On Some Partitions of a Flag Manifold

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://projecteuclid.org/euclid.ajm/1306616061</td>
</tr>
<tr>
<td>Publisher</td>
<td>International Press of Boston, Inc.</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Jan 02 02:45:33 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/93120</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
ON SOME PARTITIONS OF A FLAG MANIFOLD

G. Lusztig

INTRODUCTION

Let G be a connected reductive group over an algebraically closed field k of characteristic $p \geq 0$. Let W be the Weyl group of G. Let W be the set of conjugacy classes in W. The main purpose of this paper is to give a (partly conjectural) definition of a surjective map from W to the set of unipotent classes in G (see 1.2(b)). When $p = 0$, a map in the opposite direction was defined in [KL, 9.1] and we expect that it is a one sided inverse of the map in the present paper. The (conjectural) definition of our map is based on the study of certain subvarieties B^w_g (see below) of the flag manifold B of G indexed by a unipotent element $g \in G$ and an element $w \in W$.

Note that W naturally indexes ($w \mapsto O_w$) the orbits of G acting on $B \times B$ by simultaneous conjugation on the two factors. For $g \in G$ we set $B_g = \{B \in B; g \in B\}$. The varieties B_g play an important role in representation theory and their geometry has been studied extensively. More generally for $g \in G$ and $w \in W$ we set

$$B^w_g = \{B \in B; (B, gBg^{-1}) \in O_w\}.$$

Note that $B^1_g = B_g$ and that for fixed g, $(B^w_g)_{w \in W}$ form a partition of the flag manifold B.

For fixed w, the varieties B^w_g ($g \in G$) appear as fibres of a map to G which was introduced in [L3] as part of the definition of character sheaves. Earlier, the varieties B^w_g for g regular semisimple appeared in [L1] (a precursor of [L3]) where it was shown that from their topology (for $k = \mathbb{C}$) one can extract nontrivial information about the character table of the corresponding group over a finite field.

I thank David Vogan for some useful discussions.

1. The sets S_g

1.1. We fix a prime number l invertible in k. Let $g \in G$ and $w \in W$. For $i, j \in \mathbb{Z}$ let $H^i_c(B^w_g, \mathbb{Q}_l)_j$ be the subquotient of pure weight j of the l-adic cohomology space

Supported in part by the National Science Foundation

Typeset by AMSTeX
\[H^i_c(B^w_g, \mathbb{Q}_l) \] The centralizer \(Z(g) \) of \(g \) in \(G \) acts on \(B^w_g \) by conjugation and this induces an action of the group of components \(\tilde{Z}(g) \) on \(H^i_c(B^w_g, \mathbb{Q}_l) \) and on each \(H^i_c(B^w_g, \mathbb{Q}_l)_j \). For \(z \in \tilde{Z}(g) \) we set
\[
\Xi_{g,z}^w = \sum_{i,j \in \mathbb{Z}} (-1)^i \text{tr}(z, H^i_c(B^w_g, \mathbb{Q}_l)_j) v^j \in \mathbb{Z}[v]
\]
where \(v \) is an indeterminate; the fact that this belongs to \(\mathbb{Z}[v] \) and is independent of the choice of \(l \) is proved by an argument similar to that in the proof of [DL, 3.3].

Let \(l : W \to N \) be the standard length function. The simple reflections \(s \in W \) (that is the elements of length 1 of \(W \)) are numbered as \(s_1, s_2, \ldots \). Let \(w_0 \) be the element of maximal length in \(W \).

Let \(\mathcal{H} \) be the Iwahori-Hecke algebra of \(W \) with parameter \(v^2 \) (see [GP, 4.4.1]; in the definition in loc.cit. we take \(A = \mathbb{Z}[v, v^{-1}], a_s = b_s = v^2 \)). Let \((T_w)_{w \in W} \) be the standard basis of \(\mathcal{H} \) (see [GP, 4.4.3, 4.4.6]). For \(w \in W \) let \(\hat{T}_w = v^{-2l(w)} T_w \). If \(s_{i_1} s_{i_2} \ldots s_{i_r} \) is a reduced expression for \(w \in W \) we write also \(\hat{T}_w = \hat{T}_{i_1 i_2 \ldots i_r} \).

For any \(g \in G, z \in \tilde{Z}(g) \) we set
\[
\Pi_{g,z} = \sum_{w \in W} \Xi_{g,z}^w \hat{T}_w \in \mathcal{H}.
\]
The following result can be proved along the lines of the proof of [DL, Theorem 1.6] (we replace the Frobenius map in that proof by conjugation by \(g \)); alternatively, for \(g \) unipotent, we may use 1.5(a).

(a) \(\Pi_{g,z} \) belongs to the centre of the algebra \(\mathcal{H} \).

According to [GP, 8.2.6, 7.1.7], an element \(c = \sum_{w \in W} c_w \hat{T}_w \) (\(c_w \in \mathbb{Z}[v, v^{-1}] \)) in the centre of \(\mathcal{H} \) is uniquely determined by the coefficients \(c_w (w \in W_{\text{min}}) \) and we have \(c_w = c_{w'} \) if \(w, w' \in W_{\text{min}} \) are conjugate in \(W \); here \(W_{\text{min}} \) is the set of elements of \(W \) which have minimal length in their conjugacy class. This applies in particular to \(c = \Pi_{g,z} \), see (a). For any \(C \in \mathbb{W} \) we set \(\Xi_{g,z}^C = \Xi_{g,z}^w \) where \(w \) is any element of \(C \cap W_{\text{min}} \).

Note that if \(g = 1 \) then \(\Pi_{g,1} = \sum_{w} v^{2l(w)} \hat{T}_w \). If \(g \) is regular unipotent then \(\Pi_{g,1} = \sum_{w} v^{2l(w)} \hat{T}_w \). If \(G = PGL_3(k) \) and \(g \in G \) is regular semisimple then \(\Pi_{g,1} = 6 + 3(v^2 - 1)(\hat{T}_1 + \hat{T}_2) + (v^2 - 1)^2(\hat{T}_{12} + \hat{T}_{21}) + (v^6 - 1)\hat{T}_{121} \); if \(g \in G \) is a transvection then \(\Pi_{g,1} = (2v^2 + 1) + v^4(\hat{T}_1 + \hat{T}_2) + v^6\hat{T}_{121} \).

For \(g \in G \) let \(cl(g) \) be the \(G \)-conjugacy class of \(g \); let \(\overline{cl(g)} \) be the closure of \(cl(g) \). Let \(S_g \) be the set of all \(C \in \mathbb{W} \) such that \(\Xi_{g,1}^C \neq 0 \) and \(\Xi_{g',1}^C = 0 \) for any \(g' \in \overline{cl(g)} - cl(g) \). If \(C \) is a conjugacy class in \(G \) we shall also write \(S_C \) instead of \(S_g \) where \(g \in C \).

We describe the set \(S_g \) and the values \(\Xi_{g,1}^C \) for \(C \in S_g \) for various \(G \) of low rank and various unipotent elements \(g \) in \(G \). We denote by \(u_n \) a unipotent element of \(G \) such that \(\dim B_{u_n} = n \). The conjugacy class of \(w \in W \) is denoted by \((w) \).
G of type A_1.

$$S_{u_1} = (1), S_{u_0} = (s_1); \Xi_{u_1,1}^1 = 1 + v^2, \Xi_{u_0,1}^{s_1} = v^2.$$

G of type A_2.

$$S_{u_3} = (1), S_{u_1} = (s_1), S_{u_0} = (s_1 s_2).$$

$$\Xi_{u_3,1}^1 = 1 + 2v^2 + 2v^4 + v^6, \Xi_{u_1,1}^{s_1} = v^4, \Xi_{u_0,1}^{s_1 s_2} = v^4.$$

G of type B_2, $p \neq 2$. (The simple reflection corresponding to the long root is denoted by s_1.)

$$S_{u_4} = (1), S_{u_2} = (s_1), S_{u_1} = \{(s_2), (s_1 s_2 s_1 s_2)\}, S_{u_0} = (s_1 s_2).$$

$$\Xi_{u_4,1}^1 = (1 + v^2)^2(1 + v^4), \Xi_{u_2,1}^{s_1} = v^4(1 + v^2), \Xi_{u_1,1}^{s_2} = 2v^4,$$

$$\Xi_{u_1,1}^{s_1 s_2 s_1 s_2} = v^6(v^2 - 1), \Xi_{u_0,1}^{s_1 s_2} = v^4.$$

G of type B_2, $p = 2$. (u'_2 denotes a transvection; u''_2 denotes a unipotent element with $\dim B_{u''_2} = 2$ which is not conjugate to u'_2.)

$$S_{u_4} = (1), S_{u'_2} = (s_1), S(u''_2) = (s_2), S_{u_1} = (s_1 s_2 s_1 s_2), S_{u_0} = (s_1 s_2).$$

$$\Xi_{u_4,1}^1 = (1 + v^2)^2(1 + v^4), \Xi_{u_2,1}^{s_1} = v^4(1 + v^2), \Xi_{u'_2,1}^{s_2} = v^4(1 + v^2),$$

$$\Xi_{u_1,1}^{s_1 s_2 s_1 s_2} = v^8, \Xi_{u''_2,1}^{s_1 s_2} = v^4.$$

G of type G_2, $p \neq 2, 3$. (The simple reflection corresponding to the long root is denoted by s_2.)

$$S_{u_6} = (1), S_{u_3} = (s_2), S_{u_2} = \{(s_1), (s_1 s_2 s_1 s_2 s_1 s_2)\}, S_{u_1} = (s_1 s_2 s_1 s_2),$$

$$S_{u_0} = (s_1 s_2).$$

$$\Xi_{u_6,1}^1 = (1 + v^2)^2(1 + v^4 + v^8), \Xi_{u_3,1}^{s_2} = v^6(1 + v^2), \Xi_{u_2,1}^{s_1} = v^4(1 + v^2),$$

$$\Xi_{u_2,1}^{s_1 s_2 s_1 s_2 s_1 s_2} = v^8(v^4 - 1), \Xi_{u_1,1}^{s_1 s_2 s_1 s_2} = 2v^8, \Xi_{u_0,1}^{s_1 s_2} = v^4.$$

G is of type A_3. (The simple reflections are s_1, s_2, s_3 with $s_1 s_3 = s_3 s_1$.)

$$S_{u_6} = (1), S_{u_3} = (s_1), S_{u_2} = (s_1 s_3), S_{u_1} = (s_1 s_2), S_{u_0} = (s_1 s_2 s_3).$$

$$\Xi_{u_6,1}^1 = (1 + v^2)(1 + v^2 + v^4)(1 + v^2 + v^4 + v^6), \Xi_{u_3,1}^{s_1} = v^6 + v^8,$$

$$\Xi_{u_2,1}^{s_1 s_3} = v^6 + v^8, \Xi_{u_1,1}^{s_1 s_2} = v^6, \Xi_{u_0,1}^{s_1 s_2 s_3} = v^6.$$
G of type B_3, $p \neq 2$. (The simple reflection corresponding to the short root is denoted by s_3 and $(s_1 s_3)^2 = 1$.)

$$ S_{u_9} = (1), S_{u_5} = (s_1), S_{u_4} = \{(s_3), (s_2 s_3 s_2 s_3)\}, S_{u_3} = \{(s_1 s_3), (w_0)\}, $$

$$ S_{u_2} = (s_1 s_2), S_{u_1} = \{(s_2 s_3), (s_2 s_3 s_1 s_2 s_3)\}, S_{u_0} = (s_1 s_2 s_3). $$

$$ \Xi^{(s_1)}_{u_{9,1}} = (1 + v^2)^3(1 + v^4)(1 + v^4 + v^8), \Xi^{(s_3)}_{u_{5,1}} = v^8(1 + v^2)^2, $$

$$ \Xi^{(s_2 s_3 s_2 s_3)}_{u_{4,1}} = v^6(1 + v^2)(v^4 - 1), \Xi^{(s_1 s_3)}_{u_{3,1}} = 2v^6(1 + v^2)^2, $$

$$ \Xi^{(s_1 s_3)}_{u_{3,1}} = v^8(1 + v^2), \Xi^{(w_0)}_{u_{4,1}} = v^{14}(v^4 - 1), \Xi^{(s_1 s_2)}_{u_{2,1}} = 2v^8, $$

$$ \Xi^{(s_2 s_3)}_{u_{1,1}} = 2v^6, \Xi^{(s_2 s_3 s_1 s_2 s_3)}_{u_{0,1}} = v^6(v^2 - 1), \Xi^{(s_1 s_2 s_3)}_{u_{1,1}} = v^6. $$

G of type C_3, $p \neq 2$. (The simple reflection corresponding to the long root is denoted by s_3 and $(s_1 s_3)^2 = 1$; u'_2 denotes a unipotent element which is regular inside a Levi subgroup of type C_2; u'_2 denotes a unipotent element with $\dim B_{u'_2} = 2$ which is not conjugate to u''_2.)

$$ S_{u_9} = (1), S_{u_6} = (s_3), S_{u_4} = \{(s_3), (s_2 s_3 s_2 s_3)\}, S_{u_3} = \{(s_1 s_3), (w_0)\}, $$

$$ S_{u'_2} = (s_1 s_2), S_{u''_2} = (s_2 s_3), S_{u_1} = (s_2 s_3 s_1 s_2 s_3), S_{u_0} = (s_1 s_2 s_3). $$

$$ \Xi^{(s_1 s_3)}_{u_{9,1}} = (1 + v^2)^3(1 + v^4)(1 + v^4 + v^8), \Xi^{(s_3)}_{u_{6,1}} = v^6(1 + v^2)^2(1 + v^4), $$

$$ \Xi^{(s_2 s_3 s_2 s_3)}_{u_{4,1}} = v^{10}(v^4 - 1), \Xi^{(s_1)}_{u_{4,1}} = 2v^8(1 + v^2), $$

$$ \Xi^{(s_1 s_3)}_{u_{3,1}} = v^8(1 + v^2), \Xi^{(w_0)}_{u_{3,1}} = v^{14}(v^4 - 1), \Xi^{(s_1 s_2)}_{u''_2,1} = 2v^8, $$

$$ \Xi^{(s_2 s_3)}_{u''_2,1} = v^6(1 + v^2), \Xi^{(s_2 s_3 s_1 s_2 s_3)}_{u_{1,1}} = v^{10}, \Xi^{(s_1 s_2 s_3)}_{u_{0,1}} = v^6. $$

1.2. We expect that the following property of G holds:

(a) \[\mathcal{W} = \cup_u S_u \]

(u runs over a set of representatives for the unipotent classes in G).

The equality $\mathcal{W} = \cup_u S_u$ is clear since for a regular unipotent u and any w we have $\Xi_w^{(u,1)} = v^{2l(w)}$. Note that (a) holds for G of rank ≤ 3 if p is not a bad prime for G (see 1.1). We will show elsewhere that (a) holds for G of type A_n (any p) and of type B_n, C_n, D_n ($p \neq 2$). When G is simple of exceptional type, (a) should follow by computing the product of some known (large) matrices using 1.5(a).

Assuming that (a) holds we define a surjective map from \mathcal{W} to the set of unipotent classes in G by

(b) \[C \mapsto c \]
where $C \in \mathfrak{W}$ and C is the unique unipotent class in G such that $C \in S_u$ for $u \in C$.

We expect that when $p = 0$ we have

\[(c) \quad c_u \in S_u\]

where for any unipotent element $u \in G$, c_u denotes the conjugacy class in \mathfrak{W} associated to u in [KL, 9.1]. Note that (c) holds for G of rank ≤ 3 (see 1.1). (We have used the computations of the map in [KL, §9], [S1], [S2].)

1.3. Assume that $G = Sp_{2n}(k)$ and $p \neq 2$. The Weyl group W can be identified in the standard way with the subgroup of the symmetric group S_{2n} consisting of all permutations of $[1, 2n]$ which commute with the involution $i \mapsto 2n + 1 - i$. We say that two elements of W are equivalent if they are contained in the same conjugacy class of S_{2n}. The set of equivalence classes in W is in bijection with the set of partitions of $2n$ in which every odd part appears an even number of times (to $C \in \mathfrak{W}$ we attach the partition which has a part j for every j-cycle of an element of C viewed as a permutation of $[1, 2n]$). The same set of partitions of $2n$ indexes the set of unipotent classes of G. Thus we obtain a bijection between the set of equivalence classes in W and the set of unipotent classes of G. In other words we obtain a surjective map ϕ from \mathfrak{W} to the set of unipotent classes of G whose fibres are the equivalence classes in \mathfrak{W}. We will show elsewhere that for any unipotent class C in G we have $\phi^{-1}(C) = S_u$ where $u \in C$.

1.4. Recall that the set of unipotent elements in G can be partitioned into "special pieces" (see [L5]) where each special piece is a union of unipotent classes exactly one of which is "special". Thus the special pieces can be indexed by the set of isomorphism classes of special representations of \mathfrak{W} which depends only on \mathfrak{W} as a Coxeter group (not on the underlying root system). For each special piece σ of G we consider the subset $S_{\sigma} := \cup_{C \in \sigma} S_C$ of \mathfrak{W} (here σ runs over the unipotent classes contained in σ). We expect that each such subset S_σ depends only on the Coxeter group structure of \mathfrak{W} (not on the underlying root system). As evidence for this we note that the subsets S_σ for G of type B_3 are the same as the subsets S_σ for G of type C_3. These subsets are as follows:

\[
\{1\}, \{(s_1), (s_3), (s_2s_3s_2s_3)\}, \{(s_1s_3), (w_0)\}, \{(s_1s_2)\}, \{(s_2s_3), (s_2s_3s_1s_2s_3)\}, \{(s_1s_2s_3)\}.
\]

1.5. Let $g \in G$ be a unipotent element and let $z \in \hat{Z}(g)$, $w \in W$. We show how the polynomial $\Xi_{g,w}^z$ can be computed using information from representation theory. We may assume that $p > 1$ and that k is the algebraic closure of the finite field F_p. We choose an F_p split rational structure on G with Frobenius map $F_0 : G \to G$. We may assume that $q \in G^{F_0}$. Let $q = p^m$ where $m \geq 1$ is sufficiently divisible. In particular $F := F_0^m$ acts trivially on $\hat{Z}(g)$ hence $cl(g)^F$ is a
union of G^F-conjugacy classes naturally indexed by the conjugacy classes in $Z(g)$; in particular the G^F-conjugacy class of g corresponds to $1 \in Z(g)$. Let g_z be an element of the G^F-conjugacy class in $\text{cl}(g)^F$ corresponding to the $Z(g)$-conjugacy class of $z \in Z(g)$. The set $B_{g_z}^w$ is F-stable. We first compute the number of fixed points $|(B_{g_z}^w)^F|$. Let $\mathcal{H}_q = \mathcal{Q}_l \otimes \mathbb{Z}[v,v^{-1}] \mathcal{H}$ where \mathcal{Q}_l is regarded as a $\mathbb{Z}[v,v^{-1}]$-algebra with v acting as multiplication by \sqrt{q}. We write T_w instead of $1 \otimes T_w$. Let $\text{Irr} \mathcal{W}$ be a set of representatives for the isomorphism classes of irreducible \mathcal{W}-modules over \mathcal{Q}_l. For any $E \in \text{Irr} \mathcal{W}$ let E_q be the irreducible \mathcal{H}_q-module corresponding naturally to E. Let \mathcal{F} be the vector space of functions $\mathcal{B}^F \rightarrow \mathcal{Q}_l$. We regard \mathcal{F} as a G^F-module by $\gamma : f \mapsto f'$, $f'(B) = f(\gamma^{-1} B \gamma)$ for all $B \in \mathcal{B}^F$. We identify \mathcal{H}_q with the algebra of all endomorphisms of \mathcal{F} which commute with the G^F-action, by identifying T_w with the endomorphism $f \mapsto f'$ where $f'(B) = \sum B' \in \mathcal{B}^F : (B,B') \in \mathcal{O}_w \ f(B)$ for all $B \in \mathcal{B}^F$. As a module over $\mathcal{Q}_l[G^F] \otimes \mathcal{H}_q$ we have canonically $\mathcal{F} = \oplus_{E \in \text{Irr} \mathcal{W}} \rho_E \otimes E_q$ where ρ_E is an irreducible G^F-module. Hence if $\gamma \in G^F$ and $w \in \mathcal{W}$ we have $\text{tr}(\gamma T_w, \mathcal{F}) = \sum_{E \in \text{Irr} \mathcal{W}} \text{tr}(\gamma, \rho_E) \text{tr}(T_w, E_q)$. From the definition we have $\text{tr}(\gamma T_w, \mathcal{F}) = |\{B \in \mathcal{B}^F; (B, \gamma B \gamma^{-1}) \in \mathcal{O}_w\}| = |(B_{g_z}^w)^F|$. Taking $\gamma = g_z$ we obtain

\begin{equation}
(a) \quad |(B_{g_z}^w)^F| = \sum_{E \in \text{Irr} \mathcal{W}} \text{tr}(g_z, \rho_E) \text{tr}(T_w, E_q). \end{equation}

The quantity $\text{tr}(g_z, \rho_E)$ can be computed explicitly, by the method of [L4], in terms of generalized Green functions and of the entries of the non-abelian Fourier transform matrices [L2]; in particular it is a polynomial with rational coefficients in \sqrt{q}. The quantity $\text{tr}(T_w, E_q)$ can be also computed explicitly (see [GP], Ch.10,11); it is a polynomial with integer coefficients in \sqrt{q}. Thus $|(B_{g_z}^w)^F|$ is an explicitly computable polynomial with rational coefficients in \sqrt{q}. Substituting here \sqrt{q} by v we obtain the polynomial $\Xi_{g_z}^w$. This argument shows also that $\Xi_{g_z}^w$ is independent of p (note that the pairs (g, z) up to conjugacy may be parametrized by a set independent of p).

This is how the various $\Xi_{g,z}^w$ in 1.1 were computed, except in type A_1, A_2, B_2 where they were computed directly from the definitions. (For type B_3, C_3 we have used the computation of Green functions in [Sh]; for type G_2 we have used directly [CR] for the character of ρ_E at unipotent elements.)

1.6. In this section we assume that G is simply connected. Let $\tilde{G} = G(\mathbf{k}(\langle \epsilon \rangle))$ where ϵ is an indeterminate. Let $\tilde{\mathcal{B}}$ be the set of Iwahori subgroups of \tilde{G}. Let $\tilde{\mathcal{W}}$ the affine Weyl group attached to \tilde{G}. Note that $\tilde{\mathcal{W}}$ naturally indexes $(w \mapsto \mathcal{O}_w)$ the orbits of \tilde{G} acting on $\tilde{\mathcal{B}} \times \tilde{\mathcal{B}}$ by simultaneous conjugation on the two factors. For $g \in \tilde{G}$ and $w \in \tilde{\mathcal{W}}$ we set

\begin{equation}
\tilde{B}_g^w = \{ B \in \tilde{\mathcal{B}}; (B, gBg^{-1}) \in \mathcal{O}_w\}. \end{equation}
By analogy with [KL, §3] we expect that when \(g \) is regular semisimple, \(\tilde{B}_g^w \) has a natural structure of a locally finite union of algebraic varieties over \(k \) of bounded dimension and that, moreover, if \(g \) is also elliptic, then \(\tilde{B}_g^w \) has a natural structure of algebraic variety over \(k \). It would follow that for \(g \) elliptic and \(w \in \mathcal{W} \),

\[
\Xi_g^w = \sum_{i,j \in \mathbb{Z}} (-1)^i \dim H_c^i(\tilde{B}_g^w, \mathcal{Q}_l)_{v^j} \in \mathbb{Z}[v]
\]

is well defined; one can then show that the formal sum \(\sum_{w \in \mathcal{W}} \Xi_g^w \hat{T}_w \) is central in the completion of the affine Hecke algebra consisting of all formal sums \(\sum_{w \in \mathcal{W}} a_w \hat{T}_w \) (\(a_w \in \mathbb{Q}(v) \)) that is, it commutes with any \(\hat{T}_w \). (Here \(\hat{T}_w \) is defined as in 1.1 and the completion of the affine Hecke algebra is regarded as a bimodule over the actual affine Hecke algebra in the natural way.)

2. The sets \(s_g \)

2.1. In this section we assume that \(G \) is adjoint and \(p \) is not a bad prime for \(G \). For \(g \in G, z \in \tilde{Z}(g), w \in \mathcal{W} \) we set

\[
\xi_{g,z}^w = \Xi_{g,z}^w|_{v=1} = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}(z, H_c^i(\tilde{B}_g^w, \mathcal{Q}_l)) \in \mathbb{Z}.
\]

This integer is independent of \(l \). For any \(g \in G, z \in \tilde{Z}(g) \) we set

\[
\pi_{g,z} = \sum_{w \in \mathcal{W}} \xi_{g,z}^w w \in \mathbb{Z}[\mathcal{W}].
\]

This is the specialization of \(\Pi_{g,z} \) for \(v = 1 \). Hence from 2(a) we see that \(\pi_{g,z} \) is in the centre of the ring \(\mathbb{Z}[\mathcal{W}] \). Thus for any \(C \in \mathcal{W} \) we can set \(\xi_{g,z}^C = \xi_{g,z}^w \) where \(w \) is any element of \(C \). For \(g \in G \) let \(s_g \) be the set of all \(C \in \mathcal{W} \) such that \(\xi_{g,z}^C \neq 0 \) for some \(z \in \tilde{Z}(g) \) and \(\xi_{g',z}^C = 0 \) for any \(g' \in \text{cl}(g) - \text{cl}(g) \) and any \(z' \in \tilde{Z}(g') \).

We describe the set \(s_g \) and the values \(\xi_{g,z}^C = 0 \) for \(C \in s_g, z \in \tilde{Z}(g) \), for various \(G \) of low rank and various unipotent elements \(g \) in \(G \). We use the notation in 1.1. Moreover in the case where \(\tilde{Z}(g) \neq \{1\} \) we denote by \(z_n \) an element of order \(n \) in \(\tilde{Z}(g) \).

- \(G \) of type \(A_1 \).
 \[
s_{u_1} = (1), s_{u_0} = (s_1); \xi_{u_1,1} = 2, \xi_{u_0,1} = 1.
\]

- \(G \) of type \(A_2 \).
 \[
s_{u_3} = (1), s_{u_1} = (s_1), s_{u_0} = (s_1 s_2).
\]
 \[
\xi_{u_3,1} = 6, \xi_{u_1,1}^{(s_1)} = 1, \xi_{u_0,1}^{(s_1 s_2)} = 1.
\]
G of type B_2.

$s_{u_4} = (1), s_{u_2} = (s_1), s_{u_1} = \{(s_2), (s_1s_2s_1s_2)\}, s_{u_0} = (s_1s_2)$.

\[
\begin{align*}
\xi_{u_4,1}^1 &= 8, \xi_{u_2,1}^{(s_1)} = 2, \xi_{u_1,1}^{(s_2)} = 2, \xi_{u_1,1}^{(s_1s_2s_1s_2)} = 0, \\
\xi_{u_1,1}^{(s_2)} &= 0, \xi_{u_1,2}^{(s_1s_2s_1s_2)} = 2, \xi_{u_0,1}^{(s_1s_2)} = 1.
\end{align*}
\]

G of type G_2.

$s_{u_0} = (1), s_{u_3} = (s_2), s_{u_2} = (s_1), s_{u_1} = \{(s_1s_2s_1s_2s_1s_2), (s_1s_2s_1s_2s_1s_2)\}, s_{u_0} = (s_1s_2)$.

\[
\begin{align*}
\xi_{u_4,1}^1 &= 12, \xi_{u_2,1}^{(s_1)} = 2, \xi_{u_1,1}^{(s_1s_2s_1s_2s_1s_2)} = -3, \xi_{u_1,2}^{(s_1s_2s_1s_2s_1s_2)} = 3, \\
\xi_{u_1,2}^{(s_1s_2s_1s_2)} &= 0, \xi_{u_1,1}^{(s_1s_2s_1s_2)} = 2, \xi_{u_1,2}^{(s_1s_2s_1s_2)} = 0, \xi_{u_1,2}^{(s_1s_2s_1s_2)} = 2, \xi_{u_0,1}^{(s_1s_2)} = 1.
\end{align*}
\]

G of type B_3.

$s_{u_9} = (1), s_{u_5} = (s_1), s_{u_4} = \{(s_3), (s_2s_3s_2s_3)\}, s_{u_3} = (s_1s_3), \\
 s_{u_2} = \{(s_1s_2), (w_0)\}, s_{u_1} = \{(s_2s_3), (s_2s_3s_1s_2s_3)\}, s_{u_0} = (s_1s_2s_3)$.

\[
\begin{align*}
\xi_{u_9,1}^1 &= 48, \xi_{u_5,1}^{(s_1)} = 4, \xi_{u_4,1}^{(s_2s_3s_2s_3)} = 0, \xi_{u_4,2}^{(s_2s_3s_2s_3)} = 4, \xi_{u_4,1}^{(s_3)} = 8, \\
\xi_{u_4,1}^{(s_3)} &= 0, \xi_{u_3,1}^{(s_1s_3)} = 2, \xi_{u_2,2}^{(w_0)} = 0, \xi_{u_2,2}^{(w_0)} = 6, \\
\xi_{u_2,2}^{(s_1s_2)} &= 2, \xi_{u_1,1}^{(s_1s_2)} = 0, \xi_{u_1,1}^{(s_2s_3)} = 2, \xi_{u_1,2}^{(s_2s_3)} = 0, \xi_{u_1,2}^{(s_2s_3)} = 2, \xi_{u_0,1}^{(s_1s_2s_3)} = 1.
\end{align*}
\]

G of type C_3.

$s_{u_9} = (1), s_{u_6} = (s_3), s_{u_4} = \{(s_1), (s_2s_3s_2s_3)\}, s_{u_3} = (s_1s_3), \\
 s_{u_2} = (s_1s_2), s_{u_2}' = (s_2s_3), s_{u_1} = \{(s_2s_3s_1s_2s_3), (w_0)\} s_{u_0} = (s_1s_2s_3)$.

\[
\begin{align*}
\xi_{u_9,1}^1 &= 48, \xi_{u_6,1}^{(s_3)} = 8, \xi_{u_4,1}^{(s_2s_3s_2s_3)} = 0, \xi_{u_4,2}^{(s_2s_3s_2s_3)} = 4, \\
\xi_{u_4,1}^{(s_1)} &= 4, \xi_{u_4,1}^{(s_1)} = 0, \xi_{u_3,1}^{(s_1s_3)} = 2, \xi_{u_2,1}^{(s_1s_2)} = 2, \xi_{u_2,1}^{(s_2s_3)} = 2, \\
\xi_{u_1,1}^{(s_2s_3s_1s_2s_3)} &= 1, \xi_{u_1,2}^{(s_2s_3s_1s_2s_3)} = 1, \xi_{u_1,2}^{(w_0)} = -3, \xi_{u_1,2}^{(w_0)} = 3, \xi_{u_0,1}^{(s_1s_2s_3)} = 1.
\end{align*}
\]
2.2. For any unipotent element \(u \in G \) let \(n_u \) be the number of isomorphism classes of irreducible representations of \(\bar{Z}(u) \) which appear in the Springer correspondence for \(G \). Consider the following properties of \(G \):

(a) \[\mathcal{W} = \sqcup_u s_u \]

\((u \) runs over a set of representatives for the unipotent classes in \(G \)); for any unipotent element \(u \in G \),

(b) \[|s_u| = n_u. \]

The equality \(\mathcal{W} = \sqcup_u s_u \) is clear since for a regular unipotent \(u \) and any \(w \) we have \(\xi_{u,1}^w = 1 \). Note that (a),(b) hold in the examples in 2.1. We will show elsewhere that (a),(b) hold if \(G \) is of type \(A \). We expect that (a),(b) hold in general.

Consider also the following property of \(G \): for any \(g \in G \), \(w \in \mathcal{W} \),

\[\xi_{g,1}^w \]

is equal to the trace of \(w \) on the Springer representation \(\mathcal{W} \) of \(\bigoplus_i H^{2i}(B_g, \bar{\mathbb{Q}}_l) \).

Again (c) holds if \(G \) is of type \(A \) and in the examples in 2.1; we expect that it holds in general. Note that in (c) one can ask whether for any \(z \), \(\xi_{g,z}^w \) is equal to the trace of \(wz \) on the Springer representation of \(\mathcal{W} \times \bar{Z}(g) \) on \(\bigoplus_i H^{2i}(B_g, \bar{\mathbb{Q}}_l) \); but such an equality is not true in general for \(z \neq 1 \) (for example for \(G \) of type \(B_2 \)).

References

Department of Mathematics, M.I.T., Cambridge, MA 02139