A 0.6V 2.9µW mixed-signal front-end for ECG monitoring

<table>
<thead>
<tr>
<th>Citation</th>
<th>Yip, Marcus, Jose L. Bohorquez, and Anantha P. Chandrakasan. “A 0.6V 2.9µW Mixed-Signal Front-End for ECG Monitoring.” 2012 Symposium on VLŚI Circuits (VLSIC) (June 2012).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/VLSIC.2012.6243792</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Mar 22 05:47:28 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/95487</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
A 0.6V 2.9\(\mu\)W Mixed-Signal Front-End for ECG Monitoring

Marcus Yip\(^1\), Jose L. Bohorquez\(^2\), and Anantha P. Chandrakasan\(^1\)*

\(^1\)Massachusetts Institute of Technology, Cambridge, MA, USA, \(^2\)Convergence Medical Devices, Woburn, MA, USA

Abstract

This paper presents a mixed-signal ECG front-end that uses aggressive voltage scaling to maximize power-efficiency and facilitate integration with low-voltage DSPs. 50/60Hz interference is canceled using mixed-signal feedback, enabling ultra-low-voltage operation by reducing dynamic range requirements. Analog circuits are optimized for ultra-low-voltage, and a SAR ADC with a dual-DAC architecture eliminates the need for a power-hungry ADC buffer. Oversampling and \(\Delta\Sigma\)-modulation leveraging near-\(V_T\) digital processing are used to achieve ultra-low-power operation without sacrificing noise performance and dynamic range. The fully-integrated front-end is implemented in a 0.18\(\mu\)m CMOS process and consumes 2.9\(\mu\)W from 0.6V.

Introduction

Symptoms of cardiovascular disease are often very intermittent, necessitating ultra-low-power wearable ECG monitors with long lifetimes. In order to minimize system power, digital signal processing (DSP) can accomplish feature extraction and data compression which reduces the power burden of data transmission or storage. Recent biomedical DSPs leverage voltage scaling (down to 0.5V) to improve energy-efficiency [1]. Additional size and power benefits can be obtained by integrating the analog front-end (AFE) with the DSP back-end [2]. However, current AFEs rely on high supply voltages [3, 4] to perform signal conditioning and accommodate aggressors like electrode offset (EO) and power-line interference (PLI), limiting their compatibility with low-voltage DSPs. Therefore, this paper presents a mixed-signal front-end (MSFE) that leverages a highly-digital architecture in order to operate from a 0.6V supply which improves power-efficiency through voltage scaling, and facilitates integration with low-voltage DSPs. This work focuses on the design of ultra-low-voltage front-end analog circuits aided by configurable and energy-efficient digital processing at near-\(V_T\) operation. A highly-integrated solution is presented to demonstrate feasibility of a 0.6V system.

System Description

Supply voltage scaling is an effective way to achieve linear and quadratic power reduction in analog and digital circuits respectively. However, for ECG acquisition, PLI can be a limiting factor for voltage scaling. For example, 5mV\(_{p-p}\) of PLI with 40dB of front-end gain could easily saturate a sub-1V system before digitization by the ADC. Therefore, the system architecture in this work is based on [4], but uses \(\Delta\Sigma\)-modulation to simultaneously achieve a larger PLI cancellation range and low-noise performance as a key enabler for ultra-low-voltage operation. The burden of signal processing is shifted to the digital domain which is suitable for low-voltage systems. Compared to [4], this work reduces the supply voltage from 1.5V to 0.6V and optimizes analog circuits for ultra-low-voltage operation.

Shown in Fig. 1, a low-noise amplifier (LNA) gains the input by 34.5dB, and ac-coupling achieves greater than \(\pm 300\)mV of EO rejection as required [5]. A sinc anti-aliasing filter (SAAF) provides an integrate-and-dump function at a sampling frequency of \(f_S=10\)kHz, resulting in a sinc frequency response with notches placed at multiples of \(f_S\) which are precisely in the center of the aliasing bands. At the end of each integration period, the signal is digitized by a 9b dual-DAC SAR ADC.

Any PLI in the signal is captured by a programmable digital band-pass filter (BPF) and fed back to the input with an 8b charge-redistribution DAC, cancelling PLI right at the input to enable low-voltage operation. Moreover, this mixed-signal topology creates an extremely sharp and tunable notch without large passives required in purely analog systems. Since the frequency content of ECGs is well below 100Hz, \(\Delta\Sigma\)-modulation and oversampling at 10kS/s are exploited to achieve greater than 12mV\(_{p-p}\) of PLI cancellation without introducing significant quantization noise with an 8b DAC. A decimation filter removes out-of-band noise and reduces the data rate down to 32.5S/s, providing up to 10.8 ENOB at the output. All reference voltages are generated by 2b R-string DACs whose reference comes from a 400mV supply-independent reference, and an on-chip oscillator and clock generator produce all clock phases.

Low-Voltage Mixed-Signal Circuit Design

The LNA is fully-differential to maximize signal range, and uses passive feedback to accurately set gain and ensure good linearity at 0.6V. Although the CMRR is limited to 70dB by using passive feedback, the CMRR requirements are relaxed since the mixed-signal notch in this system filters out PLI. Switched-capacitor common-mode feedback (SC-CMFB) is used to avoid distortion from the CMFB loop with large signal swing at low voltage. Although SC-CMFB introduces spikes at the switching frequency of 10kHz, the SAF in this system also acts as a spike reduction filter.

In addition to anti-aliasing and spike reduction, the SAF shown in Fig. 2 also provides a gain of \(G_S = G_M/(2f_S C_{INT})\) which is digitally tunable through \(G_M\) and \(C_{INT}\). The SAF uses negative feedback to implement a linear transconductor and avoids cascading in order to operate at 0.6V. \(C_{INT}\) is the sum of a 4b switched-capacitor \(C_D\), and the sampling capacitance \(C_S\), of the SAR ADC whose block diagram is shown in

\(^*\)The authors acknowledge the funding support of Texas Instruments and the NSERC Fellowship.
Fig. 2. The ADC uses dual capacitive DACs, where switches S1 and S2 are complementary so that DAC1 and DAC2 alternate between bit cycling and sampling so that only one of them adds C_S to C_D during any given period. The interleaved dual-DAC architecture effectively merges the ADC sampling capacitance with the SAAF integrating capacitor, eliminating the need for a power-hungry ADC buffer which is usually needed to drive the input capacitance of a conventional SAR ADC. Finally, the ADC full-scale is digitally tunable, providing up to 4.9 dB of embedded gain.

Fig. 3 shows the block diagram of the programmable digital BPF based on [4], but optimized for area and integrated for near-V_T operation. The BPF takes the form of a frequency- translated accumulator, and its center frequency and width are tunable through ω_0 and G_{PLL} respectively. In this work, the sinusoids required for frequency translation are generated on-chip using a direct-digital synthesizer (DDS) with 9b outputs, comprising a phase accumulator and a LUT as a phase to waveform generator. The number of bits in the LUT is reduced by over 5× when compared to [4] by storing only a quarter period and using the sine-phase difference technique [6], requiring only 4 K gates.

The cosine phase is generated by adding an offset of $\pi/2$ and the LUT is used for both sine and cosine by time-multiplexing.

Measurement Results

A prototype was fabricated in a 0.18-μm CMOS process. The closed-loop frequency response of the SAAF output shown in Fig. 4 demonstrates the digital programmability of the PLI notch frequency and width. The total gain of the system can be set between 34.5 dB and 69.4 dB by selecting one of the 60 notches, each with a gain setting of 102.3 dB. Finally, the ADC full-scale is digitally tunable, providing up to 4.9 dB of embedded gain.

Fig. 4. Measured frequency response at the output of the SAAF.

Fig. 5. Measured (a) input spectral density with a 60 Hz, 8 mV$_{pp}$ input, and (b) ECG, with the PLI notch off and on.

Fig. 6. Measured chip summary, die photo, and comparison table. Spectrally, Fig. 5a shows the input-referred spectrum with an 8 mV$_{pp}$, 60 Hz input. With the notch enabled, the tone is attenuated and the Δ-modulator shapes the DAC quantization noise to higher frequencies, maintaining the in-band noise floor to achieve an interference dynamic range of 62 dB using just an 8b DAC. Finally, Fig. 5b shows ECG measurements on a male subject using gel electrodes and unshielded wiring. The PLI is clearly canceled when the notch filter is enabled.

Conclusion

Fig. 6 shows the chip summary, die photo, and comparison table. At 0.6 V, the single-channel MSFE consumes 1.15 μW, and the integrated peripheral circuits consume 1.71 μW. In comparison, the same implementation at a supply of 1.5 V as in [4] would require greater than 5 μW of additional power. The combination of a mixed-signal architecture and circuit optimizations at scaled voltages helps to achieve ultra-low-power operation at 0.6 V, demonstrating compatibility with ultra-low-voltage DSPs.

References

7. R. Muller, S. Gambini and J. M. Rabaey, “A 0.033 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5 V supply,” in ISSCC Dig. Tech. Papers, Feb., 2011, pp. 302–303.