamma})$. Let E^D be the G-equivariant local system on D whose stalk at $g_1 \in D$ is $\{z \in G; zgz^{-1} = g_1\} \times E$ modulo the equivalence relation $(z, e) \sim (zh^{-1}, j(h)e)$ for all $h \in Z(g)$. If g is changed to $g_1 = bgb^{-1}$ (as above) then E^D is changed to the G-equivariant local system E_1^D on D whose stalk at $g' \in D$ is $\{z' \in G; z'g_1z'^{-1} = g'\} \times E$ modulo the equivalence relation $(z', e') \sim (z'h^{-1}, j(h')e)$ for all $h' \in Z(g_1)$. We have an isomorphism of local systems $E^D \overset{\sim}{\to} E_1^D$ which for any $g' \in D$ maps the stalk of E^D at g' to the stalk of E_1^D at g' by the rule $(z, e) \mapsto (zb^{-1}, j(b)e)$. (We have $zb^{-1}g_1bz^{-1} = zgz^{-1} = g'$.) This is compatible with the equivalence relations. Thus the isomorphism class of the local system E^D does not depend on the choice of g.

The properties (b),(c) below appear to be true ([] denotes a shift).

(b) Let $K \in G^un_F$. There exists a unique $\gamma \in [\Gamma]$ and a unique $E \in \text{Irr}Z_G(x_{\gamma})$ such that

(i) if $D \in SC_{\gamma}$, we have $K|_D \cong E^D[\gamma]$;
(ii) if $D \in SC_{\gamma'}$ with $\gamma' \in [\Gamma] - \{\gamma\}$, we have $K|_D = 0$;
(iii) for any unipotent class C' of G such that $\dim C' \geq \dim C$, $C' \neq C$ and any $D \in SC_C$ we have $K|_D = 0$.

(c) $K \mapsto (\gamma, E)$ in (b) defines a bijection $G^un_F \overset{\sim}{\to} M(\Gamma)$.

Note that (b)(iii) follows from [L8, 10.7], at least if p is sufficiently large or 0.

In the case where G is of type E_8 and F contains the irreducible representation of degree 4480 (so that $\Gamma = S_5$), (b)(i),(b)(ii),(c) have been already stated (without proof) in [L7, 4.7].

For any finite dimensional representation E of W (over \mathbb{Q}_l) let E be the intersection cohomology complex on G with coefficients in the local system with monodromy given by the W-module E on the open set of regular semisimple elements. We have an imbedding $F \to G^un_F$, $E \mapsto E[\gamma]$. Composing this imbedding with the map $G^un_F \overset{\sim}{\to} M(\Gamma)$ in (c) (which we assume to hold) we obtain an imbedding $F \to M(\Gamma)$. We expect that:

(d) The imbedding $F \to M(\Gamma)$ defined above coincides with the imbedding $F \to M(\Gamma)$ in [L3, Sec.4].

Note that 0.6 can be regarded as evidence for the validity of (b),(c),(d). Further evidence is given in 4.2-4.5.

4.2. Assume that G is simply connected. Let $D \in SC$. Let s be a semisimple element of G such that $su \in D$. Let C_0 be the conjugacy class of u in $Z(s)$. Let W' be the Weyl group of $Z(s)$ regarded as a subgroup of W. For any finite dimensional W'-module E' over \mathbb{Q}_l, let E' be the intersection cohomology complex on $Z(s)$ defined in terms of $Z(s), E'$ in the same way as E was defined in terms of G, E. Using [L5, (8.8.4)] and the W-equivariance of the isomorphism in loc.cit. we see that:

(a) $E|_{sC_0} \cong (E|_{W'})|_{sC_0}[\gamma]$.

Now, if $K \in G^un_F$ is of the form $E[\gamma]$ for some $E \in F$ then the computation of $K|_D$
is reduced by (a) to the computation of $E'|_{sC_0}$ for any irreducible W'-module E' such that $(E' : E|_{W'}) > 0$ (here $(E' : E|_{W'})$ is the multiplicity of E' in $E|_{W'}$). If for such E' we define a unipotent class $C_{E'}$ of $Z(s)$ by $E' \in \text{Irr}_{C_E} W'$ then, by a known property of E', we have (with notation of 0.1 with G replaced by $Z(s)$):

(b) if $C_0 = C_{E'}$, then $E'|_{sC_0}$ is the irreducible $Z(s)$-equivariant local system corresponding to $V_{E'}$;

(c) if $C_0 \neq C_{E'}$ and $\dim C_0 \geq \dim C_{E'}$ then $E'|_{sC_0} = 0$.

We say that D is E-negligible if for any $E' \in \text{Irr} W'$ such that $(E' : E|_{W'}) > 0$ we have $\dim C_0 > \dim C_{E'}$.

(d) We say that D is E-relevant if

- there is a unique $E'_0 \in \text{Irr} W'$ such that $(E'_0 : E|_{W'}) = 1$ and $C_{E'} = C_0$ (we then write $E_i = E'_0$);
- for any $E' \in \text{Irr} W'$ such that $(E' : E|_{W'}) > 0, E' \neq E_i$ we have $\dim C_0 > \dim C_{E'}$.

It is likely that D is always E-negligible or E-relevant. If D is E-negligible then $E|_{sC_0} = 0$ (hence $K | D = 0$); if D is E-relevant then $E|_{sC_0}$ (hence $K | D$) can be explicitly computed using (b), (c).

In the remainder of this subsection we assume in addition that G is almost simple of exceptional type and that C is a distinguished unipotent class. In these cases one can verify that D is E-negligible or E-relevant for any $E \in F$ hence $K | D$ can be explicitly computed and we can check that 4.1(b) holds. Moreover, we can compute $K | D$ for any $K \in \hat{G}_F$ (not necessarily of form $E[\mathfrak{l}]$) using an appropriate analogue of (a) (coming again from [L5, (8.8.4)]) and the appropriate analogues of (b), (c) (given in [L4]). We see that 4.1(b) holds again. Moreover we see that 4.1(c), (d) hold in these cases.

4.3. In this subsection we assume that G is of type E_8 and C is distinguished. In this subsection we indicate for each $D \in S_C$ the set $F_D = \{ E \in F; D \text{ is } E \text{-relevant} \}$ and we describe the map $E \mapsto E_1$ (see 4.2(d)). (Note that if $E \in F - F_D$, D is E-negligible.) The notation is as in [Sp2]. We denote by g_i an element of order i of $A(u)$ (except that if $A(u) = S_5$, g_2 denotes a transposition and we denote by g'_2 an element of $A(u)$ whose centralizer has order 8). For each g_i we denote by \hat{g}_i a semisimple element of $Z(u)$ that represents g_i; similarly when $A(u) = S_5$, we denote by \hat{g}'_2 a semisimple element of $Z(u)$ that represents g'_2. We write F_{g_i} (resp. $F_{g'_2}$) instead of F_D where D is the G-conjugacy class of $u\hat{g}_i$ (resp. of $u\hat{g}'_2$). We write H_{g_i} (resp. $H_{g'_2}$) for the set of all $E_i \in \text{Irr} W'$ where E runs through F_{g_i} (resp. $F_{g'_2}$); here $W' \subset W$ is the Weyl group of $Z(\hat{g}_i)$ (resp. $Z(\hat{g}'_2)$) and E_i is as in 4.2(d). We write C_{g_i} (resp. $C_{g'_2}$) for the conjugacy class of u in $Z(\hat{g}_i)$ (resp. $Z(\hat{g}'_2)$).

Assume that C is the regular unipotent class. Then $A(u) = \{ 1 \}, F_{g_i} = H_{g_i} = \{ 1_0 \}$.

Assume that C is the subregular unipotent class. Then $A(u) = \{ 1 \}, F_{g_i} = H_{g_i} = \{ 8_1 \}$.
Assume that $C = E_8(a_2)$. Then $A(u) = \{1\}$, $F_{g_1} = H_{g_1} = \{352\}$.

Assume that $C = E_7A_1$. Then $A(u) = S_2$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type E_7A_1, $F_{g_1} = H_{g_1} = \{1123, 288\}$, $F_{g_2} = \{844\}$, $H_{g_2} = \{1_0\}$, $C_{g_2} = \text{regular unipotent class}$.

Assume that $C = D_8$. Then $A(u) = S_2$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type D_8, $F_{g_1} = H_{g_1} = \{2104, 160_7\}$, $F_{g_2} = \{508\}$, $H_{g_2} = \{1\}$, $C_{g_2} = \text{regular unipotent class}$.

Assume that $C = E_7(a_1)A_1$. Then $A(u) = S_2$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type E_7A_1, $F_{g_1} = H_{g_1} = \{560_5\}$, $F_{g_2} = \{560_5\}$, $H_{g_2} = \{71 \boxtimes 1\}$, $C_{g_2} = \text{subregular unipotent class in E_7 factor times regular unipotent class in A_1 factor}$.

Assume that $C = D_8(a_1)$. Then $A(u) = S_2$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type D_8, $F_{g_1} = H_{g_1} = \{700_3, 300_8\}$, $F_{g_2} = \{400_7\}$, $H_{g_2} = \{\text{reflection repres.}\}$, $C_{g_2} = \text{subregular unipotent class}$.

Assume that $C = E_7(a_2)A_1$. Then $A(u) = S_3$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type E_7A_1, $Z(\hat{g}_3)$ is of type E_6A_2, $F_{g_1} = H_{g_1} = \{1400_7, 1008_9, 561_9\}$, $F_{g_2} = \{1344_8\}$, $H_{g_2} = \{272 \boxtimes 1\}$, $C_{g_2} = \text{subsubregular unipotent class in E_7-factor times regular unipotent class in A_1 factor}$, $F_{g_3} = \{448_9\}$, $H_{g_3} = \{1\}$, $C_{g_3} = \text{regular unipotent class}$.

Assume that $C = A_8$. Then $A(u) = S_3$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type D_8, $Z(\hat{g}_3)$ is of type A_8, $F_{g_1} = H_{g_1} = \{1400_8, 1575_10, 350_{14}\}$, $F_{g_2} = \{1050_{10}\}$, $H_{g_2} = \{28 \text{ - dimensional repres.}\}$, $C_{g_2} = \text{unipotent class with Jordan blocks of size 5, 11}$, $F_{g_3} = \{175_{12}\}$, $H_{g_3} = \{1\}$, $C_{g_3} = \text{regular unipotent class}$.

Assume that $C = D_8(a_3)$. Then $A(u) = S_3$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type D_8, $Z(\hat{g}_3)$ is of type E_6A_2, $F_{g_1} = H_{g_1} = \{2240_{10}, 840_{13}\}$, $F_{g_2} = \{1400_{11}\}$, $H_{g_2} = \{56 \text{ - dimensional repres.}\}$, $C_{g_2} = \text{unipotent class with Jordan blocks of size 7, 9}$, $F_{g_3} = \{2240_{10}\}$, $H_{g_3} = \{6_1 \boxtimes 1\}$, $C_{g_3} = \text{subregular unipotent class in E_6-factor times regular unipotent class in A_1 factor}$.

Assume that $C = 2A_4$. Then $A(u) = S_5$, $Z(\hat{g}_1) = G$, $Z(\hat{g}_2)$ is of type E_7A_1, $Z(\hat{g}_2)$ is of type D_8, $Z(\hat{g}_3)$ is of type E_6A_2, $Z(\hat{g}_4)$ is of type D_5A_3, $Z(\hat{g}_5)$ is of type A_4A_4, $Z(\hat{g}_6)$ is of type $A_5A_2A_1$, $F_{g_1} = H_{g_1} = \{4480_{16}, 4536_{18}, 5670_{18}, 1400_{20}, 1680_{22}, 70_{32}\}$, $F_{g_2} = \{7168_{17}, 5600_{19}, 448_{25}\}$, $H_{g_2} = \{315_7 \boxtimes 1, 280_9 \boxtimes 1, 35_{13} \boxtimes 1\}$, $C_{g_2} = D_6(a_1)A_1$ in E_7-factor times regular unipotent class in A_1-factor, $F_{g_3} = \{4200_{18}, 2688_{20} \epsilon', 168_{24}\}$, $H_{g_3} = \{\text{repres. with symbol } (2 < 5; 0 < 3), (2 < 3; 0 < 5), (0 < 1, 4 < 5)\}$, $C_{g_3} = \text{unipotent class with Jordan blocks of sizes 1, 3, 5, 7}$, $F_{g_4} = \{3150_{18}, 1134_{20}\}$, $H_{g_3} = \{30_3 \boxtimes 1, 15_5 \boxtimes 1\}$, $C_{g_3} = A_5A_1$ in E_6-factor times regular unipotent class in A_2-factor, $F_{g_4} = \{1344_{19}\}$, $H_{g_4} = \{5 \text{ - dimensional repres.}\}$, $C_{g_4} = \text{subregular unipotent class in D_5-factor times regular unipotent class in A_3-factor}$, $F_{g_5} = \{420_{20}\}$, $H_{g_3} = \{1\}$, $C_{g_5} = \text{regular unipotent class}$,
\[\mathcal{F}_{g_6} = \{2016 \}_{g_6}, \mathcal{H}_{g_6} = \{1\}, C_{g_6} = \text{regular unipotent class}. \]

In each case the \(i \)-th member of a list \(\mathcal{F}_g \) and the \(i \)-th member of the corresponding list \(\mathcal{H}_g \) are related by the map \(E \mapsto E_i \). Note that the members of the list \(\mathcal{F}_{g_2} \) (when \(C = 2A_4 \)) are not all in the same family. But in all cases, the members of the list \(\mathcal{F}_g \) form exactly the subset of \(\operatorname{Irr} W' \) corresponding to the unipotent class \(C_g \) under Springer’s correspondence for \(Z(\hat{g}) \); thus they can be indexed by certain irreducible representations of the group of components of the centralizer of \(u \) in \(Z(\hat{g}) \) modulo the centre of \(Z(\hat{g}) \). (Here \(g \) is \(g_i \) or \(g_2 \).) From this one recovers the imbedding \(\mathcal{F} \to M(\hat{A}(u)) \) in geometric terms.

4.4. In this subsection we assume that \(G = Sp_4(k) \) and that \(\mathcal{F} \) is the family in \(\operatorname{Irr} W' \) containing the reflection representation so that \(C \) is the subregular unipotent class in \(G \). Let \(D \) be the conjugacy class in \(G \) containing \(sv \) where \(s \) is semisimple with \(Z(s) \cong SL_2(k) \times SL_2(k) \) and \(v \) is a regular unipotent element of \(Z(s) \) so that \(v \in C \). Let \(D' \) be a conjugacy class in \(G \) containing \(s'v' \) where \(s' \) is semisimple with \(Z(s') \cong GL_2(k) \) and \(v' \) is a regular unipotent element of \(Z(s') \) so that \(v' \in C \). In this case \(\hat{G}_F^{un} \) consists of four character sheaves \(K_1, K_2, K_3, K_4 \), the last one being cuspidal. They can be characterized as follows.

\[
\begin{align*}
K_1|_C &= \mathcal{Q}_1[], \quad K_1|_D = 0, \quad K_1|_{D'} = \mathcal{Q}_1[]; \\
K_2|_C &= \mathcal{L}[], \quad K_2|_D = 0, \quad K_2|_{D'} = \mathcal{Q}_1[]; \\
K_3|_C &= 0, \quad K_3|_D = \mathcal{Q}_1[], \quad K_3|_{D'} = 0; \\
K_4|_C &= 0, \quad K_4|_D = \mathcal{L}'[], \quad K_4|_{D'} = 0.
\end{align*}
\]

Here \(\mathcal{L} \) is a not trivial \(G \)-equivariant local system of rank 1 on \(C \), \(\mathcal{L}' \) is the inverse image of \(\mathcal{L} \) under the obvious map \(D \to C \). We see that 4.1(b) holds for all \(K \in \hat{G}_F^{un} \) and 4.1(c),(d) hold.

4.5. Assume that \(\mathcal{F} \) is the family containing the unit representation of \(W \). Then \(C \) is the regular unipotent class of \(G \) and \(\hat{G}_F^{un} \) consists of a single character sheaf, namely \(\mathcal{Q}_1[] \). Clearly, 4.1(b),(c),(d) hold in this case.

Next we assume that \(\mathcal{F} \) is the family containing the sign representation of \(W \). Then \(C = \{1\} \) and \(\hat{G}_F^{un} \) consists of a single character sheaf, namely \(K = \operatorname{sgn}[.] \). Note that for any semisimple class \(D \) of \(G \) we have \(K|_D = \mathcal{Q}_1[.] \) so that 4.1(b),(c),(d) hold in this case.

References

Department of Mathematics, M.I.T., Cambridge, MA 02139