Threonine 149 Phosphorylation Enhances FosB Transcriptional Activity to Control Psychomotor Responses to Cocaine

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1523/jneurosci.1611-14.2014

Publisher
Society for Neuroscience

Version
Final published version

Accessed
Sun Dec 02 13:16:24 EST 2018

Citable Link
http://hdl.handle.net/1721.1/95796

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Threonine 149 Phosphorylation Enhances ΔFosB Transcriptional Activity to Control Psychomotor Responses to Cocaine

Hannah M. Cates,1 Mackenzie Thibault,2 Madeline Pfau,1 Elizabeth Heller,1 Andrew Eagle,2 Paula Gajewski,2 Rosemary Bagot,1 Christopher Colangelo,1 Thomas Abbott,1 Gabby Rudenko,1 Rachael Neve,2 Eric J. Nestler,1 and Alfred J. Robison2

1Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 2Department of Physiology, Michigan State University, Lansing, Michigan 48824, 3Department of Pharmacology/Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, 4Department of Molecular Biophysics and Biochemistry/Keck Biotechnology Services, New Haven, Connecticut 06511, and 5Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Stable changes in neuronal gene expression have been studied as mediators of addicted states. Of particular interest is the transcription factor ΔFosB, a truncated and stable FosB gene product whose expression in nucleus accumbens (NAc), a key reward region, is induced by chronic exposure to virtually all drugs of abuse and regulates their psychomotor and rewarding effects. Phosphorylation at Ser 27 contributes to ΔFosB’s stability and accumulation following repeated exposure to drugs, and our recent work demonstrates that the protein kinase CaMKIIα phosphorylates ΔFosB at Ser 27 and regulates its stability in vivo. Here, we identify two additional sites on ΔFosB that are phosphorylated in vitro by CaMKIIα, Thr 149 and Thr 180, and demonstrate their regulation in vivo by chronic cocaine. We show that phosphomimetic mutation of Thr 149 (T149D) dramatically increases AP-1 transcriptional activity while alanine mutation does not affect transcriptional activity when compared with wild-type (WT) ΔFosB. Using in vivo viral-mediated gene transfer of ΔFosB-T149D or ΔFosB-T149A in mouse NAc, we determined that overexpression of ΔFosB-T149D in NAc leads to greater locomotor activity in response to an initial low dose of cocaine than does WT ΔFosB, while overexpression of ΔFosB-T149A does not produce the psychomotor sensitization to chronic low-dose cocaine seen after overexpression of WT ΔFosB and abrogates the sensitization seen in control animals at higher cocaine doses. We further demonstrate that mutation of Thr 149 does not affect the stability of ΔFosB overexpressed in mouse NAc, suggesting that the behavioral effects of these mutations are driven by their altered transcriptional properties.

Key words: accumbens; CaMKII; cocaine; ΔFosB; phosphorylation; transcription

Introduction

Drug addiction arises in part from altered gene expression in discrete brain regions in response to chronic exposure to drugs of abuse (Robison and Nestler, 2011). Increasing evidence suggests that a subset of these gene expression changes are mediated by ΔFosB, a Fos family transcription factor induced in multiple brain regions specifically by chronic exposure to virtually all drugs of abuse (Nestler, 2008; Perrotti et al., 2008). In nucleus accumbens (NAc), ΔFosB expression increases locomotor and rewarding responses to drugs of abuse (Kelz et al., 1999; Colby et al., 2003), whereas blockade of ΔFosB transcriptional activity reduces drug reward (McClung and Nestler, 2003; Peakman et al., 2003; Zachariou et al., 2006; Robison et al., 2013). NAc ΔFosB also regulates other forms of reward. It accumulates in NAc with sexual experience, sugar and high-fat diets, and calorie restriction, and promotes reward to these stimuli (Pitchers et al., 2010, 2013; Been et al., 2013). Additionally, NAc ΔFosB is induced by chronic stress and antidepressant treatment and mediates stress resilience and antidepressant action (Vialou et al., 2010; Robison et al., 2014).

These effects are mediated by numerous ΔFosB gene targets (McClung and Nestler, 2003). Recent work has focused on ΔFosB induction of CaMKIIα, which is specific to D1-type medium spiny neurons (MSNs) of NAc shell and mediates ΔFosB’s enhanced responses to cocaine and antidepressant-like actions (Robison et al., 2013, 2014). NAc CaMKII regulates the psychomotor effects of cocaine through AMPA receptor modulation (Pierce et al., 1998), and recent work demonstrates that ΔFosB...
regulates NAc MSN glutamatergic synapse morphology and function in a cell type-specific manner (Grueter et al., 2013), a process long associated with the structural and catalytic roles of CaMKII (Hell, 2014).

ΔFosB not only regulates CaMKII expression, it is also phosphorylated by CaMKII, establishing a feedforward loop engaged by chronic cocaine that is essential for cocaine’s behavioral and cellular effects (Robison et al., 2013). Previous studies demonstrate that ΔFosB is a potent in vitro substrate for CaMKII (K_M = 5.7 ± 2.0 μM; K_CAT = 2.3 ± 0.3 min^-1) with a stoichiometry of phosphorylation indicating at least three separate substrate sites (2.27 ± 0.07 mol/mol; Robison et al., 2013). In the same study, we identified Ser^27 as one of the CaMKII substrate sites, a site previously shown to regulate the stability of ΔFosB in vitro and in vivo (Uleary et al., 2006; Uleary-Reynolds et al., 2009). We demonstrated further that overexpression of constitutively active CaMKII promotes ΔFosB accumulation in vivo (Robison et al., 2013), indicating that Ser^27 phosphorylation may be regulated by CaMKII in the brain. However, the identity and function of the other CaMKII phosphorylation sites within ΔFosB, and how they might regulate ΔFosB activity and drug responses, remain unknown. Here, we uncover two novel CaMKII-phospho-sites within ΔFosB, Thr^149, and Thr^180 and demonstrate that phosphorylation of Thr^149 is regulated in the brain by chronic cocaine, dramatically increases ΔFosB-mediated gene transcription, and promotes locomotor activation by cocaine in mice.

Materials and Methods

Animals. C57BL/6j male mice (The Jackson Laboratory), 7–8 weeks old and weighing 25–30 g, were habituated to the animal facility 1 week before use and maintained at 22–25°C on a 12 h light/dark cycle. All animals had access to food and water ad libitum. All experiments were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committees at Icahn School of Medicine at Mount Sinai and Michigan State University.

Mass spectrometry. Standard peptides were designed to mimic the phospho or non-phospho forms of Thr^149, Thr^180, and Ser^199 ΔFosB. After synthesis and purification, each “heavy” idioptic peptide was dissolved in 50/50 acetonitrile/water buffer and sent for amino acid analysis to determine absolute concentration of the synthetic peptide stock solution. Each heavy peptide was then directly infused into the 4000 QTRAP to ensure peptide separation. The instrument was run in the triple quadrupole mode, with Q1 set to determine absolute concentration of the synthetic peptide stock solution. Two transitions per peptide, corresponding to two to four multiple reaction monitoring transitions where the collision energy is tuned to optimize the intensity of the existing peptides. Two transitions per peptide, corresponding to two to four multiple reaction monitoring transitions where the collision energy is tuned to optimize the intensity of the phospho or non-phospho forms of Thr^149, Thr^180, and Ser^199 ΔFosB, were subjected to LCMS on the 4000 QTRAP to ensure peptide separation. MRM transitions were determined from the MS/MS spectra (typically 1–2 s) was looped throughout the entire time of the HPLC separation. MRM transitions were determined from the MS/MS spectra of the existing peptides. Two transitions per peptide, corresponding to high-intensity fragment ions, were then selected and the collision energy optimized to maximize signal strength of MRM transitions using automation software. Peaks resulting from standard peptides and ΔFosB samples from the brains of saline-treated or cocaine-treated mice were then compared to determine the absolute abundance of each peptide form in the samples. Data analysis on LC-MRM data is performed using AB MultiQuant 1.1 software.

Enrichment of ΔFosB from mouse brain. Mice were injected intraperitoneally with saline or cocaine (15 mg/kg) in their home cages once daily for 7 d. Twenty four hours following the final injection, mice were decapitated without anesthesia to avoid effects of anesthetics on neuronal protein levels and phospho-states. Brains were serially sliced in a 1.0 mm matrix (Braininert Scientific) and NAC (ventral striatum) and dorsal stria
tum were removed in PBS containing protease (Roche) and phosphatase (Sigma-Aldrich) inhibitors using a 12 gauge punch and immediately frozen on dry ice. Tissue was homogenized in PBS with 0.2% Triton X-100 and centrifuged at 10,000 X g for 5 min at 4°C to resolve insoluble proteins. The soluble fractions from 10 mice were combined and concentrated by dialysis against 0.1 M HEPES, pH 7.4, and 500 mM NaCl. The resulting concentrated protein was separated by SDS-PAGE and bands from 32 to 40 kDa were cut from the gel to enrich for ΔFosB (35–37 kDa). Protein was extracted from the gel slices and subjected to mass spectroscopic analysis as described above.

DNA constructs. The luciferase reporter construct was 4 × AP-1/RSV-Luc, which consists of a promoter region of four AP-1 consensus sequences in tandem with a minimal RSV promoter, and a luciferase reporter gene under the control of this promoter (Uleary and Nestler, 2007). We used site-directed mutagenesis (Qiagen) to generate mutant constructs encoding ΔFosB with Thr^149 or Thr^180 converted to Asp (T149D and T180D) or to Ala (T149A and T180A) in a pcDNA3.1 backbone. WT or catalytically dead (Lys^27 to Met) CaMKII was also expressed using the pcDNA3.1 backbone. All mutations were verified by dideoxynucleotide sequencing.

Luciferase activity assays. Neuro2a cells (N2a; American Type Culture Collection) were cultured in EMEM (ATCC) supplemented with 10% heat-inactivated fetal bovine serum (ATCC) in a 5% CO2 humidified atmosphere at 37°C. Cells were plated into 12-well plates. Twenty-four hours later (when cells were ~95% confluent) cells were transiently cotransfected with a combination of 4 × AP-1/RSV-Luc plasmid and pcDNA3.1 plasmids (Life Technologies) containing WT or mutant ΔFosB and/or CaMKIIa constructs using Effectene (Qiagen). A total of 200 ng DNA was transfected per well. Approximately 48 h post transfection, cells were washed twice with 1 ml PBS and whole-cell lysates were prepared using 180 μl lysis buffer provided with ONE-Glo Luciferase Assay System (Promega). Fifty microliters of the lysate was removed for Western blot analysis. The remaining lysates were incubated on ice for 5 min and the luciferase activity (luminescence) present in each sample was assayed using the substrates and protocol included in the ONE-Glo Luciferase Assay System. The luminescence of each sample was detected in triplicate using Kodak autoradiography film and quantified using ImageJ software (NIH). Luminescence was normalized to total ΔFosB expression as assessed by Western blot.

Viral-mediated gene transfer. Mice were anesthetized with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg) and prepared for stereotactic surgery. Thirty-three gauge syringe needles (Hamilton) were used to bilaterally infuse 0.5–1.0 μl of virus into NAC at a rate of 0.1 μl/min at 1.6 mm anterior, +1.5 mm lateral, and 4.4 mm ventral from bregma. We used bicistronic p1005 HSV vectors expressing GFP alone or GFP plus 35 μg sections on a freezing microtome and immunohistochemistry for a cytomegalovirus promoter, whereas the select gene of interest is driven by the IE4/5 promoter (Maze et al., 2010). In the locomotor experiment, viral expression was confirmed during tissue collection using fluorescence microscopy (Leica) to visualize GFP and ensure targeting of the NAC.

Locomotor activity assay. Locomotor activity was measured by published protocols (Lobo et al., 2010) with minor modifications. Activity was assessed in the x- and y-planes for horizontal ambulation in a 75 cm^2 chamber using EthoVision XT (Noldus). Twenty-four hours before undergoing surgery, mice were habituated to the locomotor chamber for 60 min with no injection. Three days after surgery (day 0) animals were injected intraperitoneally with saline and placed in locomotor chamber for 45 min at which time baseline locomotor was recorded. On days 4–8 after surgery (days 1–5), animals were injected with cocaine (3.75 mg/kg) and analyzed for 45 min.

Immunohistochemistry. Adult male mice were terminally anesthetized (15% chloral hydrate) and transcardially perfused with PBS followed by 4% formalin. Brains were then postfixed overnight in formalin at 4°C and cryoprotected in 30% sucrose at 4°C until isonict. Brains were sliced in 1.5 mm sections on a freezing microtome and immunohistochemistry for ΔFosB expression was performed essentially as described previously (Perrodi et al., 2008). Briefly, slices were blocked for 1 h in 0.3% Triton
X-100 and 3% normal goat serum at room temperature then incubated overnight at 4°C in 1% normal goat serum, 0.3% Triton X-100, and pan-FosB antibody (Santa Cruz Biotechnology; sc-48, 1:1000). Sections were washed, placed for 1.5 h in a 1:200 dilution of Cy3-conjugated goat anti-rabbit IgG (Millipore), and slices were mounted under glass coverslips for visualization on a confocal microscope (Axiovert 100; LSM 510 with META emission wavelengths of 488, 543, and 633 nm; Zeiss). Images captured in both the red (FosB) and green (GFP) channels were quantified for intensity using ImageJ software (NIH).

Results

Novel CaMKII phospho-sites within ΔFosB

To identify novel CaMKII phospho-sites within ΔFosB, we performed in vitro phosphorylation of purified His6-ΔFosB with purified CaMKII as previously described (Robison et al., 2013). Incubation of ΔFosB with CaMKII in the presence, but not absence, of ATP caused an increase in the apparent molecular weight of ΔFosB consistent with phosphorylation at multiple sites (Fig. 1A). MS analyses of these samples revealed phosphorylation of ΔFosB at Thr149, Thr180, and Ser199 (Fig. 1B–D), along with multiple additional sites (data not shown). All three of these sites are within the leucine-zipper domain of ΔFosB (Fig. 2A), and thus could regulate dimerization, DNA-binding, or transcriptional activation by the AP-1 complex.

Because both Thr149 and Thr180 were previously predicted as possible CaMKII substrates by bioinformatics analysis (Ulery et al., 2006), and the CaMKII consensus phosphorylation sequence at both sites is perfectly conserved from zebrafish through humans (Fig. 2B), we focused on validation of these sites as bona fide CaMKII substrates. We generated labeled synthetic peptides mimicking the phospho- and non-phospho-states of Thr149, Thr180, and Ser199 when exposed to CaMKII and ATP (black arrow). B–D. The precursor (inset) and fragment spectra of TiO2-enriched phosphopeptides detected from ΔFosB after in vitro phosphorylation by CaMKII. After using both trypsin digestion and enrichment of the phosphopeptide samples by TiO2, analysis reveals phosphorylation of Thr149 (B), Thr180 (C), and Ser199 (D).
and Ser¹⁹⁹ and then used known quantities of these peptides as standards in MRM analyses of ΔFosB before and after in vitro phosphorylation by CaMKII. Subsequent quantitation confirms that Thr¹⁴⁹ and Thr¹⁸⁰ are potent substrates for CaMKII, while Ser¹⁹⁹ phosphorylation is entirely unaffected by coinubcation with CaMKII (Fig. 2C).

ΔFosB Thr¹⁴⁹ phosphorylation in brain is increased by chronic cocaine

Previous studies have demonstrated that ΔFosB is a phosphoprotein in the brain (Ulery et al., 2006). Therefore, we next sought to determine whether ΔFosB is phosphorylated at Thr¹⁴⁹ or Thr¹⁸⁰ in the brain, and whether these phospho-sites are regulated by a behaviorally relevant stimulus, chronic cocaine exposure. Adult (8 weeks) male mice were administered 20 mg/kg cocaine or saline vehicle intraperitoneally once per day for 7 d. Twenty-four hours after the last injection striatum was harvested and proteins were homogenized in the presence of protease and phosphatase inhibitors, concentrated by dialysis, and proteins of ~32–38 kDa were purified by SDS-PAGE gel extraction. We then performed MRM analyses on the purified proteins using the same labeled peptides described above and observed peaks corresponding to phospho-Thr¹⁴⁹ and phospho-Thr¹⁸⁰ in striatal extracts (Fig. 3). Importantly, the amount of Thr¹⁴⁹ phosphopeptide was significantly higher in the proteins purified from cocaine-treated animals than in those from saline-treated controls (Fig. 3D; t₄ = 3.203, p = 0.0328). Levels of phospho-Thr¹⁸⁰ were lower, and although there was a trend for an increase with co- treatment, it was not significant (Fig. 3H). We therefore focused the remainder of our studies on Thr¹⁴⁹ phosphorylation.

ΔFosB Thr¹⁴⁹ phosphorylation increases AP-1 transcriptional activity

Because Thr¹⁴⁹ is within the basic region of ΔFosB, which is important for DNA binding (Glover and Harrison, 1995; Fig. 2A), we hypothesized that Thr¹⁴⁹ phosphorylation may regulate ΔFosB-mediated gene transcription. We constructed mutants of ΔFosB mimicking phosphorylation at Thr¹⁴⁹ and Thr¹⁸⁰ (T149D and T180D) and assayed their effects on gene transcription using an AP-1-luciferase reporter assay in Neuro2a cells. While T180D ΔFosB induces a twofold increase in AP-1-luciferase activity, which is comparable to WT ΔFosB’s effect, T149D ΔFosB expression caused a dramatic 17-fold increase in AP-1 luciferase activity (Fig. 4), much stronger than that of WT or T180D ΔFosB (F_(6,12) = 2.602; p < 0.0001). Coexpressing WT CaMKII with WT ΔFosB increased induction of AP-1 activity to an extent similar to that observed with T149D ΔFosB, 15-fold greater than WT ΔFosB alone. However, cotransfection with catalytically dead K42R CaMKII caused a much smaller though still significant increase, suggesting that CaMKII catalytic activity is the primary but not sole means by which it regulates ΔFosB transcriptional activity.

These data suggest that CaMKII-mediated phosphorylation of ΔFosB at Thr¹⁴⁹ robustly increases AP-1 transcriptional activity of the protein.

ΔFosB Thr¹⁴⁹ phosphorylation does not affect in vivo protein stability

Previous data demonstrate that CaMKII overexpression can enhance the stability of ΔFosB in mouse NAc in vivo (Robison et al., 2013), though the mechanism of this enhancement was not determined. Because phosphorylation of ΔFosB Ser²⁷ is known to increase ΔFosB stability in vitro and in vivo (Ulery et al., 2006; Ulery-Reynolds et al., 2009), and Ser²⁷ is a potent CaMKII substrate (Robison et al., 2013), we hypothesized that CaMKII phosphorylation of Ser²⁷ was responsible for this enhancement of stability. Nevertheless, we sought to determine whether Thr¹⁴⁹ phosphorylation could also regulate ΔFosB stability in mouse brain. We constructed herpes simplex virus (HSV) vectors that express GFP along with WT, phospho-absent (T149A), or phosphomimetic (T149D) ΔFosB and injected them into the NAc of adult male mice (Fig. 5). Animals were analyzed 3, 7, or 14 d after virus injection, and ΔFosB expression levels were assessed by immunofluorescence and quantitative image analysis (Fig. 6A). No significant difference in ΔFosB expression was found between WT ΔFosB and either mutant at any of the three time points assessed (Fig. 6B). Thus, unlike Ser²⁷, Thr¹⁴⁹ phosphorylation does not alter ΔFosB stability in vivo.
ΔFosB Thr^{149} phosphorylation mediates the psychomotor effects of cocaine

Viral and transgenic ΔFosB overexpression enhances the locomotor-activating effects of cocaine, whereas viral blockade of endogenous FosB transcriptional activity reduces cocaine’s locomotor effects (Kelz et al., 1999; Grueter et al., 2013; Robison et al., 2013). We used HSV-mediated overexpression of WT or mutant ΔFosB to determine whether Thr^{149} phosphorylation affects the ability of ΔFosB to regulate locomotor responses to cocaine. None of the ΔFosB vectors had a significant effect on baseline locomotor activity (Fig. 7A). We used a low dose of cocaine (3.75 mg/kg) over 5 d that does not normally elicit locomotor sensitization (Grueter et al., 2013) to maximize chances of seeing increased behavioral responses. We found a significant effect of virus ($F_{(3,113)} = 3.373; p < 0.0005$) and day ($F_{(2,113)} = 19.08; p < 0.0001$) on locomotor activity. As expected, animals overexpressing GFP alone showed no locomotor activation to initial or repeated low doses of cocaine, while animals expressing WT ΔFosB displayed increased locomotor activity only after repeated cocaine administration (post hoc analysis, day 5 vs day 1; $t_{(17)} = 3.098; p = 0.0065$; Fig. 7B). Animals expressing T149D ΔFosB exhibited increased locomotor activity to cocaine following the first administration (post hoc analysis, day 1 vs day 0; $t_{(24)} = 4.137; p < 0.0005$; Fig. 7B), which did not increase further with continued exposure (post hoc analysis, day 1 vs day 5; $t_{(22)} = 0.384; p = 0.705$; Fig. 7B). In contrast, animals expressing T149A ΔFosB did not sensitize to cocaine at all, thus appearing phenotypically similar to GFP-alone controls. These data indicate that ΔFosB Thr^{149} phosphorylation can confer an increased initial sensitivity to the locomotor-activating effects of low-dose cocaine, which mimics that seen after repeated administration of a low dose, and is necessary for ΔFosB-mediated increases in locomotor sensitization during repeated administration.

To determine whether Thr^{149} phosphorylation is also necessary for the locomotor sensitization that typically occurs in response to a higher dose of cocaine, we administered 5 d of 7.5 mg/kg cocaine to mice with HSV-mediated NAc overexpression of GFP alone, WT ΔFosB, or T149A ΔFosB (Fig. 8). As before, these mice had no difference in baseline locomotor response to a saline injection (Fig. 8A), but with cocaine we found a significant effect of both virus ($F_{(2,69)} = 4.092; p < 0.05$) and day ($F_{(2,69)} = 48.88; p < 0.0001$). Control (GFP-alone) mice exhibited a locomotor response to acute cocaine that was greater than the saline response (post hoc analysis, day 1 vs day 0; $t_{(16)} = 2.123; p < 0.05$; Fig. 8B) and exhibited locomotor sensitization over time (post hoc analysis, day 1 vs day 5; $t_{(16)} = 2.445; p < 0.05$; Fig. 8B). Animals expressing WT ΔFosB in NAc also exhibited a significant acute response to cocaine (post hoc analysis, day 1 vs day 0; $t_{(18)} = 5.097; p < 0.0001$; Fig. 8B) and exhibited locomotor sensitization over time (post hoc analysis, day 1 vs day 5; $t_{(18)} = 4.092; p < 0.0005$; Fig. 8B). Animals expressing T149D ΔFosB exhibited increased locomotor activity to cocaine following the first administration (post hoc analysis, day 1 vs day 0; $t_{(24)} = 4.137; p < 0.0005$; Fig. 7B), which did not increase further with continued exposure (post hoc analysis, day 1 vs day 5; $t_{(22)} = 0.384; p = 0.705$; Fig. 7B). In contrast, animals expressing T149A ΔFosB did not sensitize to cocaine at all, thus appearing phenotypically similar to GFP-alone controls. These data indicate that ΔFosB Thr^{149} phosphorylation can confer an increased initial sensitivity to the locomotor-activating effects of low-dose cocaine, which mimics that seen after repeated administration of a low dose, and is necessary for ΔFosB-mediated increases in locomotor sensitization during repeated administration.

ΔFosB Thr^{149} phosphorylation mediates the psychomotor effects of cocaine

Viral and transgenic ΔFosB overexpression enhances the locomotor-activating effects of cocaine, whereas viral blockade of endogenous FosB transcriptional activity reduces cocaine’s locomotor effects (Kelz et al., 1999; Grueter et al., 2013; Robison et al., 2013). We used HSV-mediated overexpression of WT or mutant ΔFosB to determine whether Thr^{149} phosphorylation affects the ability of ΔFosB to regulate locomotor responses to cocaine. None of the ΔFosB vectors had a significant effect on baseline locomotor activity (Fig. 7A). We used a low dose of cocaine (3.75 mg/kg) over 5 d that does not normally elicit locomotor sensitization (Grueter et al., 2013) to maximize chances of seeing increased behavioral responses. We found a significant effect of virus ($F_{(3,113)} = 3.373; p < 0.0005$) and day ($F_{(2,113)} = 19.08; p < 0.0001$) on locomotor activity. As expected, animals overexpressing GFP alone showed no locomotor activation to initial or repeated low doses of cocaine, while animals expressing WT ΔFosB displayed increased locomotor activity only after repeated cocaine administration (post hoc analysis, day 5 vs day 1; $t_{(17)} = 3.098; p = 0.0065$; Fig. 7B). Animals expressing T149D ΔFosB exhibited increased locomotor activity to cocaine following the first administration (post hoc analysis, day 1 vs day 0; $t_{(24)} = 4.137; p < 0.0005$; Fig. 7B), which did not increase further with continued exposure (post hoc analysis, day 1 vs day 5; $t_{(22)} = 0.384; p = 0.705$; Fig. 7B). In contrast, animals expressing T149A ΔFosB did not sensitize to cocaine at all, thus appearing phenotypically similar to GFP-alone controls. These data indicate that ΔFosB Thr^{149} phosphorylation can confer an increased initial sensitivity to the locomotor-activating effects of low-dose cocaine, which mimics that seen after repeated administration of a low dose, and is necessary for ΔFosB-mediated increases in locomotor sensitization during repeated administration.

To determine whether Thr^{149} phosphorylation is also necessary for the locomotor sensitization that typically occurs in response to a higher dose of cocaine, we administered 5 d of 7.5 mg/kg cocaine to mice with HSV-mediated NAc overexpression of GFP alone, WT ΔFosB, or T149A ΔFosB (Fig. 8). As before, these mice had no difference in baseline locomotor response to a saline injection (Fig. 8A), but with cocaine we found a significant effect of both virus ($F_{(2,69)} = 4.092; p < 0.05$) and day ($F_{(2,69)} = 48.88; p < 0.0001$). Control (GFP-alone) mice exhibited a locomotor response to acute cocaine that was greater than the saline response (post hoc analysis, day 1 vs day 0; $t_{(16)} = 2.123; p < 0.05$; Fig. 8B) and exhibited locomotor sensitization over time (post hoc analysis, day 1 vs day 5; $t_{(16)} = 2.445; p < 0.05$; Fig. 8B). Animals expressing WT ΔFosB in NAc also exhibited a significant acute response to cocaine (post hoc analysis, day 1 vs day 0; $t_{(18)} = 5.097; p < 0.0001$; Fig. 8B) and exhibited locomotor sensitization over time (post
of these sites, Thr149, is increased in striatum locomotor response with repeated administration (post hoc analysis, day 1 vs day 5; p = 0.0091; Fig. B8A). Although this lack of sensitization in the T149A ΔFosB animals appears to be driven by the acute response to cocaine on day 1, post hoc test reveals no significant difference between GFP alone and T149A ΔFosB in day 1 response to cocaine (t(14) = 1.965; p = 0.069). Thus, the data suggest that ΔFosB Thr149 phosphorylation is necessary for the locomotor sensitization to repeated cocaine observed in control animals.

Discussion

Here, we identify novel sites of CaMKII-mediated phosphorylation of ΔFosB in vitro; demonstrate that phosphorylation of one of these sites, Thr149, is increased in striatum in vivo by chronic cocaine; and show that this site regulates ΔFosB-induced transcriptional activity and locomotor activation to cocaine. This novel mechanism further solidifies the NAc-specific connection between CaMKII and ΔFosB in regulating drug responses (Robison et al., 2013, 2014), and suggests that exploration of possible roles for this molecular pathway in other brain regions and in regulation of other cellular and behavioral functions is an important focus for future studies.

Although a role for NAc CaMKII expression and activity has been established in several contexts, including behavioral responses to cocaine (Pierce et al., 1998; Wang et al., 2010; Robison et al., 2013), amphetamine (Loweth et al., 2008, 2010, 2013), and antidepressants (Robison et al., 2014), the mechanism of its action in NAc has not been completely delineated. CaMKII drives surface expression of AMPA receptors (Hayashi et al., 2000), a phenomenon associated in NAc with behavioral sensitization to cocaine (Boudreau and Wolf, 2005). More recently, a detailed mechanism for CaMKII regulation of AMPA receptor surface expression has emerged involving CaMKII phosphorylation of stargazin (Stg), which modulates the ability of Stg to mediate recruitment of AMPA receptors to the postsynaptic density (PSD) by the structural proteins PSD-95 and PSD-93 (Hell, 2014). Because locomotor sensitization is dependent on CaMKII activity and AMPA receptor function (Pierce et al., 1996, 1998), and because behavioral responses to AMPA receptor activation in NAc are enhanced by CaMKIIα overexpression (Singer et al., 2010), it seems likely that the behavioral effects of CaMKII on cocaine responses are due at least in part to modulation of AMPA receptor function. Moreover, CaMKII activity in the NAc is required for reinstatement of cocaine seeking in self-administration assays, and this process results in increased phosphorylation of the AMPA receptor GluA1 at Ser831 and is blocked by a viral vector that impairs the transport of GluA1-containing AMPA receptors to the synaptic membrane (Anderson et al., 1998).
Since FosB regulates AMPA receptor subunit expression in multiple contexts including chronic cocaine exposure (Kelz et al., 1999; Vialou et al., 2010), we hypothesize that CaMKII mediates complex changes in AMPA receptor function at NAc synapses both by direct modulation of receptor conductance and incorporation at PSDs and by phosphorylating FosB to control receptor expression and subunit composition. However, AMPA receptor plasticity in NAc following cocaine self-administration is complicated and differs depending on route of administration, time of abstinence, and re-exposure (Wolf and Ferrario, 2010; Pierce and Wolf, 2013), and integrating these changes with the amount and location of FosB expression will be a challenge going forward.

FosB Ser27 phosphorylation regulates protein stability (Ulery-Reynolds et al., 2009), and CaMKII phosphorylates FosB at Ser27 and regulates FosB stability in the brain (Robison et al., 2013). However, Ser27 phosphorylation also regulates FosB transcriptional activity, as mutation of Ser27 to Ala reduces FosB-mediated AP-1-luciferase activity (Ulery and Nestler, 2007). In those earlier studies, we found that mutation of Ser27 to Asp has no effect on FosB’s transactivation potential. Moreover, the Ser27 effect is specific to FosB, as the same S27A mutation in the context of full-length FosB has no significant effect. Because the transactivation potential of WT FosB is less than that of full-length FosB under the same conditions (Ulery and Nestler, 2007), specific regulation of FosB’s transactivation potential by Ser27 and Thr149 phosphorylation may add a level of control required for long-lasting FosB to function properly, but
not necessary for the proper functioning of full-length FosB, whose transient expression may provide all of the required temporal specificity. Future studies will determine whether Thr149 phosphorylation regulates function of full-length FosB.

The location of Thr149 adjacent to the DNA-binding domain and very close to the transactivation domain (Jorissen et al., 2007), to directly alter affinity for DNA or the specificity of DNA binding sites. However, because ΔFosB is missing much of the transactivation (and degron) domains present in full-length FosB (Carle et al., 2007), the exact mechanisms of ΔFosB transactivation are unknown. Thus, it is also possible that Thr149 phosphorylation could affect transactivation potential directly, by allosteric alteration of protein–protein interactions, or indirectly by alteration of secondary or tertiary protein structure to affect the conformation of other regions of ΔFosB important for protein–protein interactions. Because T149D mutation enhances the ability of ΔFosB to regulate the locomotor-activating effects of cocaine (Fig. 7), it is clear that Thr149 phosphorylation must regulate the extent of ΔFosB-mediated transactivation of target genes or the specific subset of genes targeted in vivo. Understanding the specific genes transcriptionally altered by ΔFosB Thr149 phosphorylation, and the extent of their induction, will require the generation of novel tools, including transgenic mice with point mutations at Thr149. Such an understanding may uncover previously unstudied genes important for the effects of cocaine, and thus provide novel targets for therapeutic intervention in addiction.

References

Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neuroscience 25:9414–9415. CrossRef Medline

Pierce RC, Quick EA, Reeder DC, Morgan ZR, Kalivas PW (1998) Calcium-mediated second messengers modulate the expression of behavioral sensitization to cocaine. J Pharmacol Exp Ther 286:1171–1176. Medline

