Field-Theory Representation of Gauge-Gravity Symmetry-
Protected Topological Invariants, Group Cohomology, and
Beyond

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

| Citation | Wang, Juven C., Zheng-Cheng Gu, and Xiao-Gang Wen. "Field-
 | Theory Representation of Gauge-Gravity Symmetry-Protected
 | Topological Invariants, Group Cohomology, and Beyond." Phys.
 | Physical Society |
As Published	http://dx.doi.org/10.1103/PhysRevLett.114.031601
Publisher	American Physical Society
Version	Final published version
Accessed	Mon Apr 25 02:34:16 EDT 2016
Citable Link	http://hdl.handle.net/1721.1/93175
Terms of Use	Article is made available in accordance with the publisher's policy
 and may be subject to US copyright law. Please refer to the
 publisher's site for terms of use. |

Detailed Terms |
Field-Theory Representation of Gauge-Gravity Symmetry-Protected Topological Invariants, Group Cohomology, and Beyond

Juven C. Wang,1,2,‡ Zheng-Cheng Gu,2,† and Xiao-Gang Wen2,1,‡

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

(Received 22 July 2014; published 22 January 2015)

The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4 + 1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

DOI: 10.1103/PhysRevLett.114.031601 PACS numbers: 11.15.Yc, 02.40.Re, 71.27.+a, 11.10.-z

Gapped systems without symmetry breaking [1,2] can have intrinsic topological order [3–5]. However, even without symmetry breaking and without topological order, gapped systems can still be nontrivial if there is certain global symmetry protection, known as symmetry-protected topological states (SPTs) [6–9]. Their nontrivialness can be found in the gapless-topological boundary modes protected by a global symmetry, which shows gauge or gravitational anomalies [10–30]. More precisely, they are short-range entangled states which can be deformed to a trivial product state by local unitary transformation [31–33] if the deformation breaks the global symmetry. Examples of SPTs are Haldane spin-1 chains protected by spin rotational symmetry [34,35] and the topological insulators [36–38] protected from fermion number conservation and time reversal symmetry.

While some classes of topological orders can be described by topological quantum field theories (TQFT) [39–42], it is less clear how to systematically construct field theory with a global symmetry to classify or characterize SPTs for any dimension. This challenge originates from the fact that SPTs are naturally defined on a discretized spatial lattice or on a discretized spacetime path integral by a group cohomology construction [6,43] instead of continuous fields. Group cohomology construction of SPTs also reveals a duality between some SPTs and the Dijkgraaf-Witten topological gauge theory [43,44].

Some important progress has been recently made to tackle the above question. For example, there are the (2 + 1)D [45] Chern-Simons theory [46–50], nonlinear sigma models [51,52], and an orbifolding approach implementing modular invariance on 1D edge modes [25,28]. The above approaches have their own benefits, but they may be either limited to certain dimensions, or be limited to some special cases. Thus, the previous works may not fulfill all SPTs predicted from group cohomology classifications.

In this work, we will provide a more systematic way to tackle this problem by constructing topological response field theory and topological invariants for SPTs (SPT invariants) in any dimension protected by a symmetry group G. The new ingredient of our work suggests a one-to-one correspondence between the continuous semiclassical probe-field partition function and the discretized cocycle of cohomology group, $H^{d+1}(G, \mathbb{R}/\mathbb{Z})$, predicted to classify $(d + 1)$D SPTs with a symmetry group G [53]. Moreover, our formalism can even attain SPTs beyond group cohomology classifications [16–18,20–22].

For systems that realize topological orders, we can adiabatically deform the ground state $|\Psi_{g,s}(g)\rangle$ of parameters g via

$$
|\Psi_{g,s}(g + \delta g)\rangle|\Psi_{g,s}(g)\rangle = \ldots Z_0 \ldots
$$

(1)

to detect the volume-independent universal piece of partition function Z_0, which reveals the non-Abelian geometric phase of ground states [5,30,54–59]. For systems that realize SPTs, however, their fixed-point partition functions Z_0 always equal to 1 due to its unique ground state on any closed topology. We cannot distinguish SPTs via Z_0. However, due to the existence of a global symmetry,
FIG. 1 (color online). On a spacetime manifold, the 1-form probe-field A can be implemented on a codimension-1 symmetry twist [60,61] (with flat $dA = 0$) modifying the Hamiltonian H, but the global symmetry G is preserved as a whole. The symmetry twist is analogous to a branch cut, going along the arrow ---,$H = HU^{-1}$. If we perform the symmetry transformation $H' = H'$, only near the boundary of a region R (say on one side of ∂R), the local term H_z of H will be modified $H_z \rightarrow H'_{z|\text{near} \partial R}$. Such a change along a codimension-1 surface is called a symmetry twist, see Figs. 1(a) and 1(d), which modifies Z_0 to $Z_0'(\text{sym twist})$. Just like the geometric phases of the degenerate ground states characterize topological logical orders [30], we believe that $Z_0'(\text{sym twist})$, on different spacetime manifolds and for different symmetry twists, fully characterizes SPTs [60,61].

The symmetry twist is similar to gauging the on-site symmetry [44,69] except that the symmetry twist is non-dynamical. We can use the gauge connection 1-form A to describe the corresponding symmetry twists, with probe-fields A coupling to the matter fields of the system. So we can write [53]

$$Z_0'(\text{sym twist}) = e^{iS_0(A)} = e^{iS_0(A)}.$$ \hspace{1cm} (2)

Here, $S_0(A)$ is the SPT invariant that we search for. Equation (2) is a partition function of classical probe fields, or a topological response theory, obtained by integrating out the matter fields of SPTs path integral. Below we would like to construct possible forms of $S_0(A)$ based on the following principles [53]: (i) $S_0(A)$ is independent of spacetime metrics (i.e., topological), (ii) $S_0(A)$ is gauge invariant (for both large and small gauge transformations), and (iii) the “almost flat” connection for probe fields.

Let us start with a simple example of SPTs with a single global U(1) symmetry. We can probe the system by coupling the charge fields to an external probe 1-form field A [with a U(1) gauge symmetry], and integrate out the matter fields. In $(1 + 1)D$, we can write down a partition function by dimensional counting: $Z_0'(\text{sym twist}) = \exp[i(\theta/2\pi) \int F]$ with $F = dA$, this is the only term allowed by U(1) gauge symmetry $U(1) = A + df$ with $U = e^{i\theta}$. More generally, for an even $(d + 1)D$ spacetime, $Z_0'(\text{sym twist}) = \exp[i(\theta/([((d + 1)/2!](2\pi)^{(d+1)/2}) \int F

\text{... F} \ldots]$. Note that θ in such an action has no level quantization (θ can be an arbitrary real number). Thus, this theory does not really correspond to any nontrivial class, because any θ is smoothly connected to $\theta = 0$, which represents a trivial SPTs.

In an odd dimensional spacetime, such as $(2 + 1)D$, we have Chern-Simons coupling for the probe field action $Z_0'(\text{sym twist}) = \exp[i(k/4\pi) \int A \wedge dA]$. More generally, for an odd $(d + 1)D$, $Z_0'(\text{sym twist}) = \exp[i(2\pi k/((d + 1)/2)!2\pi)^{(d+1)/2}) \int A \wedge F \wedge \ldots]$, which is known to have level quantization $k = 2p$, with $p \in \mathbb{Z}$ for bosons, since U(1) is compact. We see that only quantized topological terms correspond to nontrivial SPTs, the allowed responses $S_0(A)$ reproduce the group cohomology description of the U(1) SPTs: an even dimensional spacetime has no nontrivial class, while an odd dimension has a \mathbb{Z} class.

Next we consider SPTs with $\prod \mathbb{Z}_{N_u}$ symmetry. Previously the evaluation of the U(1) field on a closed loop (Wilson loop) $\oint A_u$ can be arbitrary values, whether the loop is contractable or not, since U(1) has continuous value. For finite Abelian group symmetry $G = \prod \mathbb{Z}_{N_u}$, SPTs, (i) the large gauge transformation δA_u is identified by $2\pi [\text{this also applies to U(1) SPTs}].$ (ii) probe fields have discrete \mathbb{Z}_N gauge symmetry.

$$\oint \delta A_u = 0(\text{mod } 2\pi), \hspace{1cm} \oint A_u = \frac{2\pi n_u}{N_u} (\text{mod } 2\pi). \hspace{1cm} (3)$$

For a noncontractable loop (such as an S^1 circle of a torus), n_u can be a quantized integer which thus allows large gauge transformation. For a contractable loop, due to the fact that a small loop has small $\oint A_u$ but n_u is discrete, $\oint A_u = 0$ and $n_u = 0$, which imply the curvature $dA = 0$; thus, A is a flat connection locally.

For $(1 + 1)D$, the only quantized topological term is $Z_0'(\text{sym twist}) = \exp[i\kappa \int A_1 A_2]$. Here and below we omit the wedge product \wedge between gauge fields as a conventional notation. Such a term is gauge invariant under
transformation if we impose flat connection \(dA_1 = dA_2 = 0 \), since \(\delta(A_1 A_2) = (\delta A_1) A_2 + A_1 (\delta A_2) = (df_1) A_2 + A_1 (df_2) = -f_1 (dA_2) - (dA_1) f_2 = 0 \). Here we have abandoned the surface term by considering a \((1+1)D\) closed bulk spacetime \(\mathcal{M}^2 \) without boundaries. The level quantization of \(k_\Pi \) and its group structure can be derived from two rules: large gauge transformation and flux identification.

The invariance of \(Z_0 \) under the allowed large gauge transformation via Eq. (3) implies that the volume-integration of \(\int \delta(A_1 A_2) \) must be invariant mod \(2\pi \), namely, \([((2\pi)^2)k_\Pi]/N_1\] = \([(2\pi)^2k_\Pi]/N_2\) = 0 (mod \(2\pi \)). This rule implies the level quantization.

On the other hand, when the \(Z_{N_1} \) flux from \(A_1 \), and \(Z_{N_2} \) flux from \(A_2 \) is inserted as \(n_1 \) and \(n_2 \) multiple units of \(2\pi/N_1 \), and \(2\pi/N_2 \), we have \(k_\Pi \int A_1 A_2 = k_\Pi(2\pi)^2/N_1 N_2 n_1 n_2 \). We see that \(k_\Pi \) and \(k_\Pi + (N_1 N_2/2\pi) \) give rise to the same partition function \(Z_0 \). Thus they must be identified \((2\pi)k_\Pi = (2\pi)k_\Pi + N_1 N_2 \), as rule of flux identification. These two rules impose

\[
Z_0(\text{sym twist}) = \exp \left[i p_\Pi \frac{N_1 N_2}{(2\pi)^2 N_12} \int_{\mathcal{M}^2} A_1 A_2 \right],
\]

where \(p_\Pi \in Z_{N_12} \). We abbreviate the greatest common divisor \(\gcd(N_1, N_2, \ldots, N_n) \). Amazingly, we have independently recovered the formal group cohomology classification predicted as \(H^2(\prod_u Z_{N_u}, \mathbb{R}/\mathbb{Z}) = \prod_u <u \rangle Z_{N_u} \).

For \((2+1)D\), we can propose a naive \(Z_0(\text{sym twist}) \) by dimensional counting, \(\exp[i k_\Pi \int A_1 A_2 A_3] \), which is gauge invariant under the flat connection condition. By the large gauge transformation and the flux identification, we find that the level \(k_\Pi \) is quantized [53], thus

\[
Z_0(\text{sym twist}) = \exp \left[i p_\Pi \frac{N_1 N_2 N_3}{(2\pi)^2 N_123} \int_{\mathcal{M}^3} A_1 A_2 A_3 \right].
\]

named as type III SPTs with a quantized level \(p_\Pi \in Z_{N_123} \). The terminology “type” is introduced and used in Refs. [70] and [67]. As shown in Fig. 1, the geometric way to understand the 1-form probe field can be regarded as (the Poincaré dual of) the codimension-1 sheet assigned a group element \(g \in G \) by crossing the sheet as a branch cut. These sheets can be regarded as symmetry twists [60,61] in the SPT Hamiltonian formulation. When three sheets \([yzt, xzt, yzt] \) in Fig. 1(c)] with nontrivial elements \(g_j \in Z_3 \) intersect at a single point of a spacetime \(T^3 \) torus, it produces a nontrivial topological invariant in Eq. (2) for Type III SPTs.

There are also other types of partition functions, which require us to use the insert flux \(dA_1 \neq 0 \) only at the monodromy defect [i.e., at the end of the branch cut, see Fig. 1(b)] to probe them [11.48–50,70,71]:

\[
Z_0(\text{sym twist}) = \exp \left[i \int_{\mathcal{M}^4} \frac{p_\Pi N_1 N_2}{(2\pi)^2 N_12} A_1 A_2 A_3 \right],
\]

where \(u, v \) can be either the same or different gauge fields. They are type I, and II actions: \(p_{111} \int A_1 dA_1, p_{112} \int A_1 dA_2 \), etc. In order to have \(e^{i(p_{1}/2\pi) \int_{\mathcal{M}^2} A_1 dA_2} \) invariant under the large gauge transformation, \(p_{11} \) must be integer. In order to have \(e^{i(p_{1}/2\pi) \int_{\mathcal{M}^2} A_1 dA_2} \) well defined, we separate \(A_1 = \tilde{A}_1 + \tilde{A}_1^\prime \) to the nonflat part \(A_1 \) and the flat part \(A_1^\prime \). Its partition function becomes \(e^{i(p_{1}/2\pi) \int_{\mathcal{M}^2} A_1 dA_2} \). The invariance under the large gauge transformation of \(A_1^\prime \) requires \(p_{11} \) to be quantized as integers. We can further derive their level classification via Eq. (3) and two more conditions:

\[
dd A_\pi = 0 \text{ (mod } 2\pi), \quad \dd \delta A_\pi = 0.
\]

The first means that the net sum of all monodromy-defect fluxes on the spacetime manifold must have integer units of \(2\pi \). Physically, a \(2\pi \) flux configuration is trivial for a discrete symmetry group \(Z_{N_1} \). Therefore, two SPT invariants differ by a \(2\pi \) flux configuration on their monodromy defect should be regarded as the same one. The second condition means that the variation of the total flux is zero. From the above two conditions for flux identification, we find the SPT invariant Eq. (6) describes the \(Z_{N_1} \) SPTs \(p_1 \in Z_{N_1} \equiv \mathbb{H}^2(\prod_u Z_{N_u}, \mathbb{R}/\mathbb{Z}) \) and the \(Z_{N_1} \times Z_{N_2} \) SPTs \(p_1 \in Z_{N_12} \subset \mathbb{H}^2(\prod_1^2 Z_{N_u}, \mathbb{R}/\mathbb{Z}) \) [53].

For \((3+1)D\), we derive the top type IV partition function that is independent of spacetime metrics:

\[
Z_0(\text{sym twist}) = \exp \left[i \int_{\mathcal{M}^4} \frac{p_{111} N_1 N_2 N_3 N_4}{(2\pi)^2 N_1234} \int_{\mathcal{M}^4} A_1 A_2 A_3 A_4 \right].
\]
The above is gauge invariant only if we choose A_1 and A_2 such that $dA_1 = dA_2 dA_2 = 0$. We denote $A_2 = 2A_2 + A_2'$, where $A_2 dA_2 = 0$, $dA_2' = 0$, $f A_2 = 0$ mod $2\pi/N_2$, and $f A_2' = 0$ mod $2\pi/N_2$. Note that in general $dA_2 \neq 0$, and Eq. (10) becomes $e^{if\int M^4 p_{I} N_1 N_2 A_1 A_2 dA_2}$. The invariance under the large gauge transformations of A_1 and A_2' and flux identification requires $p_{I} \in \mathbb{Z}_{N_1} = \mathcal{H}^4([\mathbb{Z}_{N_1}/\mathbb{R}]/\mathbb{Z})$ of type II SPTs [53]. For Eqs. (9) and (10), we have assumed the monodromy line defect at $dA \neq 0$ is gapped [65, 67]; for gapless defects, one will need to introduce extra anomalous gapless boundary theories.

Now we systematically study the physical probes of SPTs [53]. The SPT invariants can help us to design physical probes for their SPTs. Let us consider $Z_{0i}^{(\text{sym twist})} = \exp[i\mathcal{P} \prod_{N} (\mathcal{I})] \int A_1 A_2 ... A_{d+1}]$, a generic top type $\prod_{N}^{1} Z_{N_i}$ SPT invariant in $(d+1)$D, and its observables.

For d the space to have the topology $(S^1)^2$, and add the unit symmetry twist of the $Z_{N_1}, Z_{N_2}, ..., Z_{N_d}$ to the S^1 in d directions, respectively, $\prod_{A_i} A_i = 2\pi/N_i$. The SPT invariant implies that such a configuration will carry a Z_{N_i} induced charge $p(N_{d+1}/N_1, N_2, \ldots, N_{d+1})$.

We can also apply dimensional reduction to probe SPTs. We can design the dD space as $(S^1)^d \times I$, and add the unit Z_{N_i} symmetry twists along the i th S^1 circles for $i = 3, \ldots, d+1$. This induces a $(1+1)$D $Z_{N_1} \times Z_{N_2} \times \ldots \times Z_{N_d}$ SPT invariant $\exp[i\mathcal{P} \prod_{N} (\mathcal{I})] \int A_1 A_2]$ on the 1D spatial interval I. The 0D boundary of the reduced $(1+1)$D SPTs has degenerate zero energy modes that form a projective representation of $Z_{N_1} \times Z_{N_2}$ symmetry [26]. For example, dimensionally reducing $(3+1)$D SPTs Eq. (8) to $(1+1)$D SPT, if we break the Z_{N_1} symmetry on the Z_{N_i} monodromy defect line, gapless excitations on the defect line will be gapped. A Z_{N_1} symmetry-breaking domain wall on the gapped monodromy defect line will carry degenerate zero modes that form a projective representation of $Z_{N_1} \times Z_{N_2}$ symmetry.

For Eq. (8) we design the $(d+1)$D space as $(S^1)^d \times I$, and add the unit Z_{N_i} symmetry twists along the d th S^1 circle, then Eq. (8) reduces to the $(2+1)$D $Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ SPT invariant $\exp[i\mathcal{P} \prod_{N} (\mathcal{I})] \int A_1 A_2 A_3]$ labeled by $\mathcal{P} \prod_{N} (\mathcal{I}) \in \mathcal{H}^6(Z_{N_1} \times Z_{N_2} \times Z_{N_3}, \mathbb{R}/\mathbb{Z})$. Namely, the Z_{N_i} monodromy line defect carries gapless excitations identical to the edge modes of the $(2+1)$D $Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ SPTs if the symmetry is not broken [60].

Now let us consider lower type SPTs, take $(3+1)$D $\int A_1 A_2 A_3$ of Eq. (9) as an example [53]. There are at least two ways to design physical probes. First, we can design the 3D space as $M^2 \times I$, where M^2 is punctured with N_3. Identical monodromy defects each carrying n_3 unit Z_{N_3} flux, namely, $\mathcal{P} \prod_{N_3}(\mathcal{I}) = 2\pi n_3$ of Eq. (7). Equation (9) reduces to $\exp[i\mathcal{P} \prod_{N_3} (\mathcal{I})] \int A_1 A_2]$, which again describes a $(1+1)$D $Z_{N_1} \times Z_{N_2}$ SPTs, labeled by $\mathcal{P} \prod_{N_3}(\mathcal{I})$ of Eq. (4) in $\mathcal{H}^2(Z_{N_1} \times Z_{N_2}, \mathbb{R}/\mathbb{Z}) = \mathbb{Z}_{N_1}$, which again has OD boundary-degenerate-zero modes.

Second, we can design the 3D space as $S^1 \times M^2$ and add a symmetry twist of Z_{N_1} along the S^1. For example, dimensionally reducing $Z_{N_1} \times Z_{N_2}$ SPTs has degenerate zero energy modes that carry gapless excitations identical to the edge of the $(2+1)$D $Z_{N_1} \times Z_{N_2}$ SPTs. If the gapless excitations are gapped by Z_{N_1}-symmetry breaking, its domain wall will induce fractional quantum numbers of Z_{N_2} charge [26, 74], similar to the Jackiw-Rebbi [75] or Goldstone-Wilczek [76] effect.

It is straightforward to apply the above results to SPTs with $U(1)^m$ symmetry. Again, we find only trivial classes for even $(d+1)$D. For odd $(d+1)$D, we can define the lower type action: $Z_{0i}^{(\text{sym twist})} = \exp[i\mathcal{P} \prod_{N} (\mathcal{I})] \int A_1 A_2 ... A_{d+1}]$. Meanwhile, we emphasize that the top type action with $k \int A_1 A_2 ... A_{d+1}]$ will be trivial for the $U(1)^m$ case since its coefficient k is no longer well defined at $N \rightarrow \infty$ of $(Z_{N_i})^m$ SPT states. For physically relevant $(2+1)$D, $k \in \mathbb{Z}$ for bosonic SPTs. Thus, we will have a $\mathbb{Z}^m \times \mathbb{Z}^{m-1}/2$ classification for $U(1)^m$ symmetry [53].

We have discussed the allowed action $S_{0i}^{(\text{sym twist})}$ that is described by pure gauge fields A_i. We find that its allowed SPTs coincide with group cohomology results. For a curved spacetime, we have more general topological responses that contain both gauge fields for symmetry twists and gravitational connections Γ for spacetime geometry. Such mixed gauge-gravity topological responses will attain SPTs beyond group cohomology. The possibility was recently discussed in Refs. [17, 18]. Here we will propose some additional new examples for SPTs with $U(1)$ symmetry.

In $(4+1)$D, the following SPT response exists:

$$Z_0^{(\text{sym twist})} = \exp[i\frac{k}{3} \int_{M^4} F \wedge CS_3(\Gamma)]$$

$$= \exp[i\frac{k}{3} \int_{\Gamma} F \wedge p_1], \quad k \in \mathbb{Z}. \quad (11)$$

where $CS_3(\Gamma)$ is the gravitational Chern-Simons 3-form and $d(CS_3) = p_1$ is the first Pontryagin class. This SPT response is a Wess-Zumino-Witten form with a surface $\partial N^6 = M^4$. This renders an extra \mathbb{Z} class of $(4+1)$D $U(1)$ SPTs beyond group cohomology. They have the
following physical property: If we choose the 4D space to be $S^2 \times M^2$ and put a U(1) monopole at the center of S^2: $\int_{S^2} F = 2\pi$, in the large M^2 limit, the effective $(2 + 1)$D theory on M^2 space is k copies of the E_8 bosonic quantum Hall states. A U(1) monopole in 4D space is a 1D loop. By cutting M^2 into two separated manifolds, each with a 1D-loop boundary, we see the U(1) monopole and antimonopole as these two 1D loops, each loop carries k copies of the E_8 bosonic quantum Hall edge modes [77]. Their gravitational response can be detected by thermal transport with a thermal Hall conductance [78], $\kappa_{xy} = 8k(\pi^2 k_B^2/3h)T$.

To conclude, the recently found SPTs, described by group cohomology, have SPT invariants in terms of pure gauge actions (whose boundaries have pure gauge anomalies [11,13–15,26]). We have derived the formal group cohomology results from an easily accessible field theory setup. For beyond-group-cohomology SPT invariants, while ours of bulk-on-site-unitary symmetry are mixed gauge-gravity actions, those of other symmetries (e.g., antiunitary-symmetry time-reversal Z_2^T) may be pure gravity actions [18]. SPT invariants can also be obtained via cobordism theory [17–19], or via gauge-gravity actions whose boundaries realizing gauge-gravitational anomalies. We have incorporated this idea into a field theoretic framework, which should be applicable for both bosonic and fermionic SPTs and for more exotic states awaiting future explorations.

J.W. wishes to thank Edward Witten for thoughtful comments during the PCTS workshop at Princeton in March. This research is supported by NSF Grants No. DMR-1005541, No. NSFC 11074140, and No. NSFC 11274192. The research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation.

*juven@mit.edu
†zgu@perimeterinstitute.ca
‡xwen@perimeterinstitute.ca

[42] Since gauge symmetry is not a real symmetry but only a redundancy, we can use gauge symmetry to describe the topological order which has no real global symmetry.
[45] Overall we denote $(d + 1)D$ as d dimensional space and one dimensional time, and dD for d dimensional space.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.031601 for a systematic step-by-step derivation and many more examples. In Appendix A, we provide more details on the derivation of SPTs partition functions of fields with level quantization. In Appendix B, we provide the correspondence between SPTs’ partition functions of fields to “cocycles of group cohomology.” Appendix C, we systematically organize SPT invariants and their physical observables by dimensional reduction.

Here the geometric phase or Berry phase has a gauge structure. Note that the non-Abelian gauge structure of degenerate ground states can appear even for Abelian topological order with Abelian braiding statistics.

This term has also been noticed by M. Levin, Proceedings of the Princeton PCTS on Braiding Statistics and Symmetry-Protected Topological Phases, 2014.