Copper-Catalyzed Oxytrifluoromethylation of Unactivated Alkenes

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ja305840g</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Apr 08 12:36:47 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/94323</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Copper-Catalyzed Oxytrifluoromethylation of Unactivated Alkenes

Rong Zhu and Stephen L. Buchwald
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Abstract

A mild, versatile and convenient method for the efficient oxytrifluoromethylation of unactivated alkenes has been developed based on a copper-catalyzed oxidative difunctionalization strategy. This methodology provides access to a variety of classes of synthetically useful CF$_3$-containing building blocks from simple starting materials.

The incorporation of fluoroalkyl groups and particularly the trifluoromethyl (CF$_3$) group in pharmaceutical and agrochemical relevant molecules has a significant impact on their physical and biological properties, mainly because of the unique metabolic stability, lipophilicity and electron-withdrawing nature of the trifluoromethyl substituent. The importance of CF$_3$-containing compounds provides a continuing driving force for the development of more efficient and versatile trifluoromethylation methods. Our research group has focused on the development of new fluorination and trifluoromethylation reactions using transition-metal catalysis. Herein we report a mild and versatile copper-catalyzed oxytrifluoromethylation reaction of unactivated alkenes that allows rapid access to a variety of CF$_3$-containing building blocks from simple starting materials.

Recently, our group, as well as that of Liu and Wang, independently reported the copper-catalyzed allylic trifluoromethylation of unactivated alkenes (Scheme 1). During the course of our studies, we proposed that this transformation might involve either an α-CF$_3$-alkyl radical (I) or α-CF$_3$-alkylcopper species (II), which subsequently undergoes elimination to afford the allylic trifluoromethyl product. We became interested in the possibility of intercepting this putative intermediate (I or II), as a means for the synthesis of a number of structurally diverse CF$_3$-containing building blocks in a step-economical fashion.

We envisioned that the oxidative difunctionalization of unactivated alkenes involving tandem C–CF$_3$ and C–Nu bond formation could be achieved based on this strategy. It was hypothesized that either a single electron oxidation of the radical intermediate followed by trapping the resulting carbocation (Path A) or copper-mediated C–Nu bond formation (Path B) would lead to the desired difunctionalization product (III). The success of this strategy lies in the identification of a catalytic system efficient for both the C–CF$_3$ bond formation and the subsequent functionalization steps, as well as the ability to inhibit the competitive elimination pathway. Herein we describe a copper(I)/2,2′-biquinoline catalytic system that incorporates these qualities with oxygen-based nucleophiles.

*Corresponding Author: sbuchwal@mit.edu.

Supporting Information. Experimental procedures, characterization and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.
We began our study by examining the reaction of 4-pentenoic acid (2a) in the presence of Togni’s reagent and a catalytic amount of Cu(MeCN)₄PF₆ in methanol. Only allylic trifluoromethylated product 4a was observed in this case, suggesting elimination as the major pathway (Table 1, entry 1). After examining the effects of solvents and additives, we found that switching to acetonitrile, in the presence of a catalytic amount of 2,2’-bipyridyl (L₁), the desired oxytrifluoromethylation product 3a was obtained in 10% yield (entry 3). Encouraged by this result, we evaluated a series of different bidentate pyridine-based ligands, which finally led to the identification of di-2-pyridylketone (L₄) and 2,2’-biquinoline (L₅) as being optimal (entry 6 and 7). A nearly 90% yield of 3a could be obtained in the presence of either L₄ or L₅, with only trace of 4a observed. Both the copper salt and ligand proved to be essential in order for the oxytrifluoromethylation reaction to take place as no 3a was observed in the absence of either of these components (entry 2 and 8).

With an optimized protocol in hand, we next explored the scope of this oxytrifluoromethylation reaction. Illustrative examples are shown in Table 2. A series of unsaturated aliphatic and aromatic carboxylic acids were found to undergo the desired transformation to give the corresponding trifluoromethylated lactones in good yields (entry 1–8). With regard to the scope of alkene moiety, monosubstituted and geminal disubstituted alkenes were excellent substrates for this reaction. Alkyl and aryl substituents on the carbon–carbon double bond were well tolerated. In terms of the size of the ring formed, δ-, γ-, and even β-lactones proved to be accessible.

Next, we sought to expand the scope of the nucleophile to include other common oxygen-based functional groups. It was found that primary alcohols (Table 2, entry 9) and phenols (entry 10) also served as viable nucleophiles for this reaction.

Allylic alcohols (Table 2, entry 11–13) are an especially interesting class of substrates because their oxytrifluoromethylation reactions give rise to 3-trifluoromethyl-1, 2-epoxides, which are highly versatile CF₃-containing intermediates. It was found that both aryl- (2k, 2m) and alkyl- (2l) substituted allylic alcohols furnished the desired products in moderate to good yields. When the enantiomerically enriched 2k was subjected with the standard protocol, 3k was produced with no erosion in enantiomeric excess (eq. 1).

\[
\text{PhOH} \rightarrow \text{PhO} = \text{CF}_3
\]

(1)

To further demonstrate the synthetic utility of the products derived from this method, oxytrifluoromethylation product 3m was shown to undergo epoxide opening in good yields in the presence of a number of different nucleophiles including an azide, a Grignard reagent, a thiol and fluoride (Scheme 2). A series of highly functionalized CF₃-containing building blocks (5–8), which are otherwise difficult to access, could easily be prepared from the simple allylic alcohol 2m in two steps.

While the mechanistic details of this copper-catalyzed oxytrifluoromethylation reaction remain unclear at present, the use of a copper(I)/bidentate pyridine-based ligand system is suggestive of an atom transfer-type radical addition pathway. Further, the oxytrifluoromethylation reaction was found to be completely inhibited by addition of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO), a known radical scavenger.
In conclusion, a mild, versatile and convenient method for the efficient oxytrifluoromethylation of unactivated alkenes has been developed based on a copper(I)/2,2′-biquinoline catalytic system. Carboxylic acids, alcohols and phenols all serve as suitable nucleophiles under the conditions developed. The reaction conditions are compatible with a range of functional groups including amides, β-lactones, epoxides and aryl bromides. All the reactions were carried out using simple, user-friendly bench-top set-up. This methodology allows rapid access to a variety of synthetically useful building blocks such as CF₃-containing lactones, cyclic ethers, and epoxides from simple starting materials. We are continuing work to gain insight into the reaction mechanism and expand the scope of this copper-catalyzed alkene difunctionalization strategy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the National Institutes of Health for financial support of this work (Grant GM46059). This activity is supported, in part, by an educational donation provided by Amgen for which we are grateful. We thank Dr. Thomas J. Maimone for helpful discussions. The Varian 300 MHz and Bruker 400 MHz NMR spectrometers used in this work were purchased with funds from the National Science Foundation (Grants CHE 9808061 and DBI 9729592) and the National Institutes of Health (1S10RR13886-01), respectively.

References

10. Low yields were obtained with 1,2-disubstituted alkene substrates. For instance, under the standard conditions, (E)-5-phenyl-4-pentenoic acid furnished the expected oxytrifluoromethylation product in only 11% yield as determined by 19F NMR spectroscopy.

11. In preliminary experiments, the reactions of substrates containing secondary amides or sulfonamides in place of carboxylic acids gave little or no yield of the desired product.

Scheme 1.
Copper-catalyzed trifluoromethylation of unactivated alkenes.

Cu-catalyzed Allylic Trifluoromethylation:

\[
R\text{=CH}_2 + \text{1} \quad \xrightarrow{\text{Cu(MeCN)}_4\text{PF}_6 (15 \text{ mol\%})} \quad \text{MeOH, 0 °C to RT} \quad \xrightarrow{} \quad R\text{-CH}-(\text{CF}_3)
\]

Possibly via:

\[
\begin{align*}
\text{(I)} & \quad \left[\text{R} - \cdot \text{CF}_3 \right] \\
\text{(II)} & \quad \left[\text{Cu} \right]
\end{align*}
\]

Cu-catalyzed Difunctionalization:

\[
\text{NuH} + \text{1} \quad \text{cat. Cu(I)/L} \quad \xrightarrow{\text{Path A}} \quad \left[\text{-NuH} - \cdot \text{CF}_3 \text{ - 1 e} \right] \quad \xrightarrow{\text{Path B}} \quad \left[\text{NuH} \text{-Cu} \right] \quad \text{NuH} \quad \rightarrow \quad \left[\text{Nu} \text{-CF}_3 \right]
\]

This work: Nu = O

\text{oxytrifluoromethylation}
Scheme 2.
Versatile transformations of the oxytrifluoromethylation product 3m.a

aReaction conditions: (a) NaN\textsubscript{3} (3 equiv.), NH\textsubscript{4}Cl (2 equiv.), H\textsubscript{2}O/MeOH, 80 °C, 3 h; (b) Allylmagnesium bromide (3 equiv.), Et\textsubscript{2}O, RT, 2 h; (c) p-ClC\textsubscript{6}H\textsubscript{4}SH (2 equiv.), NaOH (2 equiv.), dioxane/H\textsubscript{2}O, 65 °C, 2 h; (d) BF\textsubscript{3}•Et\textsubscript{2}O (0.33 equiv.), DCM, −15 °C, 5 min.
Table 1

Ligand effect.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Ligand</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeOH</td>
<td>-</td>
<td>< 5</td>
</tr>
<tr>
<td>2</td>
<td>MeCN</td>
<td>-</td>
<td>< 5</td>
</tr>
<tr>
<td>3</td>
<td>MeCN</td>
<td>L1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>MeCN</td>
<td>L2</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>MeCN</td>
<td>L3</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>MeCN</td>
<td>L4</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>MeCN</td>
<td>L5</td>
<td>89</td>
</tr>
<tr>
<td>8c</td>
<td>MeCN</td>
<td>L5</td>
<td>< 5</td>
</tr>
</tbody>
</table>

aReaction conditions: Cu(MeCN)$_4$PF$_6$ (10 mol%), ligand (20 mol%), 2a (0.10 mmol, 1.0 equiv.), 1 (1.1 equiv.), solvent (1.0 mL), 55 °C, 16 h.

bDetermined by 19F NMR spectroscopy using PhCF$_3$ as an internal standard.

cWithout Cu(MeCN)$_4$PF$_6$.

\[\text{Cu(MeCN)}_4 \text{PF}_6 \] (10 mol%)
\[\text{Ligand (20 mol%)} \]
\[\text{2a} (0.10 \text{ mmol, 1.0 equiv.)} \]
\[\text{1 (1.1 equiv.), solvent (1.0 mL), 55 °C, 16 h.} \]
Table 2

Copper-catalyzed oxytrifluoromethylation.a

\[
\begin{array}{cccc}
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>3a</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>3b</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>3c</td>
<td>94 (dr 2.2:1)</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>3d</td>
<td>74 (dr 2.8:1)</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>3e</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>3f</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>2g</td>
<td>3g</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>2h</td>
<td>3h</td>
<td>42c</td>
</tr>
<tr>
<td>9</td>
<td>2i</td>
<td>3i</td>
<td>73c</td>
</tr>
</tbody>
</table>
\end{array}
\]

a Cu(MeCN)\textsubscript{2}PF\textsubscript{6} (10 mol%), 2,2b-biquinoline (20 mol%).

b Isolated yields.

c Determined by NMR.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>10<sup>d</sup></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>11<sup>c,f</sup></td>
<td></td>
<td></td>
<td>50 (dr 10:1)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>70 (dr 4:1)</td>
</tr>
<tr>
<td>13<sup>c</sup></td>
<td></td>
<td></td>
<td>64 (dr >20:1)</td>
</tr>
</tbody>
</table>

^aReaction conditions: Cu(MeCN)₄PF₆ (10 mol%), 2,2′-biquinoline (20 mol%), 1 (1.1 equiv.), MeCN (4 mL), 55 °C, 16 h.

^bIsolated yields, average of two runs. Diastereoratio determined by 19F NMR and 1H NMR spectroscopic analysis. Structures of the major diastereomers are shown.

^cCu(MeCN)₄PF₆ (20 mol%) and 2,2′-biquinoline (30 mol%) were used.

^dCu(MeCN)₄PF₆ (20 mol%) and di-2-pyridyl ketone (30 mol%) were used.

^eDetermined by 19F NMR spectroscopy using PhCF₃ as an internal standard.

^fThe reaction did not go to full conversion.