Lagrangian caps

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1007/s00039-013-0239-2</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer-Verlag</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Mar 11 08:15:58 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/93117</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Lagrangian caps

Yakov Eliashberg∗ Emmy Murphy
Stanford University MIT

Abstract

We establish an h-principle for exact Lagrangian embeddings with concave Legendrian boundary. We prove, in particular, that in the complement of the unit ball B in the standard symplectic \mathbb{R}^{2n}, $2n \geq 6$, there exists an embedded Lagrangian n-disc transversely attached to B along its Legendrian boundary.

1 Introduction

Question. Let B be the round ball in the standard symplectic \mathbb{R}^{2n}. Is there an embedded Lagrangian disc $\Delta \subset \mathbb{R}^{2n} \setminus \text{Int } B$ with $\partial \Delta \subset \partial B$ such that $\partial \Delta$ is a Legendrian submanifold and Δ transversely intersects ∂B along its boundary?

If $n = 2$ then such a Lagrangian disc does not exist. Indeed, it is easy to check that the existence of such a Lagrangian disc implies that the Thurston-Bennequin invariant $\text{tb}(\partial \Delta)$ of the Legendrian knot $\partial \Delta \subset S^3$ is equal to $+1$. On the other hand, the knot $\partial \Delta$ is sliced, i.e its 4-dimensional genus is equal to 0. But then according to Lee Rudolph’s slice Bennequin inequality \cite{8} we should have $\text{tb}(\partial \Delta) \leq -1$, which is a contradiction.

As far as we know no such Lagrangian discs have been previously constructed in higher dimensions either. We prove in this paper that if $n > 2$ such discs exist in abundance. In particular, we prove

∗Partially supported by the NSF grant DMS-1205349
Theorem 1.1. Let L be a smooth manifold of dimension $n > 2$ with non-empty boundary such that its complexified tangent bundle $T(L) \otimes \mathbb{C}$ is trivial. Then there exists an exact Lagrangian embedding $f : (L, \partial L) \to (\mathbb{R}^{2n} \setminus \text{Int } B, \partial B)$ with $f(\partial \Delta) \subset \partial B$ such that $f(\partial \Delta) \subset \partial B$ is a Legendrian submanifold and f transverse to ∂B along the boundary ∂L.

Note that the triviality of the bundle $T(L) \otimes \mathbb{C}$ is a necessary (and according to Gromov’s h-principle for Lagrangian immersions, \cite{suff} sufficient) condition for existence of any Lagrangian immersion $L \to \mathbb{C}^n$.

In fact, we prove a very general h-principle type result for Lagrangian embeddings generalizing this claim, see Theorem 2.2 below. As corollaries of this theorem we get

- an h-principle for Lagrangian embeddings in any symplectic manifold with a unique conical singular point, see Corollary 6.1
- a general h-principle for embeddings of flexible Weinstein domains, see Corollary 6.3
- construction of Lagrangian immersions with minimal number of self-intersection points; this is explored in a joint paper of the authors with T. Ekholm and I. Smith, \cite{joint}.

Theorem 2.2 together with the results from the book \cite{book} yield new examples of rationally convex domains in \mathbb{C}^n, which will be discussed elsewhere. The authors are thankful to Stefan Nemirovski, whose questions concerning this circle of questions motivated the results of the current paper.

2 Main Theorem

Loose Legendrian submanifolds

Let (Y, ξ) be a $(2n-1)$-dimensional contact manifold. Let us recall that each contact plane $\xi_y, y \in Y$, carries a canonical linear symplectic structure defined up to a scaling factor. Thus, there is a well defined class of isotropic and, in particular, Lagrangian linear subspaces of ξ_y. Given a k-dimensional, $k \leq n - 1$, manifold Λ, an injective homomorphism $\Phi : T\Lambda \to TY$ covering a map $\phi : \Lambda \to Y$ is called isotropic (or if $k = n - 1$ Legendrian) if $\Phi(T\Lambda) \subset \xi$ and $\Phi(Tx\Lambda) \subset \xi_{\phi(x)}$ is isotropic for each $x \in \Lambda$.

Given a $(2n-1)$-dimensional contact manifold (Y, ξ), an embedding $f : \Lambda \to Y$ is called isotropic if it is tangent to ξ; if in addition $\dim \Lambda = n - 1$ then it is called
Legendrian. The differential of an isotropic (resp. Legendrian) embedding is an isotropic (resp. Legendrian) homomorphism.

Two Legendrian embeddings $f_0, f_1 : \Lambda \to Y$ are called formally Legendrian isotopic if there exists a smooth isotopy $f_t : \Lambda \to Y$ connecting f_0 and f_1 and a 2-parametric family of injective homomorphisms $\Phi^s : T\Lambda \to TY$, such that $\Phi^0 = df_0, \Phi^1 = df_1$, and Φ^s_t is a Legendrian homomorphism ($s, t \in [0, 1]$).

The results of this paper essentially depend on the theory of loose Legendrian embeddings developed in [7]. This is a class of Legendrian embeddings into contact manifolds of dimension > 3 which satisfy a certain form of an h-principle. For the purposes of this paper we will not need a formal definition of loose Legendrian embeddings, but instead just describe their properties.

Let $\mathbb{R}^{2n-1}_{\text{std}} := (\mathbb{R}^{2n-1}, \xi_{\text{std}} = \{dz - \sum_{i=1}^{n-1} y_i dx_i = 0\})$ be the standard contact \mathbb{R}^{2n-1}, $n > 2$, and $\Lambda_0 \subset \mathbb{R}^{2n-1}_{\text{std}}$ be the Legendrian $\{z = 0, y_i = 0\}$. Note that a small neighborhood of any point on a Legendrian in a contact manifold is contactomorphic to the pair $(\mathbb{R}^{2n-1}_{\text{std}}, \Lambda_0)$. There is another Legendrian $\tilde{\Lambda}$, called the universal loose Legendrian, which is equal to Λ_0 outside of a compact subset, and formally Legendrian isotopic to it. A picture of $\tilde{\Lambda}$ is given in Figure 2.1 though we do not use any properties of Λ besides those stated above. A connected Legendrian submanifold $\Lambda \subset Y$ is called loose, if there is a contact embedding $(\mathbb{R}^{2n-1}_{\text{std}}, \tilde{\Lambda}) \to (Y, \Lambda)$. We refer the interested readers to the paper [7] and the book [1] for more information. The following proposition summarizes the properties of loose Legendrian embeddings.

Proposition 2.1. For any contact manifold (Y, ξ) of dimension $2n - 1 > 3$ the set of connected loose Legendrians have the following properties:

(i) For any Legendrian embedding $f : \Lambda \to Y$ there is a loose Legendrian embedding $\tilde{f} : \Lambda \to Y$ which coincides with f outside an arbitrarily small neighborhood of a point $p \in \Lambda$ and which is formally isotopic to f via a formal Legendrian isotopy supported in this neighborhood.

(ii) Let $f_0, f_1 : \Lambda \to Y$ be two loose Legendrian embeddings of a connected Λ which coincide outside a compact set and which are formally Legendrian isotopic via a compactly supported isotopy. Then f_0, f_1 are Legendrian isotopic via a compactly supported Legendrian isotopy.

(iii) Let $f_1 : \Lambda \to Y$, $t \in [0, 1]$, be a smooth isotopy which begins with a lose Legendrian embedding f_0. Then it can be C^0-approximated by a Legendrian isotopy $\tilde{f}_t : \Lambda \to Y$, $t \in [0, 1]$, beginning with $\tilde{f}_0 = f_0$.
Statement (i) is the **Legendrian stabilization** construction which replaces a small neighborhood of a point on a Legendrian submanifold by the model \((\mathbb{R}^{2n-1}, \~\Lambda)\). It was first described for \(n > 2\) in [3]. The main part of Proposition 2.1, parts (ii) and (iii), are proven in [7]. Notice that (ii) implies that if a Legendrian is already loose that any further stabilizations do not change its Legendrian isotopy class.

Symplectic manifolds with negative Liouville ends

Throughout the paper we use the terms **closed submanifold** and **properly embedded submanifold** as synonyms, meaning a submanifold which is a closed subset, but not necessarily a closed manifold itself.

Let \(L\) be an \(n\)-dimensional smooth manifold. A **negative end** structure on \(L\) is a choice of

- a codimension 1 submanifold \(\Lambda \subset L\) which divides \(L\) into two parts: \(L = L_- \cup L_+\), \(L_- \cap L_+ = \Lambda\), and

- a non-vanishing vector field \(S\) on \(\mathcal{O}p \ L_- \subset L\) which is outward transverse to
the boundary $\Lambda = \partial \mathcal{L}^-$, and such that the negative flow $S^{-t} : \mathcal{L}^- \to \mathcal{L}^-$ is defined for all t and all its trajectories intersect Λ.

In other words, there is a canonical diffeomorphism $\mathcal{L}^- \to (-\infty, 0] \times \Lambda$ which is defined by sending the ray $(-\infty, 0] \times x$, $x \in \Lambda$, onto the trajectory of $-S$ originated at $x \in \Lambda$.

Alternatively, the negative end structure can be viewed as a negative completion of the manifold \mathcal{L}^+ with boundary Λ:

$$L = \mathcal{L}^+ \cup \bigcup_{0 \times \lambda \in \Lambda \setminus (0, x) \sim x \in \Lambda} (-\infty, 0] \times \Lambda.$$

Negative end structures which differ by a choice of the cross-section Λ transversely intersecting all the negative trajectories of L will be viewed as equivalent.

Let (X, ω) be a $2n$-dimensional symplectic manifold. A properly embedded co-oriented hypersurface $Y \subset X$ is called a contact slice if it divides X into two domains $X = X_- \cup X_+$, $X_- \cap X_+ = Y$, and there exists a Liouville vector field Z in a neighborhood of Y which is transverse to Y, defines its given co-orientation and points into X_+. Such hypersurfaces are also called symplectically convex [4], or of contact type [9].

If the Liouville field extends to X_- as a non-vanishing Liouville field such that the negative flow Z^{-t} is defined for all $t \geq 0$ and all its trajectories in X_- intersect Y then X_- with a choice of such Z is called a negative Liouville end structure of the symplectic manifold (X, ω).

The restriction α of the Liouville form $\lambda = i(Z) \omega$ to Y is a contact form on Y and the diffeomorphism $(-\infty, 0] \times Y \to X_-$ which sends each ray $(-\infty, 0] \times x$ onto the trajectory of $-Z$ originated at $x \in \Lambda$ is a Liouville isomorphism between the negative symplectization $((-\infty, 0] \times Y, d(\alpha))$ of the contact manifold $(Y, \{\alpha = 0\})$ and (X_-, λ). Hence alternatively the negative Liouville end structure can be viewed as a negative completion of the manifold X_+ with the negative contact boundary Y, i.e. as an attaching the negative symplectization $((-\infty, 0] \times Y, d(\alpha))$ of the contact manifold $(Y, \{\alpha = 0\})$ to X_+ along Y.

A negative Liouville end structure which differs by another choice of the cross-section Y transversely intersecting all negative trajectories of X will be viewed as an equivalent one. Note that the holonomy along trajectories of X provides a contactomorphism between any two transverse sections. Any such transverse section will be called a contact slice.

If the symplectic form ω is exact and the Liouville form λ is extended as a Liouville
form, still denoted by λ, to the whole manifold X, then we will call (X, λ) a Legendrian embedding.

Let L be an n-dimensional manifold with a negative end, and X a symplectic $2n$-manifold with a negative Liouville end. A proper Lagrangian immersion $f : L \to X$ is called cylindrical at $-\infty$ if it maps the negative end L_- of L into a negative end X_- of X, the restriction $f|_{L_-}$ is an embedding, and the differential $df|_{T_{L_-}}$ sends the vector field S to Z. Composing the restriction of f to a transverse slice Λ with the projection of the negative Liouville end of X to Y along trajectories of Z we get a Legendrian embedding $f_{-\infty} : \Lambda \to Y$, which will be called the asymptotic negative boundary of the Lagrangian immersion f.

The action class

Given a proper Lagrangian immersion $f : L \to X$, we consider its mapping cylinder $C_f = L \times [0, 1] \cup_{(x, 1) \sim f(x)} X$, which is homotopy equivalent to X, and denote respectively by $H^2(X, f)$ and $H^2(X, f)$ the 2-dimensional cohomology groups $H^2(C_f, L \times 0)$ and $H^2(C_f, L \times 0) := \lim_{K \subset C_f} H^2(C_f \setminus K, (L \times 0) \setminus K)$, where the direct limit is taken over all compact subsets $K \subset C_f$. We denote by $r_{-\infty}$ the restriction homomorphism $r_{-\infty} : H^2(X, f) \to H^2(X, f)$. If f is an embedding then $H^2(X, f)$ and $H^2(X, f)$ are canonically isomorphic to $H^2(X, f(L))$ and $H^2(X, f(L)) := \lim_{K \subset X} H^2(X \setminus K, f(L) \setminus K)$, respectively. We define the relative action class $A(f) \in H^2(X, f)$ of a proper Lagrangian immersion $f : L \to X$ as the class defined by the closed 2-form which is equal ω on X and to 0 on $L \times 0$. We say that f is weakly exact if $A(f) = 0$. The relative action class at infinity $A_{-\infty}(f) \in H^2_{-\infty}(X, f)$ is defined as $A_{-\infty}(f) := r_{-\infty}(A_{-\infty})$. We note we have $A_{-\infty}(f) = A_{-\infty}(g)$ if Lagrangian immersions f, g coincide outside a compact set.

Consider next a compactly supported Lagrangian regular homotopy, $f_t : L \to X$, $0 \leq t \leq 1$, and write $F : L \times [0, 1] \to X$, for $F(x, t) = f_t(x)$. Let α denote the 1-form on $L \times [0, 1]$ defined by the equation $\alpha := \frac{\partial}{\partial t}(F^*\omega)$, where t is the coordinate on the second factor of $L \times [0, 1]$. Then the restrictions $\alpha_t := \alpha|_{L \times \{t\}}$ are closed for all $t \in [0, 1]$. We call the Lagrangian regular homotopy f_t a Hamiltonian regular homotopy if the cohomology class $[\alpha_t] \in H^1(L)$ is independent of t. It is straightforward to verify that for a Hamiltonian regular homotopy f_t the action class $A(f_t)$ remains constant. Note, however, that the converse is not necessarily true.

If X is a Liouville manifold, then we define the absolute action class $a(f) \in H^1(L)$
as the class of the closed form $f^*\lambda$, and call a Lagrangian immersion f \textit{exact} if $a(f) = 0$. Note that in that case we have $\delta(a(f)) = A(f)$, where δ is the boundary homomorphism $H^1(L) \to H^2(X, f)$ from the exact sequence of the pair $(C_f, L \times 0)$. We will also use the notation

$$H^1_\infty(L) := \lim_{K \subset L} H_1(L \setminus K), \quad r_\infty : H^1(L) \to H^1_\infty(L), \quad a_\infty(f) = r_\infty(a(f)).$$

If the the immersion f is cylindrical at $-\infty$ then the class $a_\infty(f)$ vanishes on L_-.

\textbf{Statement of main theorems}

We say that a symplectic manifold X has infinite Gromov width if an arbitrarily large ball in \mathbb{R}^{2n} admits a symplectic embedding into X. For instance, a complete Liouville manifold have infinite Gromov width.

\textbf{Theorem 2.2.} Let $f : L \to X$ be a cylindrical at $-\infty$ proper embedding of an n-dimensional, $n \geq 3$, connected manifold L, such that its asymptotic negative Legendrian boundary has a component which is loose in the complement of the other components. Suppose that there exists a compactly supported homotopy of injective homomorphisms $\Psi_t : TL \to TX$ covering f and such that $\Psi_0 = df$ and Ψ_1 is a Lagrangian homomorphism. If $n = 3$ assume, in addition, that the manifold $X \setminus f(L)$ has infinite Gromov width. Then given a cohomology class $A \in H^2(X, f(L))$ with $r_\infty(A) = A_\infty(f)$, there exists a compactly supported isotopy $f_t : L \to X$ such that

- $f_0 = f$;
- f_1 is Lagrangian;
- $A(f_1) = A$ and
- $df_1 : TL \to TX$ is homotopic to Φ_1 through Lagrangian homomorphisms.

If X is a Liouville manifold with a negative contact end, then one can in addition prescribe any value $a \in H^1(L)$ to the absolute action class $a(f_1)$ provided that $r_\infty(a) = a_\infty$, and in particular make the Lagrangian embedding f_1 exact.

We do not know whether the infinite width condition when $n = 3$ is really necessary, or it is just a result of deficiency of our method.
Suppose we are given a smooth proper immersion \(f : L^n \to X^{2n} \) with only transverse double points and which is an embedding outside of a compact subset. If \(L \) is connected, \(L \) is orientable and \(X \) is oriented and \(n \) is even, we define the relative self-intersection index of \(f \), denoted \(I(f) \), to be the signed count of intersection points, where the sign of an intersection \(f(p^0) = f(p^1) \) is +1 or −1 depending on whether the orientation defined by \((df_{p^0}(L), df_{p^1}(L)) \) agrees or disagrees with the orientation on \(X \). Because \(n \) is even, this sign does not depend on the ordering \((p^0, p^1) \); if \(n \) is odd or \(L \) is non-orientable we instead define \(I(f) \) as an element of \(\mathbb{Z}_2 \). If \(X \) is simply connected a theorem of Whitney [10] implies that \(f \) is regularly homotopic with compact support to an embedding if and only if \(I(f) = 0 \).

Theorem 2.2 will be deduced in Section 5 from the following

Theorem 2.3. Let \((X, \lambda)\) be a simply connected Liouville manifold with a negative end \(X_- \), and \(f : L \to X \) a cylindrical at \(-\infty\) exact self-transverse Lagrangian immersion with finitely many self intersections. Suppose that \(I(f) = 0 \), and the asymptotic negative boundary \(\Lambda \) of \(f \) has a component which is loose in the complement of the others. If \(n = 3 \) suppose, in addition, that \(X \setminus f(L) \) has infinite Gromov width. Then there exists a compactly supported Hamiltonian regular homotopy \(f_t \), connecting \(f_0 = f \) with an embedding \(f_1 \).

Remark. If \(X \) is not simply connected the statement remains true if the self-intersection index \(I(f) \) is understood as an element of the group ring of \(\pi_1(X) \).

3 Weinstein recollections and other preliminaries

Weinstein cobordisms

We define below a slightly more general notion of a Weinstein cobordism than is usually done (comp. [1]), by allowing cobordisms between non-compact manifolds. Let \(W \) be a \(2n \)-dimensional smooth manifold with boundary. We allow \(W \), as well as its boundary components to be non-compact. Suppose that the boundary \(\partial W \) is presented as the union of two disjoint subsets \(\partial_\pm W \) which are open and closed in \(\partial W \). A **Weinstein cobordism** structure on \(W \) is a triple \((\omega, Z, \phi)\), where \(\omega \) is a symplectic form on \(W \), \(Z \) is a Liouville vector field, and \(\phi : W \to [m, M] \) a Morse function with finitely many critical points, such that

- \(\partial_- W = \{\phi = m\} \) and \(\partial_+ W = \{\phi = M\} \) are regular level sets;
- the vector field \(Z \) is gradient like for \(\phi \), see [1], Section 9.3;
• outside a compact subset of W every trajectory of Z intersects both ∂_-W and ∂_+W.

The function ϕ is called a Lyapunov function for Z. The Liouville form $\lambda = i(Z)\omega$ induces contact structure on all regular levels of the function ϕ. All Z-stable manifolds of critical points of the function ϕ are isotropic for ω and, in particular, indices of all critical points are $\leq n = \frac{\dim W}{2}$. A Weinstein cobordism (W,ω, X, ϕ) is called subcritical if indices of all critical points are $< n$.

Extension of Weinstein structure

The following lemma is the standard handle attaching statement in the Weinstein category (see [9] and [1]). We provide a proof here because we need it in a slightly different than it is presented in [9] and [1].

Lemma 3.1. Let (X,λ) be a Liouville manifold with boundary, Z the Liouville field corresponding to λ (i.e. $i_Z\omega = \lambda$ where $\omega = d\lambda$) and $Y \subset \partial X$ a (union of) boundary component(s) of X such that Z is inward transverse to Y. Let $(\Delta, \partial \Delta) \subset (X, Y)$ be a k-dimensional ($k \leq n$) isotropic disc, which is tangent to Z near $\partial \Delta$. If $k = 1$ suppose, in addition, that $\int_\Delta \lambda = 0$, and if $k < n$ suppose, in addition, that Δ is extended to (a germ of) a Lagrangian submanifold $(L, \partial L) \subset (X, Y)$ which is also tangent to Z near ∂L. Then for any neighborhoods $U \supset \Delta$ and $\Omega \supset Y$ there exists a Weinstein cobordism (W,ω, Z, ϕ) with the following properties:

• $Y \cup \Delta \subset W \subset \Omega \cup U$;

• $\partial_-W = Y$;

• the function ϕ has a unique critical point p of index k at the center of the disc Δ;

• the disc Δ is contained in the \tilde{Z}-stable manifold of the point p;

• the field $\tilde{Z}|_{L \cap W}$ is tangent to L;

• the Liouville form $\tilde{\lambda} = i(\tilde{Z})\omega$ can be written as $\lambda + dH$ for a function H compactly supported in $U \setminus Y$.
Proof. Let us set \(L = \Delta \) if \(k = n \). For a general case we can assume that \(L = \Delta \times \mathbb{R}^{n-k} \). Let \(\omega_{st} \) denote the symplectic form on \(T^*(L) = T^*L \times T^*\mathbb{R}^k = \Delta^k \times \mathbb{R}^k \times \mathbb{R}^{n-k} \times \mathbb{R}^{n-k} \) given by the formula

\[
\omega_{st} = \sum_{i=1}^{k} dp_i \wedge dq_i + \sum_{j=1}^{n-k} du_j \wedge dv_j
\]

with respect to the coordinates \((q, p, v, u) \in \Delta^k \times \mathbb{R}^k \times \mathbb{R}^{n-k} \times \mathbb{R}^{n-k}\) which correspond to this splitting. Denote by \(\lambda_k \) the Liouville form

\[
\lambda_k = \sum_{i=1}^{k} (2p_i dq_i + q_i dp_i) + \frac{1}{2} \sum_{i=1}^{n-k} (v_i du_j - u_j dv_j),
\]

d\(\lambda_k = \omega_{st} \). Note that the Liouville field

\[
Z_k := \sum_{i=1}^{k} \left(-q_i \frac{\partial}{\partial q_i} + 2p_i \frac{\partial}{\partial p_i}\right) + \frac{1}{2} \sum_{i=1}^{n-k} \left(v_i \frac{\partial}{\partial v_i} + u_j \frac{\partial}{\partial u_j}\right)
\]

corresponding to the form \(\lambda_k \) is gradient like for the quadratic function

\[
Q := \sum_{i=1}^{k} (p_i^2 - q_i^2) + \sum_{i=1}^{n-k} (u_j^2 + v_j^2),
\]
tangent to \(L \), and the disc \(\Delta \) serves as the \(Z_k \)-stable manifold of its critical point. Using the normal form for the Liouville form \(\lambda \) near \(\partial L \) (see [9], and also [1], Proposition 6.6) and the Weinstein symplectic normal form along the Lagrangian \(L \) we can find, possibly decreasing the neighborhoods \(\Omega \) and \(U \), a symplectomorphism \(\Phi : U \to U' \), where \(U' \) is a neighborhood of \(\Delta \) in \(T^*L \), such that

- \(\Phi(L \cap U) = L \cap U' \), \(\Phi(\Delta \cap U) = \Delta \cap U' \);
- \(\Phi^* \omega_{st} = \omega \);
- \(\Phi^* \lambda_k = \lambda \) on \(\Omega \cap U \);
- \(\Phi(Y \cap U) = \{Q = -1\} \cap U' \).

Thus the closed, and hence exact 1-form \(\Phi^* \lambda - \lambda_k \) vanishes on \(\Omega' := \Phi(\Omega \cap U) \), and therefore, using the condition \(\int_{\Delta} \lambda = 0 \) when \(k = 1 \), we can conclude that

\(\lambda_k = \Phi^* \lambda + dH \) for a function \(H : G \to \mathbb{R} \) vanishing on \(\Omega' \supset \partial \Delta \). Let \(\theta : U' \to [0, 1] \) be a \(C^\infty \)-cut-off function equal to 0 outside a neighborhood \(U_1' \supset \Delta, U_1' \Subset U' \), and
equal to 1 on a smaller neighborhood \(U_2' \supset \Delta, U_2' \subseteq U_1' \). Denote \(\tilde{H} := \theta H \). Then the form \(\tilde{\lambda} := \Phi^* \lambda + d\tilde{H} \) coincides with \(\Phi^* \lambda \) on \(\Omega' \cup (U' \setminus U_1') \), and equal to \(\lambda_k \) on \(U_2' \). Then, according to Corollary 9.21 from [1], for any sufficiently small \(\varepsilon > 0 \) and a neighborhood \(U_3' \supset \Delta, U_3' \subseteq U_2' \), there exists a Morse function \(\hat{Q} : U' \to \mathbb{R} \) such that

- \(\hat{Q} \) coincides with \(Q \) on \(\{ Q \leq -1 \} \cup \{ \{ Q \leq -1 + \varepsilon \} \setminus U_2' \};
- \(\hat{Q} \) and \(Q \) are target equivalent over \(U_3' \), i.e. there exists a diffeomorphism \(\sigma : \mathbb{R} \to \mathbb{R} \) such that over \(U_3' \) we have \(\hat{Q} = \sigma \circ Q \);
- \(-1 + \varepsilon \) is a regular value of \(\hat{Q} \) and \(\{ \hat{Q} \leq -1 + \varepsilon \} \subseteq \Omega' \cup U_2' \);
- inside \(\hat{W} := \{ -1 \leq \hat{Q} \leq -1 + \varepsilon \} \subseteq U' \) the function \(\hat{Q} \) has a unique critical point.

Denote \(\tilde{Q} := \hat{Q} \circ \Phi : U \to \mathbb{R} \). Let us extend the function \(\tilde{Q} \) to the whole manifold \(X \) in such a way that

- \(\{ \tilde{Q} = -1 \} \setminus U = Y \setminus U \),
- \(\{ -1 \leq \tilde{Q} \leq -1 + \varepsilon \} \setminus U \subset \Omega \setminus U \),
- the function \(\tilde{Q}|_{X \setminus U} \) has no critical values in \([-1, -1 + \varepsilon]\) and
- the Liouville vector field \(Z \) is gradient like for \(\tilde{Q} \) on \(\{ -1 \leq \tilde{Q} \leq -1 + \varepsilon \} \setminus U \).

Let us define \(W := \{ -1 \leq \tilde{Q} \leq -1 + \varepsilon \} \subset X \),

\[
\tilde{\lambda} = \begin{cases}
\Phi^* \lambda + d\tilde{H} \circ \Phi, & \text{on } U, \\
\lambda, & \text{on } X \setminus U.
\end{cases}
\]

Let \(\tilde{Z} \) be the Liouville field \(\omega \)-dual to the Liouville form \(\tilde{\lambda} \). Then the Weinstein cobordism \((W, \omega, \tilde{Z}, \phi := \hat{H} \circ \Phi) \) has the required properties.

We will also need the following simple

Lemma 3.2. Let \((X, \lambda)\) be a Liouville manifold and \(f : L \to X \) a Lagrangian immersion. Let \(p \in X \) be a transverse self-intersection point. Then there exists a symplectic embedding \(h : B \to X \) of a sufficiently small ball in \(\mathbb{R}_{st}^{2n} \) into \(X \) such that \(h(0) = p \) and \(h^{-1}(f(L)) = B \cap (\{ x = 0 \} \cup \{ y = 0 \}) \).
Proof. By the Weinstein neighborhood theorem, there exist coordinates in a symplectic ball near \(p \) so that \(f(L) \) is given by \(\{ x = 0 \} \cup \{ y = dg(x) \} \) for some function \(g : \mathbb{R}^n \to \mathbb{R} \) so that \(dg(0) = 0 \) (here we use natural coordinates on \(T^*\mathbb{R}^n \)). By transversality the critical point of \(g \) at 0 is non-degenerate. Composing with the symplectomorphism \((x, y) \mapsto (x, y - dg(x)) \) gives the desired coordinates. \(\Box \)

Cancellation of critical points in a Weinstein cobordism

The following proposition concerning cancellations of critical points in a Weinstein cobordism is proven in [1], see there Proposition 12.22.

Proposition 3.3. Let \((W, \omega, Z_0, \phi_0)\) be a Weinstein cobordism with exactly two critical points \(p, q \) of index \(k \) and \(k - 1 \), respectively, which are connected by a unique \(Z \)-trajectory along which the stable and unstable manifolds intersect transversely. Let \(\Delta \) be the closure of the stable manifold of the critical point \(p \). Then there exists a Weinstein cobordism structure \((\omega, Z_1, \phi_1)\) with the following properties:

\begin{itemize}
 \item\((Z_1, \phi_1) = (Z_0, \phi_0) \) near \(\partial W \) and outside a neighborhood of \(\Delta \);
 \item\(\phi_1 \) has no critical points.
\end{itemize}

From Legendrian isotopy to Lagrangian concordance

The following Lemma about Lagrangian realization of a Legendrain isotopy is proven in [5], see there Lemma 4.2.5.

Lemma 3.4. Let \(f_t : \Lambda \to (Y, \xi = \{ \alpha = 0 \}) \), \(t \in [0, 1] \), be a Legendrian isotopy connecting \(f_0, f_1 \). Let us extend it to \(t \in \mathbb{R} \) as independent of \(t \) for \(t \notin [0, 1] \). Then there exists a Lagrangian embedding

\[F : \mathbb{R} \times \Lambda \to \mathbb{R} \times Y, d(e^{t\alpha}) \],

of the form \(F(t, x) = (\tilde{f}_t(x), h(t, x)) \) such that

- \(F(t, x) = (f_1(x), t) \) and \(F(x, -t) = f_0(x) \) for \(t > C \), for a sufficiently large constant \(C \);
- \(\tilde{f}_t(x) \) \(C^\infty \)-approximate \(f_t(x) \).
4 Action-balanced Lagrangian immersions

Suppose we are given an exact proper Lagrangian immersion $f : L \to X$ of an orientable manifold L into a simply connected Liouville manifold (X, λ) with finitely many transverse self-intersection points. For each self-intersection point $p \in X$ we denote by $p^0, p^1 \in L$ its pre-images in L. The integral $a_{SI}(p, f) = \int_{\gamma} f^* \lambda$, where $\gamma : [0, 1] \to L$ is any path connecting the points $\gamma(0) = p^0$ and $\gamma(1) = p^1$, will be called the action of the self-intersection point p. Of course, the sign of the action depends on the ordering of the pre-images p^0 and p^1. We will fix this ambiguity by requiring that $a_{SI}(p, f) > 0$ (by a generic perturbation of f we can assume there are no points p with $a_{SI}(p, f) = 0$).

A pair of self-intersection points (p, q) is called a balanced Whitney pair if $a_{SI}(p, f) = a_{SI}(q, f)$ and the intersection indices of $df(T_{p_0}L)$ with $df(T_{p_1}L)$ and of $df(T_{q_0}L)$ with $df(T_{q_1}L)$ have opposite signs. In the case where L is non-orientable we only require that p and q have the same action. A Lagrangian immersion f is called balanced if the set of its self-intersection points can be presented as the union of disjoint balanced Whitney pairs.

The goal of this section is the following

Proposition 4.1. Let (X, λ) be a simply connected Liouville manifold with a negative end and $f : L \to X$ a proper exact and cylindrical at $-\infty$ Lagrangian immersion with finitely many transverse double points. If $n = 3$ suppose, in addition, that $X \setminus f(L)$ has infinite Gromov width. Then there exists an exact cylindrical at $-\infty$ Lagrangian regular homotopy $f_t : L \to X$, $t \in [0, 1]$, which is compactly supported away from the negative end, and such that $f_0 = f$ and f_1 is balanced.

If the asymptotic negative boundary of f has a component which is loose in the complement of the other components and $I(f) = 0$ then the Lagrangian regular homotopy f_t can be made fixed at $-\infty$.

Note that Proposition 4.1 is the only step in the proof of the main results of this paper where one need the infinite Gromov width condition when $n = 3$.

The following two lemmas will be used to reduce the action of our intersection points in the case where we only have a finite amount of space to work with, for example when X_+ is compact. In the case where X_+ contains a symplectic ball B_R of arbitrarily large radius, e.g. in the situation of Theorem 1.1 these lemmas are not needed.
Lemma 4.2. Consider an annulus $A := [0, 1] \times S^{n-1}$. Let x, z be coordinates corresponding to the splitting, and y, u the dual coordinates in the cotangent bundle T^*A, so that the canonical Liouville form λ on T^*A is equal to $ydx + udz$. Then for any integer $N > 0$ there exists a Lagrangian immersion $\Delta : A \rightarrow T^*A$ with the following properties:

- $\Delta(A) \subset \{|y| \leq \frac{5}{N}, ||u|| \leq \frac{5}{N}\}$;
- Δ coincides with the inclusion of the zero section $j_A : A \hookrightarrow T^*A$ near ∂A;
- there exists a fixed near ∂A Lagrangian regular homotopy connecting j_A and Δ;
- $\int \lambda = 1$, where ζ is the Δ-image of any path connecting $S^{n-1} \times 0$ and $S^{n-1} \times 1$ in A;
- action of any self-intersection point of Δ is $< \frac{1}{N}$;
- the number of self-intersection points is $< 8N^3$.

Proof. Consider in \mathbb{R}^2 with coordinates (x, y) the rectangulars

$$I_{j,N} = \left\{ \frac{j}{5N^2} \leq x \leq \frac{j}{5N^2} + \frac{1}{5N}, 0 \leq y \leq \frac{5}{N} \right\}, j = 0, \ldots (N - 1)N.$$

Consider a path γ in \mathbb{R}^2 which begins at the origin, travels counter-clockwise along the boundary of $I_{0,N}$, then moves along the x-axis to the point $(\frac{1}{5N^2}, 0)$, travels counter-clockwise along the boundary of $I_{1,N}$ etc., and ends at the point $(1, 0)$. Note that $\int ydx = \frac{N-1}{N}$. We also observe that squares $I_{j,N}$ and $I_{i,N}$ intersect only when $|i - j| \leq N$, and hence for any self-intersection point p of γ its action is bounded by $N \frac{1}{N^2} = \frac{1}{N}$. Let us C^∞-approximate γ by an immersed curve γ_1 with transverse self-intersections and which coincides with γ near its end points. We can arrange that

- $\left| \int_{\gamma_1} ydx - 1 \right| < \frac{2}{N}$;
- action of any self-intersection point of γ_1 is $< \frac{1}{N}$;
- the number of self-intersection points is $< 2N^3$.
• the curve γ_1 is contained in the rectangular $\{0 \leq x \leq \frac{1}{5}, 0 \leq y \leq \frac{N}{5}\}$.

See Figure 4.1. The only non-trivial statement is the upper bound on the number of self-intersections. Notice that there are less than N^2 loops, and each loop intersects at most $2N$ other loops, in 2 points each. Thus the number of self intersections, double counted, is less than $4N^3$.

We will assume that γ_1 is parameterized by the interval $[0, \frac{1}{5}]$. Let r_N denote the affine map $(x, y) \mapsto (x + \frac{1}{5}, -\frac{N}{5}y)$. We define a path $\gamma_2 : [\frac{1}{5}, \frac{2}{5}] \to \mathbb{R}^2$ by the formula

$$\gamma_2(t) = r_N(\gamma_1(t - \frac{1}{5})).$$

Note that the immersion $\gamma_{12} : [0, \frac{2}{5}] \to \mathbb{R}^2$ which coincides with γ_1 on $[0, \frac{1}{5}]$ and with γ_2 on $[\frac{1}{5}, \frac{2}{5}]$ is regularly homotopic to the straight interval embedding via a homotopy which is fixed near the end of the interval, and which is inside $\{0 \leq x \leq \frac{2}{5}, -\frac{5}{N^2} \leq y \leq \frac{N}{5}\}$. We also note that $\left| \int_{\gamma_{12}} y dx - 1 \right| < \frac{3}{N}$. See Figure 4.2.

We further extend γ_{12} to an immersion $\gamma_{123} : [0, 1] \to \mathbb{R}^2$ by extending it to $[\frac{2}{5}, 1]$ as a graph of function $\theta : [\frac{2}{5}, 1] \to [-\frac{5}{N}, \frac{N}{5}]$ with

$$\int_{\gamma_{12}}^1 \theta(x) dx = 1 - \int_{\gamma_{12}} y dx,$$

which implies $\int_{\gamma_{123}} y dx = 1$.

Fig. 4.1: The curve γ_1 when $N = 3$.

Let $j_{S^{n-1}}$ denote the inclusion $S^{n-1} \to T^*S^{n-1}$ as the 0-section. Consider a Lagrangian immersion $\Gamma : A \to T^*A$ given by the formula
\[\Gamma(x, z) = (\gamma_{123}(x), j_{S^{n-1}}(z)) \in T^*[0, 1] \times T^*S^{n-1} = T^*A. \]

The Lagrangian immersion Γ self-intersects along spheres of the form $p \times S^{n-1}$ where p is a self-intersection point of $\tilde{\gamma}$. By a C^∞-perturbation of Γ we can construct a Lagrangian immersion $\Delta : A \to T^*A$ with transverse self-intersection points which have all the properties listed in Lemma 4.2. Indeed, for each of the $4N^3$ intersection points p of γ_{123}, the sphere $p \times S^{n-1}$ can be perturbed to have two self-intersections. The other required properties are straightforward from the construction. \hfill \Box

Remark 4.3. Given any $a > 0$ we get, by scaling the Lagrangian immersion Δ with the dilatation $(y, u) \mapsto (ay, au)$, a Lagrangian immersion $\Delta_a : A \to T^*A$ which satisfy

- $\int \lambda = a$, where ζ is the Δ_a-image of any path connecting the boundary $S^{n-1} \times 0$ and $S^{n-1} \times 1$ of A;
- action of any self-intersection point of Δ_a is $< \frac{a}{N}$;
- the number of self-intersection points is $< 8N^3$;
- $\Delta_a(A) \subset \{|y|, ||u|| \leq \frac{5a}{N}\}$;
- the immersion Δ_a is regularly homotopic relative its boundary to the inclusion $A \hookrightarrow T^*A$.

Fig. 4.2: The curve γ_{12}.

Let $j_{S^{n-1}}$ denote the inclusion $S^{n-1} \to T^*S^{n-1}$ as the 0-section. Consider a Lagrangian immersion $\Gamma : A \to T^*A$ given by the formula
\[\Gamma(x, z) = (\gamma_{123}(x), j_{S^{n-1}}(z)) \in T^*[0, 1] \times T^*S^{n-1} = T^*A. \]
Given a proper Lagrangian immersion $f : L \to X$ with finitely many transverse self-intersection points, we denote the number of self-intersection points by $\text{SI}(f)$. The action of a self-intersection point p of f is denoted by $a_{\text{SI}}(p, f)$. We set $a_{\text{SI}}(f) := \max_p |a_{\text{SI}}(p, f)|$, where the maximum is taken over all self-intersection points of f.

Lemma 4.4. Let $f_0 : L \to (X, \lambda)$ be a proper exact Lagrangian immersion into a simply connected Liouville manifold with finitely many transverse self-intersection points. Then for any sufficiently large integer $N > 0$ there exists a fixed at infinity C^0-small exact Lagrangian regular homotopy $f_1 : L \to X$, $t \in [0, 1]$, such that f_1 has transverse self-intersections,

$$a_{\text{SI}}(f_1) \leq \frac{a_{\text{SI}}(f)}{N}, \quad \text{SI}(f_1) \leq 9N^3\text{SI}(f_0).$$

Proof. Let p_1, \ldots, p_k be the self-intersection points of f_0 and $p_1^0, p_1^1, \ldots, p_k^0, p_k^1$ their pre-images, $k = \text{SI}(f_0)$. Let us recall that we order the pre-images in such a way that $a_{\text{SI}}(p_i, f_0) > 0$, $i = 1, \ldots, k$. Choose

- disjoint embedded n-discs $D_i \ni p_i^1$, $i = 1, \ldots, k$, which do not contain any other pre-images of double points, and
- annuli $A_i \subset D_i$ bounded by two concentric spheres in D_i.

For a sufficiently large $N > 0$ there exist disjoint symplectic embeddings h_i of the domains $U_i := \{ |y|, |u| \leq \frac{5a_{\text{SI}}(p_i, f_0)}{N} \} \subset T^* A$ in X, $i = 1, \ldots, k$, such that $h_i^{-1}(f_0(L)) = h_i^{-1}(A_i) = A$. Then, using Remark 4.3, we find a Lagrangian regular homotopy f_1 supported in $\bigcup h_i(U_i)$ which annihilates the action of points p_i, i.e. $a_{\text{SI}}(p_i, f_1) = 0$, $i = 1, \ldots, k$, and which creates no more than $8kN^3$ new self-intersection points of action $< \frac{a_{\text{SI}}(f_0)}{N}$. Hence, the total number of self-intersection points of f_1 satisfies the inequality $\text{SI}(f_1) < 9\text{SI}(f_0)N^3$.

The next lemma is a local model which will allow us to match the action of a given intersection point, during our balancing process. For a positive C we denote by Q_C the parallelepiped

$$\{ |z| \leq C, |x_i| \leq 1, |y_i| \leq C, \ i = 1, \ldots, n-1 \}$$
in the standard contact space $\mathbb{R}^{2n-1}_{st} = (\mathbb{R}^{2n-1}, \xi = \{ \alpha_{st} := dz - \sum_{i=1}^{n-1} y_i dx_i = 0 \})$. Let SQ_C denote the domain $[\frac{1}{2}, 1] \times Q_C$ in the symplectization $(0, \infty) \times Q_C$ of Q_C endowed with the Liouville form $\lambda_0 := s \alpha_{st}$. We furthermore denote by L' the Lagrangian rectangular $\{ z = t, y = 0; j = 1, \ldots, n - 1 \} \cap SQ_C \subset SQ_C, t \in [-C, C]$.

Lemma 4.5. For any positive $b_0, b_1, \ldots, b_k \in (0, \infty), k \geq 0$, such that

$$\frac{C}{4k + 4} > b_0 > \max(b_1, \ldots, b_k),$$

and a sufficiently small $\varepsilon > 0$ there exists a Lagrangian isotopy which starts at $L^{-\varepsilon}$, fixed near $1 \times Q_C$ and $[\frac{1}{2}, 1] \times \partial Q_C$, cylindrical near $\frac{1}{2} \times Q_C$, and which ends at a Lagrangian submanifold $\tilde{L}^{-\varepsilon}$ with the following properties:

- $\tilde{L}^{-\varepsilon}$ intersects L^0 transversely at $k + 1$ points B_0, B_1, \ldots, B_k;
- if $\gamma_{B_j}, j = 0, \ldots, k$, is a path in $\tilde{L}^{-\varepsilon}$ connecting the point B_j with a point on the boundary ∂Q_C, then
 $$\int_{\gamma_{B_j}} \lambda_0 = b_j, j = 0, \ldots, k;$$
- the intersection indices of L^0 and $\tilde{L}^{-\varepsilon}$ at the points B_0, B_1, \ldots, B_k are equal to $1, -1, \ldots, -1$, respectively.
- $\tilde{L}^{-\varepsilon} \cap \{ s = \frac{1}{2} \}$ is a Legendrian submanifold in Q_C defined by a generating function which is equal to $-\varepsilon$ near ∂Q_C and positive over a domain in Q_C of Euler characteristic $1 - k$.

Proof. We have

$$\omega := d\lambda_0 = ds \wedge dz - \sum_{i=1}^{n-1} dx_i \wedge d(s y_i) = -d(z ds + \sum_{i=1}^{n-1} v_i dq_i),$$

we denoted $v_i := sy_i, i = 1, \ldots, n - 1$. Let $I^{n-1} \subset \mathbb{R}^{n-1}$ be the cube $\{ \max_{i=1, \ldots, n-1} |q_i| \leq 1 \}$. Choose a smooth non-negative function $\theta : [\frac{1}{2}, 1] \rightarrow \mathbb{R}$ such that

- $\theta(s) = s$ for $s \in [\frac{1}{2}, \frac{5}{8}]$;
• θ has a unique local maximum at a point $\frac{3}{4}$;
• $\theta(s) = 0$ for s near 1;
• the derivative θ' is monotone decreasing on $[\frac{5}{8}, \frac{3}{4}]$.

For any $\tilde{b}_0, \ldots, \tilde{b}_k \in (0, \frac{C}{2k+2})$ which satisfy $\tilde{b}_0 > \max(\tilde{b}_1, \ldots, \tilde{b}_k)$ one can construct a smooth non-negative function $\phi : I^{n-1} \to \mathbb{R}$ with the following properties:

• $\phi = 0$ near ∂I^{n-1};
• $\max_{i=1, \ldots, n-1} \left| \frac{\partial \phi}{\partial q_i} \right| < \frac{C}{2}$;
• besides degenerate critical points corresponding to the critical value 0, the function ϕ has $k+1$ positive non-degenerate critical points: 1 local maximum \tilde{B}_0 and k critical points $\tilde{B}_1, \ldots, \tilde{B}_k$ of index $n-2$ with critical values $\tilde{b}_0, \tilde{b}_1, \ldots, \tilde{b}_k$ respectively.

Take a positive $\varepsilon < \min(\tilde{b}_0, \ldots, \tilde{b}_k, \frac{C}{2k+8})$ and define a function $h : [\frac{1}{2}, 1] \times I^{n-1} \to \mathbb{R}$ by the formula

$$h(s, q) = -\varepsilon s + \theta(s)\phi(q), \ s \in \left[\frac{1}{2}, 1\right], q \in I^{n-1}.$$

Thus the function h is equal to $s(-\varepsilon + \phi(q))$ for $s \in [\frac{1}{2}, \frac{5}{8}]$ and equal to $-\varepsilon s$ near the rest of the boundary of $[\frac{1}{2}, 1] \times I^{n-1}$. The function h has one local maximum at a point (s_0, \tilde{B}_0) and k index $n-1$ critical points with coordinates $(s_j, \tilde{B}_j), \ j = 1, \ldots, k$. Here the values $s_j \in \left[\frac{5}{8}, \frac{3}{4}\right]$ are determined from the equations $\tilde{b}_j\theta'(s_j) = \varepsilon, \ j = 0, \ldots, k$. Respectively, the critical values are equal to $\tilde{b}_j := -\varepsilon s_j + \theta(s_j)\tilde{b}_j$. For \tilde{b}_j near ε we have $\tilde{b}_j < \varepsilon$, while for \tilde{b}_j close to $\frac{C}{2k+2}$ we have $\tilde{b}_j > \frac{C}{4k+4}$. Hence, by continuity, any critical values $b_0, b_1, \ldots b_k \in (\varepsilon, \frac{C}{2k+4})$ which satisfy the inequality $b_0 > \max(b_1, \ldots, b_k)$ can be realized.

The required Lagrangian manifold $\tilde{L}^{-\varepsilon}$ can be now defined by the equations

$$z = \frac{\partial h}{\partial s}, \ x_j = q_j, \ v_j = \frac{\partial h}{\partial p_j}, \ j = 1, \ldots, n-1, \ s \in \left[\frac{1}{2}, 1\right], q \in I^{n-1},$$

or returning to x, y, z, s coordinates by the equations

$$\tilde{L}^{-\varepsilon} = \left\{ z = \frac{\partial h}{\partial s}, y_j = \frac{1}{s} \frac{\partial h}{\partial q_j} \right\}.$$

It is straightforward to check that $\tilde{L}^{-\varepsilon}$ has the required properties.
After using Lemma 4.4 to shrink the action of an intersection point, Lemma 4.5 applied with $k = 0$, will allow us to balance any negative intersection point. Positive intersection points still provide a challenge though, because the intersection point with the largest action created by Lemma 4.5 is always positive. The following lemma solves this issue.

Lemma 4.6. Let $f : L \rightarrow (X, \lambda)$ be a proper exact Lagrangian immersion into a simply connected X and $D \subset L$ an n-disc which contains no double points of the immersion f. Then for any $A > 0$ and a sufficiently small $\sigma > 0$ there exists a supported in D Hamiltonian regular homotopy of f to \widetilde{f} which creates a pair p_+, p_- of additional self-intersection points such that $a_{SI}(p_\pm, \widetilde{f}) = A \pm \sigma$, the self-intersection indices of p_\pm have opposite signs and can be chosen at our will.

Let us introduce some notation. Consider a domain $U_\varepsilon := \{ -2\varepsilon < p_1 < 1 + 2\varepsilon, \max_{1 \leq i \leq n} |q_i| < 2\varepsilon, \max_{1 \leq j \leq n} |p_j| < 2\varepsilon \}$ in the standard symplectic $\mathbb{R}^{2n}_{st} = (\mathbb{R}^{2n}, \sum_1^n dp_i \wedge dq_i)$. Let L^t be the Lagrangian plane $\{ p_1 = t, p_j = 0 \text{ for } j = 2, \ldots, n \} \cap U_\varepsilon \subset U_\varepsilon$, $t \in \{0, 1\}$. Note that $pdq|_{L^1} = tdq_1$. We will also use the following notation associated with U_ε:

- $u_\pm \in L^1$ denote the points with coordinates $p = (1, 0, \ldots, 0), q = (\pm \delta_1, 0, \ldots, 0)$;
- $z_\pm \in L^0$ denote the points with coordinates $p = (0, 0, \ldots, 0), q = (\pm \delta_1, 0, \ldots, 0)$
- c_0 denote the point with coordinates $p = (0, 0, \ldots, 0), q = (-\varepsilon, 0, \ldots, 0)$;
- c_1 denote the point with coordinates $p = (1, 0, \ldots, 0), q = (-\varepsilon, 0, \ldots, 0)$;
- J^1_\pm denote the intervals connecting c_1 and u_\pm;
- J^0_\pm denote the intervals connecting c_0 and z_\pm.

We will use in the proof of 4.6 the following

Lemma 4.7. There exists a Lagrangian isotopy $f_t : L^1 \rightarrow U_\varepsilon$ fixed near ∂L^1 and starting at the inclusion $f_0 : L^1 \hookrightarrow U_\varepsilon$ such that $L^1 = f_1(L^1)$ transversely intersects L^0 at two points z_\pm with the following properties:

- $f_1(pdq) = q_1 + d\theta$, where $\theta : L^1 \rightarrow \mathbb{R}$ is a compactly supported in Int L^1 function such that $\theta(z_\pm) = \mp \delta$ for a sufficiently small $\delta > 0$;
• the intersection indices of \(\tilde{L}^1 \) and \(L^0 \) at \(z_+ \) and \(z_- \) have opposite signs and can be chosen at our will.

Proof. For sufficiently small \(\delta_1, \delta_2, 0 < \delta_1 \ll \delta_2 \ll \varepsilon \), there exists a \(C^\infty \)-function \(\alpha : [-\varepsilon, \varepsilon] \to \mathbb{R} \) with the following properties:

* \(\alpha(t) = t \) for \(\delta_2 \leq |t| \leq \varepsilon \);
* \(\alpha(t) = t^3 - 3\delta_1^2t \) for \(|t| \leq \delta_1 \);
* the function \(\alpha \) has no critical points, other than \(\pm \delta_1 \);
* \(-\varepsilon < \alpha'(t) < 1 - \delta_2 \varepsilon \).

Let us also take a cut-off function \(\beta : [0, 1] \to [0, 1] \) which is equal to 0 near 1 and equal to 1 near 0. Take a quadratic form \(Q_j \) of index \(j - 1 \):

\[
Q_j(q_2, \ldots, q_n) = -\sum_{i=2}^{j} q_i^2 + \sum_{j+1}^{n} q_i^2, \quad j = 1, \ldots, n,
\]

and define a function \(\sigma : \{|q_i| \leq \varepsilon; i = 1, \ldots, n\} \to \mathbb{R} \) by the formula

\[
\sigma_j(q_1, q_2, \ldots, q_n) = q_1 + \delta_2 Q_j(q_2, \ldots, q_n) \beta \left(\frac{\rho}{\varepsilon} \right) \beta \left(\frac{|q_1|}{\varepsilon} \right) + (\alpha(q_1) - q_1) \beta \left(\frac{\rho}{\varepsilon} \right),
\]

where we denoted \(\rho := \max_{2 \leq i \leq n} |q_i| \). The function \(\sigma_j \) has two critical points \((-\delta_1, 0, \ldots, 0)\) and \((\delta_1, 0, \ldots, 0)\) of index \(j \) and \(j - 1 \), respectively. We note that

\[
-\varepsilon - Cn\delta_2\varepsilon \leq \frac{\partial \sigma_j}{\partial q_1} < 1 - \frac{\varepsilon}{2} + Cn\delta_2\varepsilon
\]

and

\[
\left| \frac{\partial \sigma_j}{\partial q_i} \right| \leq 2\delta_2\varepsilon + Cn\delta_2\varepsilon + \frac{C\delta_2}{\varepsilon}
\]

for \(i > 1 \), where \(C = ||\beta||_{C^1} \). In particular, if \(\delta_2 \) is chosen small enough we get

\[-\varepsilon < \frac{\partial \sigma_j}{\partial q_i} < 1 + \varepsilon \]

and \(\left| \frac{\partial \sigma_j}{\partial q_i} \right| < \varepsilon \) for \(i = 2, \ldots, n \).

Assuming that \(L^1 \) is parameterized by the \(q \)-coordinates we define the required Lagrangian isotopy \(f_t : L^1 \to U_{\varepsilon} \) by the formula:

\[
f_t(q) = \left(q, 1 + t \left(\frac{\partial \sigma_j}{\partial q_1} - 1 \right), t \frac{\partial \sigma_j}{\partial q_2}, \ldots, t \frac{\partial \sigma_j}{\partial q_n} \right), \quad |q_i| < 2\varepsilon; \quad i = 1, \ldots, n.
\]
The Lagrangian manifold \(\widetilde{L}^1 = f_1(L^1) \) intersects \(L^0 \) at two points \(z_\pm \) with coordinates \(p = 0, q_1 = \pm \delta_1, q_2 = 0, \ldots, q_n = 0 \). The intersection index of \(\widetilde{L}^1 \) and \(L^0 \) at \(z_- \) is equal to \((-1)^j\), and to \((-1)^{j-1}\) at \(z_+ \). Thus by choosing \(j \) even or odd we can arrange the intersection to be positive at \(z_+ \) and negative at \(z_- \), or the other way around. The compactly supported function \(\theta \) determined from the equation \(f_1^*(pdq) = dq_1 + d\theta \) is equal to \(\sigma_j - q_1 \). In particular, \(\theta(z_\pm) = \mp 2\delta_1^3 \).

Proof of Lemma 4.6 We denote \(\widetilde{J}_1^\pm := f_1(J_1^\pm) \), where \(f_t \) is the isotopy constructed in Lemma 4.7. Take any two points \(a, b \in D \subset \widetilde{D} := f(D) \subset \widetilde{L} := f(L) \) and connect them by a path \(\eta : [0, 1] \to \widetilde{D} \) such that \(\eta(0) = \tilde{b} := f(b) \) and \(\eta(1) = \tilde{a} := f(a) \). Denote \(B := \int \eta \lambda \).

For any real \(R \) there exists an embedded path \(\gamma : [0, 1] \to X \) connecting the points \(\gamma(0) = \tilde{a} \) and \(\gamma(1) = \tilde{b} \) in the complement of \(\tilde{L} \), homotopic to a path in \(\tilde{L} \) with fixed ends, and such that \(\int \gamma \lambda = R \). For a sufficiently small \(\varepsilon > 0 \) the embedding \(\gamma \) can be extended to a symplectic embedding \(\Gamma : U_\varepsilon \to X \) such that \(\Gamma^{-1}(\tilde{L}) = L^0 \cup L^1 \). Here we identify the domain \([0, 1]\) of the path \(\gamma \) with the interval

\[
I = \{ q_1 = -\varepsilon, q_j = 0, j = 2, \ldots, n; 0 \leq p_1 \leq 1, p_j = 0, j = 2, \ldots, n \} \subset \partial U_\varepsilon,
\]

so that we have \(\Gamma(c^0) = \tilde{a} \) and \(\Gamma(c^1) = \tilde{b} \).

The Lagrangian isotopy \(\widetilde{f}_t := \Gamma \circ f_t : L^1 \to X \), where \(f_t : L^1 \to U_\varepsilon \) is the isotopy constructed in Lemma 4.7, extends as a constant homotopy to the rest of \(L \) and provides us with a regular Lagrangian homotopy connecting the immersion \(f \) with a Lagrangian immersion \(L \to X \) which has two more transverse intersection points \(p_\pm := \Gamma(z_\pm) \) of opposite intersection index sign. See Figure 4.3. Consider the following loops \(\zeta_\pm \) in \(\tilde{L} \subset X \) based at the points \(p_\pm \). We start from the point \(p_\pm \) along the \(\Gamma \)-image of the oppositely oriented interval \(\widetilde{J}_1^\pm \) to the point \(\tilde{b} \), then follow the path \(\eta \) to the point \(\tilde{a} \), and finally follow along the \(\Gamma \)-image of the path \(J_0 \) back to \(p_\pm \).

Then we have

\[
\int_{\zeta_\pm} \lambda = -\int_{\widetilde{J}_1^\pm} \Gamma^*\lambda + \int_{\eta} \lambda + \int_{J_0^\pm} \Gamma^*\lambda = \left(-\int_{\widetilde{J}_1^\pm} \Gamma^*\lambda + \int_{\gamma} \lambda + \int_{J_0^\pm} \Gamma^*\lambda \right) + \left(\int_{\eta} \lambda - \int_{\gamma} \lambda \right)
\]
Fig. 4.3: The Lagrangian $f_1(L)$. The light curve represents γ.

$$= \left(-\int_{p_\pm} pdq - \int_{l} pdq + \int_{r_\pm} pdq\right) + (B + R) = -\varepsilon + B + R \mp 2\delta_1^3.$$

It remains to observe that there exists a sufficiently small $\varepsilon_0 > 0$ which can be chosen for any $R \in [A - C - 1, A - C + 1]$. Hence, by setting $R = A - C - \varepsilon_0$ and $\varepsilon = \varepsilon_0$ we arrange that the action of the intersection points p_\pm is equal to $A \mp 2\delta_1^3$ while their intersection indices have opposite sign which could be chosen at our will.

Lemma 4.8. Let $((0, \infty) \times Y, d(t \alpha))$ be the symplectization of a manifold Y with a contact form α. Let Λ be a Legendrian submanifold and $L = (0, \infty) \times \Lambda$ the Lagrangian cylinder over it. Suppose that there exists a contact form preserving embedding $\Phi : (Q_C, \alpha_{st}) \to (Y, \alpha)$ and $\Gamma \subset Y$ an embedded isotropic arc connecting a point $b \in \Lambda$ with a point

$$\Phi(x_1 = 1, x_2 = 0, \ldots, x_{n-1} = 0, y_1 = 0, \ldots, y_n = 0, z = 0) \in \partial\Phi(Q_C).$$

Then there exists a Lagrangian isotopy $L_t \subset \mathbb{R} \times \Lambda$ supported in a neighborhood of $1 \times \Gamma \cup \Phi(Q_C)$, $t \in [0, 1]$, which begins at $L_0 = L$ such that
• L_t transversely intersects $1 \times Y$ along a Legendrian submanifold Λ_t;

• $\Phi^{-1}(\Lambda_1) = \Lambda^0 \cup \Lambda^{-\varepsilon}$ for a sufficiently small $\varepsilon > 0$.

Proof. We use below the notation I^k_a, $a > 0$ for the cube $\{|x_i| \leq a, i = 1, \ldots, k\} \subset \mathbb{R}^k$. The embedding Φ can be extended to a slightly bigger domain $\hat{Q} = \{|x_i| \leq 1 + \sigma, |y_i| \leq C, i = 1, \ldots, n-1, |z| \leq C + \sigma\} \subset \mathbb{R}^{2n-1}$ for a sufficiently small $\sigma > 0$. The intersection $\hat{Q} \cap (\mathbb{R}^{n-1} = \{y = 0, z = 0\})$ is the cube $I^{n-1}_{1+\sigma} \subset \mathbb{R}^{n-1}$. We can assume that the intersection of the path Γ with \hat{Q} coincides with the interval $\{1 \leq x_1 \leq 1 + \sigma, x_j = 0, j = 2, \ldots, n-1\} \subset I^{n-1}_{1+\sigma}$. The Legendrian embedding $\Psi := \Phi|_{I^{n-1}_{1+\sigma}} : I^{n-1}_{1+\sigma} \to Y$ can be extended to a bigger parallelepiped

$$\Sigma = \{-1 - \sigma \leq x_1 \leq 2 + \sigma, |x_j| \leq 1 + \sigma, j = 2, \ldots, n-1\} \subset \mathbb{R}^{n-1}$$

such that the extended Legendrian embedding, still denoted by Ψ, has the following properties:

• $\Psi(\{1 \leq x_1 \leq 2, x_j = 0, j = 2, \ldots, n-1\}) = \Gamma$;

• $\Psi(\{x_1 = 2\}) \subset \Lambda$.

For a sufficiently small positive $\delta < C$ the Legendrian embedding can be further extended as a contact form preserving embedding

$$\hat{\Psi} : (\hat{P} := \{(x, y, z) \in \mathbb{R}^{2n-1}_{st}; x \in \Sigma, |y_i| \leq \delta, i = 1, \ldots, n-1, |z| \leq \delta, \alpha_{st}\} \to (Y, \alpha),$$

such that

• $\hat{\Psi}|_{\hat{P} \cap \hat{Q}} = \Phi|_{\hat{P} \cap \hat{Q}}$;

• the Legendrian manifold $\hat{\Lambda} := \hat{\Psi}^{-1}(\Lambda)$ is given by the formulas

$$\hat{\Lambda} := \{z = \pm(x_1 - 2)^{\frac{3}{2}}, y_1 = \pm\frac{3}{2}\sqrt{x_1 - 2}, x_1 \geq 2, y_j = 0, j = 2, \ldots, n-1\}$$

(note that any point on any Legendrian admits coordinates describing $\hat{\Lambda}$ as above).

Consider a cut-off C^∞-function $\theta : [0, 1 + \sigma] \to [0, 1]$ such that $\theta(u) = 1$ if $u \leq 1$, $\theta(u) = 0$ if $u > 1 + \frac{\sigma}{2}$, $\theta' \leq 0$, and denote

$$\Theta(u_1, \ldots, u_{n-2}) := (3 + \sigma) \prod_{i=1}^{n-2} \theta(u_i), u_1, \ldots, u_{n-2} \in [0, 1 + \sigma].$$
Fig. 4.4: The function g_s.

For $s \in [0, 1]$ denote
$$
\Omega_s := \{2 - s\Theta(|x_2|, \ldots, |x_{n-1}|) \leq x_1 \leq 2 + \sigma\} \cap \Sigma \subset \mathbb{R}^{n-1}.
$$

We have $\Omega_1 \supset \{-1 - \sigma \leq x_1 \leq 2, |x_2|, \ldots, |x_{n-1}| \leq 1\} \supset I_1^{n-1}$ and $\Omega_0 = \{2 \leq x_1 \leq 2 + \sigma\} \cap \Sigma$.

For a sufficiently small positive $\varepsilon < \frac{3\sigma}{2}$ consider a family of piecewise smooth continuous functions $g_s : [2 - s, 2 + \sigma] \to [0, \sigma\frac{3}{2}]$, $s \in [0, 3 + \sigma]$ defined by the formulas
$$
g_s(u) = \begin{cases}
(u - 2 + s)\frac{3}{2}, & u \leq 2 - s + \varepsilon\frac{3}{2}; \\
\varepsilon, & 2 - s + \varepsilon\frac{3}{2} < u < 2 + \varepsilon\frac{3}{2}; \\
(u - 2)\frac{3}{2}, & u \geq 2 + \varepsilon\frac{3}{2}.
\end{cases}
$$

See Figure 4.4. We can smooth g_s near the points $2 + \varepsilon\frac{3}{2}$ and $2 - s + \varepsilon\frac{3}{2}$ in such away that the derivative is monotone near these points (i.e. decreasing near $2 - s + \varepsilon\frac{3}{2}$ and increasing near $2 + \varepsilon\frac{3}{2}$). We continue to denote the smoothened by g_s.

Next, define for $s \in [0, 1]$ a function $G_s : \Omega_s \to \mathbb{R}$ by the formula
$$
G_s(x_1, x_2, \ldots, x_{n-1}) = g_s\Theta(x_2, \ldots, x_{n-1})(x_1).
$$

Note that by decreasing ε and σ we can arrange that $\frac{\partial G_s}{\partial s}(x), \frac{\partial G_s}{\partial x_i}(x) < \delta, i = 1, \ldots, n - 1$, for all $s \in [0, 1]$ and $x \in \Omega_s$. We also observe that if $\frac{\partial G_s}{\partial x_i}(x) = 0$ then $G_s(x) = \varepsilon$. Choose a cut-off function $\mu : [1 - \delta, 1 + \delta] \to [0, 1]$ which is equal to 1 near 1 and equal to 0 near $1 \pm \delta$ and consider a family of Lagrangian submanifolds N_s, $s \in [0, 1]$, defined in the domain $([1 - \delta, 1 + \delta] \times \hat{P}, d(t\alpha_{st}))$ in the symplectization of \hat{P} defined by the formulas
$$
z = \pm G_{s(t)}(x) \pm t \frac{\partial G_{s(t)}}{\partial t}(x), y_i = \pm \frac{\partial G_{s(t)}}{\partial x_i}(x),
$$
$$
x \in \Omega_{s(t)}, i = 1, \ldots, n - 1, t \in [1 - \delta, 1 + \delta].$$
First, let us check that \(N_s \) is Lagrangian for all \(s \in [0, 1] \). Indeed, we have \(d(t\alpha_{st}) = -d \left(zdt + \sum_{i=1}^{n-1} (ty_i)dx_i \right) \), and hence

\[
d(t\alpha_{st})|_N = \pm d \left(\left(G_{s\mu(t)} + t \frac{\partial G_{s\mu(t)}}{\partial t} \right) dt + \sum_{i=1}^{n-1} t \frac{\partial G_{s\mu(t)}}{\partial x_i} dx_i \right) = \pm d(d(tG_{s\mu(t)})) = 0.
\]

Next, we check that \(N_s \) is embedded. The only possible pairs of double points may be of the form \((x, y, z)\) and \((x, -y, -z)\), that is \(z = 0 \) and \(y = 0 \). But then \(\frac{\partial G_{s\mu(t)}}{\partial x_1} = 0 \), and hence \(G_{s\mu(t)}(x) = \varepsilon \) and \(\frac{\partial G_{s\mu(t)}}{\partial t}(x) = 0 \), which shows \(z = G_{s\mu(t)}(x) + t\frac{\partial G_{s\mu(t)}}{\partial t}(x) \neq 0 \).

We also note that \(N_s \cap \{ t = 1 \} \) is a Legendrian submanifold \(\{ z = \pm G_{s\mu(t)}(x), y_i = \pm \frac{\partial G_{s\mu(t)}}{\partial x_i}(x), i = 1, \ldots, n-1 \} \subset \tilde{P} \) and \(N_1 \) intersects \(Q_C \) along \(\Lambda^{-\varepsilon} \cup \Lambda^\varepsilon \). Near \(t = 1 \pm \delta \) the submanifold \(N_s \) coincides with the symplectization of the Legendrian submanifold \(\tilde{\Lambda} \) for all \(s \in [0, 1] \).

Let us remove from the Lagrangian cylinder \(L = (0, \infty) \times \Lambda \subset ((0, \infty) \times Y, t\alpha) \) the domain \([1 - \delta, 1 + \delta] \times \Lambda \) and replace it by \(\Psi(N_s) \). The resulted Lagrangian isotopy \(L_s \) has the following properties: \(L_0 = L \), \(L_1 \) intersects the contact slice \(1 \times Y \) along a Legendrian submanifold \(\Lambda_1 \) and \(\Phi^{-1}(\Lambda_1) = \Lambda^{-\varepsilon} \cup \Lambda^\varepsilon \). Note that if we modify the embedding \(\Phi \) as \(\tilde{\Phi}(x, y, z) = \Phi(x, y, z - \varepsilon) \) we still get a contact form preserving embedding \(\tilde{\Phi} : (Q_C, \alpha_{st}) \to (Y, \alpha) \) for which \(\tilde{\Phi}^{-1}(\Lambda_1) = \Lambda^{-2\varepsilon} \cup \Lambda^0 \).

Proof of Proposition 4.1 for \(n > 3 \). Let \(X_- \) be a negative Liouville end of \(X \) bounded by a contact slice \(Y \subset X \) such that \(f \) is cylindrical below it. Denote \(\Lambda := f^{-1}(Y) \).

According to Lemma 4.4 for any \(\varepsilon \) there exists a Hamiltonian regular homotopy of \(f \) into a Lagrangian immersion with transverse self-intersection points of action \(< \varepsilon \). Moreover, the number of self-intersection points grows proportionally to \(\frac{1}{\varepsilon} \) when \(\varepsilon \to 0 \). For a sufficiently small \(C > 0 \) there exists a contact form preserving embedding \((Q_C, \alpha_{st}) \to (Y \setminus \Lambda, \alpha := \lambda|_{Y}) \). Note that given an integer \(N > 0 \) and a positive \(\varepsilon < \frac{C}{N} \) there exists contact form preserving embeddings of \(N^n \) disjoint copies of \((Q_{\varepsilon}, \alpha_{st}) \) into \((Q_C, \alpha_{st}) \), i.e. when decreasing \(\varepsilon \) the number of domains \((Q_{\varepsilon}, \alpha_{st}) \) which can be packed into \((Y \setminus \Lambda, \alpha)\) grows proportionally to \(\varepsilon^{-n} \), which is greater than \(\varepsilon^{-3} \) by assumption. Hence for a sufficiently small \(\varepsilon \) we can modify the Lagrangian immersion \(f \), so that the action of all its self-intersection points are \(< \varepsilon \), and at least \(\text{SI}(f) \) disjoint Darboux neighborhoods isomorphic to \(Q_{12\varepsilon} \) which do not intersect \(\Lambda \) can be packed into \((Y, \alpha)\). We will denote the number of self-intersection points by \(N \) and the corresponding \(Q_{12\varepsilon} \)-neighborhoods by \(U_1, \ldots, U_N \). Notice that
for a sufficiently small \(\theta > 0 \) there exists a Liouville form preserving embedding \((0, 1 + \theta) \times Y, t\alpha) \to (X, \lambda)\) which sends \(Y \times 1 \) onto \(Y \).

For each intersection point \(p_i \in f(L), i = 1, \ldots, N \), we will find a compactly supported Hamiltonian regular homotopy to balance each intersection point \(p_i \) without changing the action of the other intersection points. Recall \(0 < a_{SI}(p_1, f) < \varepsilon \). Using Lemma 4.8 we isotope the Lagrangian cylinder \((0, 1 + \theta) \times \Lambda\) via a Lagrangian isotopy supported in a neighborhood of \(Y \times 1 \) so that:

- the deformed cylinder \(\tilde{\Lambda} \) intersects \(Y \) transversely along a Legendrian submanifold \(\tilde{\Lambda} \);

- for a sufficiently small \(\sigma > 0 \) and each \(i = 1, \ldots, N \), the cylinder \(\tilde{\Lambda} \) intersects \(U_i = Q_{12\varepsilon} \) along Legendrian planes \(\Lambda^0 = \{ y = 0, z = 0 \} \) and \(\Lambda^{-\sigma} = \{ z = -\sigma, y = 0 \} \).

We can further deform the Lagrangian \(\tilde{\Lambda} \) to make it cylindrical in \([\frac{1}{2}, 1] \times Y \), and hence, we get embeddings \((\frac{1}{2}, 1] \times Q_{12\varepsilon}, t\alpha_{st}) \to ((0, 1] \times Y, t\alpha) \) such that the intersections \((\frac{1}{2}, 1] \times U_i, \alpha_{st}) \) with \(\tilde{\Lambda} \) coincide with the Lagrangians \(\Lambda^0 \) and \(\Lambda^{-\delta} \) from Lemma 4.5.

There are two cases, depending on the sign of the intersection; suppose first that the self-intersection index at the point \(p_i \) is negative. Then we apply Lemma 4.5 with \(k = 0 \) and construct a cylindrical at \(-\infty\) and fixed everywhere except \(\Lambda^{-\delta} \) and \(\Lambda^{-\delta} \times (0, \frac{1}{2}] \) Hamiltonian regular homotopy of the immersion \(f \) which deforms \(\Lambda^{-\delta} \to \tilde{\Lambda}^{-\delta} \) such that \(L^0 \) and \(\tilde{\Lambda}^{-\delta} \) positively intersect at 1 point \(B_0 \) of action \(a_{SI}(B_0, f) = a_{SI}(p_i, f) \). Hence, the point \(B_0 \) balances \(p_i \). Notice that this homotopes \(\Lambda \) to another Legendrian \(\tilde{\Lambda} \), and in fact \(\tilde{\Lambda} \) will never be Legendrian isotopic to \(\Lambda \) (after a balancing of a sigle intersection point; we show below that it will be isotopic after all intersection points are balaned).

If the self-intersection index of \(p_i \) is positive we first apply Lemma 4.6 to create two new intersection points \(p_+ \) and \(p_- \) of index 1 and \(-1\) and action equal to \(A - \sigma \) and \(A + \sigma \) respectively, for some \(A \in (a_{SI}(p_i, f), a_{SI}(p_i, f) + 4\varepsilon) \) and sufficiently small \(\sigma > 0 \). We then apply Lemma 4.5 with \(k = 2 \) and create 3 new intersection points \(B_0, B_1, B_2 \) of indices \(-1, -1, -1\) and of action \(A + \sigma \), \(A - \sigma \) and \(a_{SI}(p_i, f) \), respectively. Then \((p_i, B_2), (p_+, B_1) \) and \((p_-, B_0) \) are balanced Whitney pairs.

In the course of the above proof, \(\Lambda \) is homotoped to the Legendrian \(\tilde{\Lambda} \) at \(-\infty\). In order to make the constructed Hamiltonian homotopy of our Lagrangian fixed at \(-\infty\), it suffices to show that \(\Lambda \) is Legendrian isotopic to \(\tilde{\Lambda} \), because we can then apply Lemma 3.4 to undo this homotopy near \(-\infty\). Assume that \(\Lambda \) has a loose component and \(I(f) = 0 \). In the course of the above proof we only need to homotope
a single component of Λ of our choosing; we choose the component of Λ which is loose. Obviously we can also fix a universal loose Legendrian embedded in this component of Λ, thus the corresponding component of $\tilde{\Lambda}$ is also loose. Using part (ii) of Proposition 2.1, it only remains to show that Λ is formally Legendrian isotopic to $\tilde{\Lambda}$. Because the algebraic count of self intersections of f is zero the homotopy from Λ to $\tilde{\Lambda}$ also has an algebraic count of zero self-intersections. This implies that they are formally isotopic; see Proposition 2.6 in [7].

To deal with the case $n = 3$ we will need an additional lemma. Let us denote by $P(C)$ the polydisc $\{p_i^2 + q_i^2 \leq \frac{C}{\pi}, i = 1, \ldots, n\} \subset \mathbb{R}_{st}^{2n}$.

Lemma 4.9. Let (X, ω) be a symplectic manifold with a negative Liouville end, $Y \subset X$ a contact slice, and λ is the corresponding Liouville form on a neighborhood $\Omega \supset X - Y$ in X. Suppose that there exists a symplectic embedding $\Phi : P(C) \to X_+ \setminus Y$. Let Γ be an embedded path in X_+ connecting a point $a \in Y$ with a point in $b \in \partial \tilde{P}$, $\tilde{P} := \Phi(P(C))$. Then for any neighborhoods $U \supset (\Gamma \cup \tilde{P})$ in X_+ there exists a Weinstein cobordism $(W, \omega, \tilde{X}, \phi)$ such that

(i) $W \subset X_+ \cap (U \cup \Omega)$, $\partial_- W = Y$;

(ii) the Liouville form $\tilde{\lambda} = \iota(\tilde{X})\omega$ coincides with λ near Y and on $\Omega \setminus U$;

(iii) ϕ has no critical points;

(iv) the contact manifold $(\tilde{Y} := \partial_+ W, \tilde{\alpha} := \tilde{\lambda}|_{\tilde{Y}})$ admits a contact form preserving embedding $(Q_a, \alpha_{st}) \to (\tilde{Y}, \tilde{\alpha})$ for any $a < \frac{C}{2}$.

Proof. For any $b \in (a, \frac{C}{2})$ the domain $U_b := \{|q_i| \leq 1, |p_i| < b; i = 1, \ldots, n\} \subset \mathbb{R}_{st}^{2n}$ admits a symplectic embedding $H : U_b \to \text{Int} P(C)$. Denote $\partial_n U_b := \{p_n = b\} \cap \partial U_b$.

Consider a Liouville form $\mu = \sum_{i=1}^{n} (1 - \sigma)p_idq_i - \sigma q_idp_i = \sum_{i=1}^{n} p_idq_i - \sigma d\left(\sum_{i=1}^{n} p_iq_i\right)$, where a sufficiently small $\sigma > 0$ will be chosen later. Then

$$\beta := \mu|_{\partial_n U_b} = d\left(\left(b - \sigma\right)q_n - \sigma \sum_{i=1}^{n-1} p_iq_i\right) + \sum_{i=1}^{n-1} p_idq_i.$$

Let us verify that for a sufficiently small $\sigma > 0$ there exists a contact form preserving embedding $(Q_a, \alpha_{st}) \to (\partial_n U_b, \beta)$. Consider the map $\Psi : Q_a \to \mathbb{R}_{st}^{2n}$ given by the
formulas
\[p_i = -y_i, q_i = x_i, \quad i = 1, \ldots, n - 1, \quad p_n = b, \quad q_n = \frac{z}{b - \sigma} - \frac{\sigma}{b - \sigma} \sum_{1}^{n-1} x_i y_i. \]

Note that \(|q_n| \leq \frac{a + \sigma(n-1)}{b - \sigma} < 1\) if \(\sigma < \frac{b-a}{n}\). Hence, if \((x, y, z) \in Q_a\) we have
\[|p_i| \leq a < b, \quad |q_i| \leq 1 \quad \text{for} \quad i = 1, \ldots, n - 1, \quad p_n = b, \quad |q_n| < 1, \]
i.e. \(\Psi(Q_a) \subset \partial_n U_b\). On the other hand
\[\Psi^* \mu = \Psi^* \beta = d \left(\frac{z + \sigma}{b - \sigma} \sum_{1}^{n-1} x_i y_i - \frac{\sigma}{b - \sigma} \sum_{1}^{n-1} x_i y_i \right) - \sum_{1}^{n-1} y_i dx_i = \alpha_{\text{st}}. \]

There exists a domain \(\widehat{U}_b\), diffeomorphic to a ball with smooth boundary, such that

- \(U_b \subset \widehat{U}_b \subset U'\) for some \(b' \in (b, \frac{C}{2})\);
- \(\partial \widehat{U}_b \supset \partial_n U_b\);
- \(\widehat{U}_b\) is transverse to the Liouville field \(T\), \(\omega\)-dual to the Liouville form \(\mu\).

Note that there exists a Lyapunov function \(\psi : \widehat{U}_b \to \mathbb{R}\) for \(T\) such that \((\widehat{U}_b, \omega, T, \phi)\) is a Weinstein domain.

Denote \(\widehat{U}_b := \Phi(H(U_a)) \subseteq X_+\). We can assume that the path \(\Gamma\) connects a point on \(Y\) with a point on \(\partial \widehat{U}_b \setminus \Phi(H(\partial_n U_b))\).

We modify the Liouville form \(\lambda\), making it equal to 0 on the path \(\Gamma\) and equal to \(\Phi_* H_* \mu\) on \(\widehat{U}_b\). Next, we use Lemma \ref{lem:Liouville} to construct the required cobordism \((W, \omega, \tilde{X}, \phi)\) by connecting \(X_-\) and \(\widehat{U}_b\) via a Weinstein surgery along \(\Gamma\), and then apply Proposition \ref{prop:4.1} to cancel the zeroes of the Liouville field \(\tilde{X}\). As a result we ensure properties (i)--(iii). In fact, property (iv) also holds. Indeed, by construction \(\partial_+ W \supset \Phi(H(\partial_n U_b))\), and hence there exists a contact form preserving embedding \((Q_a, \alpha_{\text{st}}) \to (\partial_+ W, \tilde{\alpha} := \iota(\tilde{X}) \omega|_{\partial_+ W}). \)

Proof of Proposition \ref{prop:4.1} for \(n = 3\). The problem in the case \(n = 3\) is that we cannot get sufficiently many disjoint contact neighborhoods \(Q_c\) embedded into \(Y\) to balance all the intersection points. Indeed, both the number of intersection of action < \(\varepsilon\) and the number of \(Q_{12\varepsilon}\)-neighborhoods one can pack into contact slice \(Y\) grow as
\(\varepsilon^{-3} \) when \(\varepsilon \to 0 \). However, using the infinite Gromov width assumption we can cite Lemma 4.9 to modify \(Y \) so that it would contain a sufficient number of disjoint neighborhoods isomorphic to \(Q_{12\varepsilon} \). Indeed, suppose that there are \(N \) double points of action < \(\varepsilon \). By the infinite Gromov width assumption there exists \(N \) disjoint embeddings of polydiscs \(P(24\varepsilon) \) into \(X_+ \setminus f(L) \).

Using Lemma 4.9 we modify the Liouville form \(\lambda \) into \(\tilde{\lambda} \) away from \(f(L) \), so that \((X, \tilde{\lambda}) \) admits a negative end bounded by a contact slice \(\tilde{Y} \) such that there exists \(N \) disjoint embeddings \((Q_{12\varepsilon}, \alpha_{st}) \to (\tilde{Y}, \tilde{\alpha}) \) preserving the contact form. The rest of the proof is identical to the case \(n > 3 \).

\section{Proof of main theorems}

\textbf{Proof of Theorem 2.3.} We first use Proposition 4.1 to make the Lagrangian immersion \(f \) balanced and then use the following modified Whitney trick to eliminate each balanced Whitney pair.

Let \(p, q \in X \) be a balanced Whitney pair, \(p^0, p^1 \in L \) and \(q^0, q^1 \in L \) the pre-images of the self-intersection points \(p, q \), and \(\gamma^0, \gamma^1 : [0, 1] \to L \) are the corresponding paths such that \(\gamma^j(0) = p^j \), \(\gamma^j(1) = q^j \) for \(j = 0, 1 \), the intersection index of \(df(T_{p^j}L) \) and \(df(T_{p^j}L) \) is equal to 1 and the intersection index of \(df(T_{q^j}L) \) and \(df(T_{q^j}L) \) is equal to \(-1 \). Recall that according to our convention we are always ordering the pre-images of double points in such a way that their action is positive.

Choose a contact slice \(Y \), and consider a path \(\eta : [0, 1] \to L \) connecting a point in the loose component \(\Lambda \) of \(\partial L_+ \) with \(p \) such that \(\eta := f \circ \eta \) coincides with a trajectory of \(Z \) near the point \(\eta(0) \), and then modify the Liouville form \(\lambda \), keeping it fixed on \(X_- \), to make it equal to 0 on \(\eta \). We further modify \(\lambda \) in a neighborhood of \(\tau^0 \) making it 0 on \(\tau^0 \), where we use the notation \(\tau^0 := f \circ \gamma^0 \), \(\gamma^1 := f \circ \gamma^1 \). Note that this is possible because \(Y \cup \eta \cup \eta^0 \) deformation retracts to \(Y \). Assuming that this is done, we observe that \(\int_{\tau^1} \lambda = \int_{\tau^0} \lambda = 0 \).

Next, we use Lemma 3.2 to construct Darboux charts \(B_p \) and \(B_q \) centered at the points \(p \) and \(q \) such that the the intersecting branches in these coordinates look like coordinate Lagrangian planes \(\{ q = 0 \} \) and \(\{ p = 0 \} \) in the standard \(\mathbb{R}^{2n} \). Set \(\lambda_{st} := \frac{1}{2} \sum_{i=1}^{n} p_i dq_i - q_i dp_i \). Then the corresponding to it Liouville vector field \(Z_{st} = \frac{1}{2} \sum_{i=1}^{n} q_i \frac{\partial}{\partial q_i} + p_i \frac{\partial}{\partial p_i} \) is tangent to the Lagrangian planes through the origin.
We have $\lambda_{st} - \lambda = dH$ in $B_p \cup B_q$. Choosing a cut-off function α on $B_p \cup B_q$ which is equal to 1 near p and q and equal to 0 near $\partial B_p \cup \partial B_q$ we define $\lambda_1 := \lambda + d(\alpha H)$. The Liouville structure λ_1 coincides with the standard structure λ_{st} in smaller balls around the points p and q, and with λ near $\partial B_p \cup \partial B_q$.

Next, we use Lemma 3.1 to modify the Liouville structure λ_1 in neighborhoods of paths γ^0 and γ^1 and create Weinstein domain C by attaching handles of index 1 with γ^0 and γ^1 as their cores. The corresponding Lyapunov function on C has two critical points of index 0, at p and q, and two critical points of index 1, at the centers of paths γ^0 and γ^1. Note that the property $\int_{\gamma^j} \lambda_1 = 0$, $j = 0, 1$, is crucial in order to apply Lemma 3.1.

Next, we choose an embedded isotropic disc $\Delta \subset X_+ \setminus \text{Int} C$ with boundary in ∂C, tangent to Z along the boundary $\partial \Delta$, and such that $\partial \Delta$ is isotropic, and homotopic in C to the loop $\tilde{\gamma}^0 \cup \tilde{\gamma}^1$. We then again use Lemma 3.1 to attach to C a handle of index 2 with the core Δ. The resulted Liouville domain \tilde{C} is diffeomorphic to the $2n$-ball. Moreover, according to Proposition 3.3 the Weinstein structure on \tilde{C} is homotopic to the standard one via a homotopy fixed on $\partial \tilde{C}$. In particular, the contact structure induced on the sphere $\partial \tilde{C}$ is the standard one. The immersed Lagrangian manifold $f(L)$ intersects $\partial \tilde{C}$ along two Legendrian spheres Λ^0 and Λ^1, each of which is the standard Legendrian unknot which bounds an embedded Lagrangian disc inside \tilde{C}. These two discs intersect at two points, p and q. Note that the Whitney trick allows us to disjoint these discs by a smooth (non-Lagrangian) isotopy fixed on their boundaries. In particular, the spheres Λ^0 and Λ^1 are smoothly unlinked. If they were unlinked as Legendrians we would be done. Indeed, the Legendrian unlink in S^{2n-1}_{std} bounds two disjoint exact Lagrangian disks in B^{2n}_{std}. Unfortunately (or fortunately, because this would kill Symplectic Topology as a subject!), one can show that it is impossible to unlink Λ^0 and Λ^1 via a Legendrian isotopy.

The path $\tilde{\eta}$ intersects $\partial \tilde{C}$ at a point in Λ^0. Slightly abusing the notation we will continue using the notation $\tilde{\eta}$ for the part of $\tilde{\eta}$ outside the ball \tilde{C}. We then use Lemma 3.1 one more time to modify λ_1 by attaching a handle of index 1 to $X_- \cup \tilde{C}$ along $\tilde{\eta}$. As a result, we create inside X_+ a Weinstein cobordism W which contains \tilde{C}, so that $\partial_- W = Y$ and $\tilde{Y} := \partial_+ W$ intersects $f(L)$ along a 2-component Legendrian link. One of its components is Λ^1, and the other one is the connected sum of the loose Legendrian Λ and the Legendrian sphere Λ^0, which we denote by $\tilde{\Lambda}$. Again applying Proposition 3.3 we can deform the Weinstein structure on W keeping it fixed on ∂W to kill both critical points inside W. Hence all trajectories of the (new) Liouville vector field Z inside W begin at Y and end at \tilde{Y}, and thus W is Liouville isomorphic...
to $\tilde{Y} \times [0, T]$ for some T (with Liouville form $e^t\lambda_1$, $t \in [0, T]$). We also note that the intersection of $f(L)$ with W consists of two embedded Lagrangian submanifolds A and B transversely intersecting in the points p, q, where

- A is diffeomorphic to the cylinder $\Lambda \times [0, 1]$, $A \cap Y = \Lambda$ and $A \cap \tilde{Y} = \tilde{\Lambda}$;
- B is a disc bounded by the Legendrian sphere $\Lambda^1 = B \cap \tilde{Y}$.

The Legendrian $\tilde{\Lambda}$ is smoothly unlinked with Λ^1. Since $\tilde{\Lambda}$ is loose, Proposition 2.1 implies that there is a Legendrian isotopy of Λ to $\hat{\Lambda}$ which is disjoint from a Darboux ball containing Λ^1. We realize this isotopy by a Lagrangian cobordism A_1 from Λ to $\hat{\Lambda}$ using Lemma 3.4 and also realize the inverse isotopy by a Lagrangian cobordism A_2 from $\hat{\Lambda}$ to $\tilde{\Lambda}$. For some \tilde{T}, these cobordisms embed into $\tilde{Y} \times [0, \tilde{T}]$. Inside $\tilde{Y} \times [0, 2\tilde{T} + 2T]$, we define a cobordism \tilde{A} from Λ to $\tilde{\Lambda}$, built from the following pieces.

- $\tilde{A} \cap \tilde{Y} \times [0, T] = A$,
- $\tilde{A} \cap \tilde{Y} \times [T, \tilde{T} + T] = A_1$,
- $\tilde{A} \cap \tilde{Y} \times [\tilde{T} + T, \tilde{T} + 2T] = \hat{\Lambda} \times [\tilde{T} + T, \tilde{T} + 2T]$,
- $\tilde{A} \cap \tilde{Y} \times [\tilde{T} + 2T, 2\tilde{T} + 2T] = A_2$.

We then define \tilde{B} by

- $\tilde{B} \cap \tilde{Y} \times [0, \tilde{T} + T] = \emptyset$,
- $\tilde{B} \cap \tilde{Y} \times [\tilde{T} + T, \tilde{T} + 2T] = B$,
- $\tilde{B} \cap \tilde{Y} \times [\tilde{T} + 2T, 2\tilde{T} + 2T] = \Lambda^1 \times [\tilde{T} + 2T, 2\tilde{T} + 2T]$.

A schematic of these cobordisms is given in Figure 5.1. After elongating W (which can be achieved by choosing a contact slice closer to $-\infty$), $\tilde{A} \cup \tilde{B}$ can be deformed to $A \cup B$ via a Hamiltonian compactly supported regular homotopy fixed on the boundary. We then define $\tilde{f} : L \to X$ to be equal to f everywhere, except the portions of L which are mapped to A and B are instead mapped to \tilde{A} and \tilde{B}, respectively. \qed
Proof of Theorem 2.2. We first use Gromov's h-principle for Lagrangian immersions \cite{6} to find a compactly supported regular homotopy starting at f and ending at a Lagrangian immersion \tilde{f} with the prescribed action class $A(f)$ (or the action class $a(f)$ in the Liouville case). More precisely, let us choose a triangulation of L. There are finitely many simplices of the triangulation which cover the compact part of L where the embedding f is not yet Lagrangian. Let K be the polyhedron which is formed by these simplices. Using the h-principle for open Lagrangian immersions, we first isotope f to an embedding which is Lagrangian near the $(n-1)$-skeleton of K, realizing the given (relative) action class. Let us inscribe an n-disc D_i in each of the n-simplices of K, such that the embedding f is already Lagrangian near ∂D_i. Next, we thicken D_i to disjoint $2n$-balls $B_i \subset X$ intersecting $f(L)$ along D_i. We then apply Gromov's h-principle for Lagrangian immersions in a relative form to find for each i a fixed near the boundary regular homotopy $D_i \to B_i$ of D_i into a Lagrangian immersion. Note that all the self-intersection points of the resulted Lagrangian immersion \tilde{f} are localized inside the ball B_i and images of different discs D_i and D_j do not intersect.

Let us choose a negative end X_-, bounded by a contact slice Y in such a way that the immersion \tilde{f} is cylindrical in it and $X_- \cap \bigcup B_i = \emptyset$. Denote $L_- := \tilde{f}^{-1}(X_-), \Lambda_- = \Lambda(A_B)$.
∂L_. Let us choose a universal loose Legendrian U ⊂ Y for the Legendrian submanifold Λ_ ⊆ Y. Denote \(\tilde{\Lambda}_- = \Lambda_- \cap U \). Let \(V_- := \bigcup_0^\infty Z^{-s}(U) \subset X_- \) be the domain in \(X_- \) formed by all negative trajectories of Z intersecting \(U \). Let us choose disjoint paths \(\Gamma_i \) in \(L \setminus \mathrm{Int}(L_- \cup \bigcup_i D_i) \) connecting some points in \(\tilde{\Lambda}_- \) with points \(z_i \in \partial D_i \) for each \(n \)-simplex in \(K \). Choose small tubular neighborhoods \(U_i \) of \(\tilde{f}(\Gamma_i) \) in \(X_\) and \(\tilde{\Lambda}_- \).

Set

\[
\tilde{X} := V_- \cup \bigcup_i (B_i \cup U_i) \quad \text{and} \quad \tilde{L} := \tilde{f}^{-1}(\tilde{X}).
\]

The manifold \(\tilde{X} \) deformationaly retracts to \(V_- \) and hence \(\tilde{X} \) is contractible and the Liouville form \(\lambda|_{V_-} \) extends as a Liouville form for \(\omega \) on the whole manifold \(\tilde{X} \). We will keep the notation \(\lambda \) for the extended form. Thus \(\tilde{L} \) is an exact Lagrangian immersion into the contractible Liouville manifold \(\tilde{X} \), cylindrical at \(-\infty \) over a loose Legendrian submanifold of \(U \). Moreover, \(L \) is diffeomorphic to \(\mathbb{R}^n \), and outside a compact set the immersion is equivalent to the standard inclusion \(\mathbb{R}^n \hookrightarrow \mathbb{R}^{2n} \). We also note that \(I(\tilde{f}|_{\tilde{L}} : \tilde{L} \to \tilde{X}) = 0 \) since this immersion is regularly homotopic to the smooth embedding \(\tilde{f}|_{\tilde{L}} : \tilde{L} \to \tilde{X} \).

Applying Theorem 2.3 to \(\tilde{f}|_{\tilde{L}} \) we find an exact Lagrangian embedding \(\hat{f} \) which is regularly Hamiltonian homotopic to \(\tilde{f}|_{\tilde{L}} \) via a regular homotopy compactly supported in \(\tilde{X} \). We further note that the embeddings \(\hat{f} \) and \(f : \tilde{L} \to \tilde{X} \) are isotopic relative the boundary. Indeed, it follows from the \(h \)-cobordism theorem that an embedding \(\mathbb{R}^n \to \mathbb{R}^{2n} \) which coincides with the inclusion outside a compact set and which is regularly homotopic to it via a compactly supported homotopy is isotopic to the inclusion relative infinity.

Slightly abusing notation we define \(\hat{f} : L \to X \) to be equal to \(\tilde{f} \) on \(L \setminus \hat{L} \). This Lagrangian embedding is isotopic to \(f \) via an isotopy fixed outside a compact set. Finally we note that \(df : TL \to TX \) is homotopic to \(\Phi_1 \) since it is constructed with the \(h \)-principle for Lagrangian immersions, and \(d\hat{f} \) is homotopic to \(df \) since they are regularly Lagrangian homotopic.

Next, we deduce Theorem 1.1 from Theorem 2.2.

Proof of Theorem 1.1. Let \(B \) be the unit ball in \(\mathbb{R}^{2n} \). The triviality of the bundle \(T(L) \otimes \mathbb{C} \) is equivalent to existence of a Lagrangian homomorphism \(\Phi : TL \to T\mathbb{C}^n \).

We can assume that \(\Phi \) covers a map \(\phi : L \to \mathbb{C}^n \setminus \mathrm{Int} B \) such that \(\phi(\partial L) \subset \partial B \). Let \(v \in TL|_{\partial L} \) be the inward normal vector field to \(\partial L \) in \(L \), and \(v \) an outward normal to the boundary \(\partial B \) of the ball \(B \subset \mathbb{C}^n \). Homomorphism \(\Phi \) is homotopic to a
Lagrangian homomorphism, which will still be denoted by Φ, sending v to ν. Indeed, the obstructions to that lie in trivial homotopy group $\pi_j(S^{2n-1})$, $j \leq n - 1$. Then $\Phi|_{\partial L}$ is a Legendrian homomorphism $T\partial L \to \xi$, where ξ is the standard contact structure on the sphere ∂B formed by its complex tangencies. Using Gromov’s h-principle for Legendrian embeddings we can, therefore, assume that $\phi|_{\partial L}: \partial L \to \partial B$ is a Legendrian embedding, and then, using Gromov’s h-principle for Lagrangian immersions deform ϕ to an exact Lagrangian immersion $\phi: L \to \mathbb{C}^n \setminus \text{Int} B$ with Legendrian boundary in ∂B and tangent to ν along the boundary. Finally, we use Theorem 2.2 to make ϕ a Lagrangian embedding.

\section{Applications}

\subsection*{Lagrangian embeddings with a conical singular point}

Given a symplectic manifold (X,ω) we say that $L \subset M$ is a \textit{Lagrangian submanifold with an isolated conical point} if it is a Lagrangian submanifold away from a point $p \in L$, and there exists a symplectic embedding $f: B_\varepsilon \to X$ such that $f(0) = p$ and $f^{-1}(L) \subset B_\varepsilon$ is a Lagrangian cone. Here B_ε is the ball of radius ε in the standard symplectic \mathbb{R}^{2n}. Note that this cone is automatically a cone over a Legendrian sphere in the sphere ∂B_ε endowed with the standard contact structure given by the restriction to ∂B_ε of the Liouville form $\lambda_{st} = \frac{1}{2} \sum_{i=1}^{n} (p_i dq_i - q_i dp_i)$.

As a special case of Theorem 1.1 (when ∂L is a sphere) we get

\textbf{Corollary 6.1.} Let L be an n-dimensional, $n > 2$, closed manifold such that the complexified tangent bundle $T^*(L \setminus p) \otimes \mathbb{C}$ is trivial. Then L admits an exact Lagrangian embedding into \mathbb{R}^{2n}, with exactly one conical point. In particularly a sphere admits a Lagrangian embedding to \mathbb{R}^{2n} with one conical point for each $n > 2$.

\subsection*{Flexible Weinstein cobordisms}

The following notion of a flexible Weinstein cobordism is introduced in [1].

A Weinstein cobordism (W,ω, Z, ϕ) is called \textit{elementary} if there are no Z-trajectories connecting critical points. In this case stable manifolds of critical points intersect $\partial_+ W$ along isotropic in the contact sense submanifolds. For each critical point p we call the intersection S_p of its stable manifold with $\partial_+ W$ the \textit{attaching sphere}. The attaching spheres for index n critical points are Legendrian.
An elementary Weinstein cobordism \((W, \omega, Z, \phi)\) is called \textit{flexible} if the attaching spheres for all index \(n\) critical points in \(W\) form a loose Legendrian link in \(\partial_-W\).

A Weinstein cobordism \((W, \omega, Z, \phi)\) is called \textit{flexible} if it can be partitioned into elementary Weinstein cobordisms: \(W = W_1 \cup \cdots \cup W_N, W_j := \{c_{j-1} \leq \phi \leq c_j\}, j = 1, \ldots, N, m = c_0 < c_1 < \cdots < c_N = M\). Any subcritical Weinstein cobordism is by definition flexible.

\textbf{Theorem 6.2.} Let \((W, \omega, Z, \phi)\) be a flexible Weinstein domain. Let \(\lambda\) be the Liouville form \(\omega\)-dual to \(Z\), and \(\Lambda\) any other Liouville form such that the symplectic structures \(\omega, \Omega := d\Lambda\) are homotopic as non-degenerate (not necessarily closed) 2-forms. Then there exists an isotopy \(h_t : W \to W\) such that \(h_0 = \text{Id}\) and \(h_t^*\Lambda = \varepsilon \lambda + dH\) for a sufficiently small \(\varepsilon > 0\) and a smooth function \(H : W \to \mathbb{R}\). In particular, \(h_1\) is a symplectic embedding \((W, \varepsilon\omega) \to (W, \Omega)\).

Recall that a Weinstein cobordism \((W, \omega, Z, \phi)\) is called a \textit{Weinstein domain} if \(\partial_- W = \emptyset\).

\textbf{Corollary 6.3.} Let \((W, \omega, Z, \phi)\) be a flexible Weinstein domain, and \((X, \Omega)\) any symplectic manifold of the same dimension. If this dimension is 3 we further assume that \(X\) has infinite Gromov width. Then any smooth embedding \(f_0 : W \to X\), such that the form \(f_0^*\Omega\) is exact and the differential \(df : TW \to TX\) is homotopic to a symplectic homomorphism, is isotopic to a symplectic embedding \(f_1 : (W, \varepsilon\omega) \to (X, \Omega)\) for a sufficiently small \(\varepsilon > 0\). Moreover, if \(\Omega = d\Theta\) then the embedding \(f_1\) exists for an arbitrarily large constant \(\varepsilon\).

\textit{Proof of Theorem 6.2.} Let us decompose \(W\) into flexible elementary cobordisms: \(W = W_1 \cup \cdots \cup W_k\), where \(W_j := \{c_{j-1} \leq \phi \leq c_j\}\), \(j = 1, \ldots, k\) for a sequence of regular values \(c_0 < \min \phi < c_1 < \cdots < c_k = \max \phi\) of the function \(\phi\). Set \(V_j = \bigcup_i W_i\) for \(j \geq 1\) and \(V_0 = \emptyset\).

We will construct an isotopy \(h_t : W \to W\) beginning from \(h_0 = \text{Id}\) inductively over cobordisms \(W_j, j = 1, \ldots, k\). It will be convenient to parameterize the required isotopy by the interval \([0, 2k]\). Suppose that for some \(j = 1, \ldots, k\) we already constructed an isotopy \(h_t : W_j \to W, t \in [0, j - 1]\) such that \(h_{j-1}^*\Lambda = \varepsilon_{j-1}\lambda + dH\) on \(V_{j-1}\). Our goal is to extend it \([j - 1, j]\) to ensure that \(h_j\) satisfies this condition on \(V_j\). Without loss of generality we can assume that there exists only 1 critical point \(p\) of \(\phi\) in \(W_j\). Let \(\Delta\) be the stable disc of \(p\) in \(W_j\) and \(S := \partial \Delta \subset \partial_- W_j\)
the corresponding attaching sphere. By assumption, S is subcritical or loose. The homotopical condition implies that there is a family of injective homomorphisms $\Phi_t: T\Delta \to TW$, $t \in [j - 1, j]$, such that $\Phi_{j-1} = dh_{j-1}|_{\Delta_j}$, and $\Phi_j: T\Delta_j \to (TW, \Omega)$ is an isotropic homomorphism. We also note that the cohomological condition implies that $\int_{\Delta} \Omega = 0$ when $\dim \Delta = 2$. Then, using Theorem 2.2 when $\dim \Delta = n$ and Gromov’s h-principle, \cite{6}, for isotropic embeddings in the subcritical case, we can construct an isotopy $g_t: \Delta \to W_j$, $t \in [j - 1, j]$, fixed at $\partial \Delta$, such that $g_{j-1} = h_{j-1}|_{\Delta}$ is the inclusion and the embedding $g_j: \Delta \to (W, \Omega)$ is isotropic. Furthermore, there exists a neighborhood $U \supset \Delta$ in W_j such that the isotopy g_t extends as a fixed on W_{j-1} isotopy $G_t: W_{j-1} \cup U \to W$ such that $G_{t}|_{\Delta} = g_t$, $G_t|_{W_j} = h_{j-1}|_{W_{j-1}}$ for $t \in [j - 1, j]$, $G_{j-1}|_U = h_{j-1}|_U$ and $h_j: (W_{j-1} \cup U, \varepsilon_{j-1}\omega) \to (W, \Omega)$ is a symplectic embedding. Choose a sufficiently large $T > 0$ we have $Z^{-T}(W_j) \subset W_{j-1} \cup U_j$, and hence $h_j \circ e^{-T}|_{V_j}$ is a symplectic embedding $(W_j, \varepsilon_j\omega) \to (W, \Omega)$, where we set $\varepsilon_j := e^{-T}\varepsilon_{j-1}$. Then we can define the required isotopy $h_t: W \to W$, $t \in [j - 1, j]$, which satisfy the property that $h_j|_{V_j}$ is a symplectic embedding $(V_j, \varepsilon_j\omega) \to (W, \omega)$ by setting

$$h_t = \begin{cases} h_{j-1} \circ Z^{-2T(t-j+1)} & \text{for } t \in [j - 1, j - \frac{1}{2}], \\ G_t \circ Z^{-T} & \text{for } t \in [j - \frac{1}{2}, j]. \end{cases}$$

\end{proof}

References

