Vesicular Zinc Promotes Presynaptic and Inhibits Postsynaptic Long-Term Potentiation of Mossy Fiber-CA3 Synapse

Enhui Pan,1,6 Xiao-an Zhang,4,6 Zhen Huang,4 Artur Krezel,5 Min Zhao,4 Christine E. Tinberg,4 Stephen J. Lippard,4,7,* and James O. McNamara1,2,3,8,*

1Department of Medicine (Neurology)
2Department of Neurobiology
3Department of Pharmacology and Molecular Cancer Biology
Duke University Medical Center, Durham, NC 27710, USA
4Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
5Laboratory of Protein Engineering, University of Wroclaw, 50-137 Wroclaw, Poland
6These authors contributed equally to this work
7Present address: Department of Chemistry, 18-498, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
8Present address: Department of Neurobiology, Campus Box 3676, Duke University Medical Center, Durham, NC 27710, USA
*Correspondence: lippard@mit.edu (S.J.L.), jmc@neuro.duke.edu (J.O.M.)
DOI 10.1016/j.neuron.2011.07.019

SUMMARY

The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long-term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical form of presynaptic LTP. We synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large transient of zinc in the synaptic cleft induced by mf stimulation. We found that vesicular zinc is required for presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits a form of postsynaptic mf-LTP. Because the mf-CA3 synapse provides a major source of excitatory input to the hippocampus, regulating its efficacy by these dual actions, vesicular zinc is critical to proper function of hippocampal circuitry in health and disease.

INTRODUCTION

The discovery of high levels of zinc in synaptic vesicles of neurons within the mammalian cerebral cortex (Maske, 1955) has intrigued and puzzled both neuroscientists and zinc biologists for over half a century (note: the term “zinc” will be used to refer to free or loosely bound zinc). Its localization to synaptic vesicles provided strong circumstantial evidence for its release, yet the functional consequences of zinc release remain incompletely understood. The curious localization of zinc to axons of cortical glutamatergic neurons, in particular to neurons that form connections within the same cerebral hemisphere, suggested that vesicular zinc regulates plasticity of synapses formed by these excitatory neurons.

Long-term potentiation (LTP) is a form of synaptic plasticity that provides a plausible cellular mechanism underlying learning and memory (Bliss and Collingridge, 1993; Malinow and Malenka, 2002). Two major forms have been distinguished: (1) an NMDA receptor-dependent form in which key events underlying both expression and induction reside postsynaptically and (2) an NMDA receptor-independent form, also known as mossy fiber LTP (mf-LTP), in which mechanisms underlying expression are located presynaptically, but for which the site of induction is controversial (Henze et al., 2000; Nicoll and Schmitz, 2005). Studies of the contribution of vesicular zinc to LTP have centered on mf-LTP because of the high concentrations of zinc in mf axons, where it is both colocalized and coreleased with glutamate (Haug, 1967; Frederickson et al., 2005; Qian and Noebels, 2005).

Despite extensive study, whether or not zinc contributes to mf-LTP remains controversial. Application of different membrane-permeable zinc chelators (see Figure S1 available online) led to contradictory observations (Budde et al., 1997; Quinta-Ferreira and Matias, 2004). Thus far, CaEDTA has been the main cell-impermeable metal chelator employed to study zinc and mf-LTP. Acute application of 2.5 mM CaEDTA promoted mf-evoked NMDA receptor-mediated EPSCs yet failed to attenuate mf-LTP (Vogt et al., 2000); however, higher concentrations of CaEDTA inhibited mf-LTP (Li et al., 2001; Huang et al., 2008). Importantly, studies of a mutant mouse, mocha, which exhibits reduced amounts of vesicular zinc in mf axons, revealed persistence of mf-LTP, arguing against a role for zinc in mf-LTP (Vogt et al., 2000).

We reasoned that these contradictory results might be due in part to shortcomings of existing zinc chelators. To block the effects of synaptically released zinc efficiently, while minimizing disruption of its pleiotropic intra- and extracellular functions, an ideal zinc chelator should be water soluble and cell membrane impermeable. Such a chelator should bind zinc selectively with respect to other abundant metal ions, a property lacking in CaEDTA, which has appreciable affinity for calcium and
magnesium as well as zinc. Finally, given the short lifetime of high concentrations of zinc within the synaptic cleft following its release, the chelator must bind zinc rapidly. To address these requirements, we designed the zinc chelator, ZX1 (Figure 1A). Here, we report its preparation and characterization and describe its use in studying mf-LTP. The results reveal that vesicular zinc is required for induction of presynaptic mf-LTP and, unexpectedly, also masks induction of a novel form of postsynaptic zinc sensor, ZP3 (Chang et al., 2004), which responds as observed in Zinpyr zinc sensors. From the two titration curves we derived a dissociation constant (K_d) of 1.0 nM (Table S2).

Having demonstrated the high affinity and selectivity of ZX1 for zinc, we next investigated the metal binding kinetics of the chelator. In these experiments, we took advantage of the fluorescent zinc sensor, ZP3 (Chang et al., 2004), which responds rapidly to changes of zinc concentration in solution with well-established kinetic parameters (Nolan et al., 2005). ZP3 alone is weakly fluorescent, and its fluorescence increases upon formation of a 1:1 complex with zinc (Chang et al., 2004). When added to a preformed ZP3-Zn(II) (1:1) solution, the zinc chelators induced an instantaneous reduction of fluorescence intensity due to the loss of the zinc via competitive binding. The rate of the fluorescence decrease reflects the rate of the zinc binding by chelators. The slope of the fluorescence decrease (Figure 2B) reveals that ZX1 binds zinc much more rapidly than TPEN (see Figure S4B), the most widely used intracellular zinc chelator. These results led us to compare the effects of ZX1 and CaEDTA on the high yet fleeting concentration of zinc in the synaptic cleft induced by activation of the mf. Zinc is known to inhibit the NMDA subtype of glutamate receptor by both a low- and high-affinity mechanism (Paoletti et al., 1997; Traynelis et al., 1998; Choi and Lipton, 1999). Because mf activation evokes simultaneous release of both glutamate and zinc, chelation of synaptically released zinc would be expected to increase the amplitude of NMDA EPSC (I_NMDA). CaEDTA (2.5 mM) was previously found to disinhibit the synaptically evoked low-affinity

Figure 1. Synthesis and X-ray Structures of ZX1 and Its Zinc Complex
(A) Using the intramolecular pyridinium salt 1 as a synthetic precursor for installing the DPA unit, ZX1 was prepared by reductive amination with 2-sulfonated aniline.
(B) X-ray structure of ZX1 (left), displaying the two orientations of the disordered pyridine ring refined at 50:50 occupancy. Hydrogen atoms, except those on N2 and N3, are omitted for clarity; X-ray structure of ZX1-Zn(II)(OAc) (right). Hydrogen atoms are omitted for clarity. See also Figure S2.
but not the high-affinity I\textsubscript{NMDA}; the inability of CaEDTA to disinhibit the high affinity synaptic I\textsubscript{NMDA} was attributed to its slow rate of chelating zinc (Vogt et al., 2000). We assessed pharmaco-logically isolated I\textsubscript{NMDA} responses of CA3 pyramidal cells to mf stimulation in whole-cell recordings at a positive holding potential (+30 mV) (Figure 2 C). Inclusion of CaEDTA (7.5 mM) produced no significant change in the synaptically evoked I\textsubscript{NMDA} (Figure 2 C), confirming and extending previous observations (Vogt et al., 2000). By contrast, inclusion of ZX1 (100 μM) enhanced the synaptically evoked I\textsubscript{NMDA} by approximately 40% (Figure 2 C), supporting the conclusion that ZX1 rapidly chelates the high yet fleeting concentration of zinc within the synaptic cleft induced by a single action potential invading the mf. Together with its selectivity and membrane impermeability (Figure S4 C), the rapidity with which ZX1 chelates zinc renders it a valuable tool with which to examine the functional consequences of zinc released by HFS of the mf.

A hallmark of mf-LTP is that increased P\textsubscript{r} of glutamate from mf terminals underlies its expression (Zalutsky and Nicoll, 1990; Weisskopf and Nicoll, 1995; Tong et al., 1996; Reid et al., 2004). To examine the role of zinc in the induction of mf-LTP, additional experiments were performed using whole-cell recordings of CA3 pyramids to analyze the effects of ZX1 while simultaneously assessing paired pulse facilitation (PPF). PPF is a form of presynaptic plasticity consisting of the enhancement of transmitter release in response to the second of two stimuli delivered at a short interval (e.g., 20–100 ms; Regehr and Stevens, 2001). PPF is normally inversely correlated with P\textsubscript{r}, such that synapses with low P\textsubscript{r} show larger PPF than synapses with higher P\textsubscript{r}. PPF was measured by applying a pair of pulses of stimulus intensity 30% that of maximum EPSC with a 60 ms interstimulus interval, and was defined as the amplitude of the EPSC evoked by pulse #2 divided by the amplitude of the EPSC evoked by pulse #1 (Figure 3 B, bottom left). HFS of the mossy fibers in the presence of vehicle induced an increase of the EPSC amplitude of 188% ± 16% (n = 8) (Figure 3, middle left). A significant reduction of PPF was evident 10–20 min following HFS (1.3 ± 0.1) compared to baseline levels prior to HFS (2.8 ± 0.5, p = 0.001, paired t test), confirming previous findings (reviewed in Nicoll and Schmitz, 2005; Figure 3, bottom left). Inclusion of 100 μM ZX1 in the bath reduced the HFS-induced increase of the EPSC (131% ± 21%, n = 9, p = 0.04 versus vehicle; Figure 3, middle right). ZX1 also prevented the HFS-induced reduction of PPF (before HFS 3.1 ± 0.5; after HFS 2.7 ± 0.7, t test p = 0.8; Figure 3, bottom right). Because PPF is a surrogate measure of P\textsubscript{r}, this result implies that zinc is...
required for induction of this plasticity of the presynaptic terminal. The ZX1-mediated inhibition of mf-LTP and the decrease of PPF following HFS were confirmed in additional experiments performed with field potential recordings (Figure S5B).

Although ZX1 inhibits mf-LTP, the foregoing experiments do not address whether ZX1 inhibits the induction and/or expression of LTP. Because ZX1 was added to the bath 10 min prior to HFS and remained for the duration of the experiment, inhibition of LTP by ZX1 could be mediated either by preventing induction of LTP or simply by masking expression of LTP following its induction. To distinguish between these possibilities, ZX1 (100 μM) was added to the bath 30 min following HFS and allowed to remain there for an additional 30 min (Figure S5C). The magnitudes of the fEPSP and PPF were determined for a 10 min epoch immediately prior to addition of ZX1, and these values were compared to fEPSP and PPF magnitudes during the 10 min epoch between 20 and 30 min following ZX1 addition. Following induction of LTP, bath application of ZX1 did not affect fEPSP size or the PPF ratio (Figure S5C). Collectively, these results demonstrate that ZX1 does not block the expression of LTP of the mf-CA3 pyramid synapse (Figure S5C), implying that ZX1 inhibits induction of mf-CA3 LTP (Figures 3A and 3B).

Plasticity of mf-CA3 Pyramid Synapse in ZnT3−/− Mice

The availability of ZnT3 null mutant mice (ZnT3−/−) provides an additional approach to examine the role of vesicular zinc in plasticity of the mf-CA3 synapse (Cole et al., 1999). ZnT3 is a transporter required for packaging zinc into synaptic vesicles of the mossy fibers (Cole et al., 1999). In contrast to mocha mice in which vesicular zinc in the mf is reduced (Stoltenberg et al., 2004), vesicular zinc is eliminated altogether from the mf in ZnT3−/− mice (Cole et al., 1999). The findings with ZX1 led us to test two predictions: (1) that mf-LTP will be impaired in slices from ZnT3−/− mice compared to WT controls, and (2) that HFS of the mf will induce a reduction of PPF in slices from WT but not ZnT3−/− mice. We evaluated these predictions using whole cell recordings of CA3 pyramids. Whole-cell recordings of CA3 pyramids revealed no significant differences between WT and ZnT3−/− mice with respect to resting membrane potential, input resistance, capacitance, and time constant of decay (Table S3). HFS of the mf in slices from WT mice induced an increase of the EPSC of 167% ± 14% compared to baseline (n = 17, p = 0.0002; Figure 4, top left). A significant reduction of PPF was evident in hippocampal slices from ZnT3−/− mice (Figure 4, bottom left). HFS of the mf in slices of ZnT3−/− mice induced an increase of the EPSC of 180% ± 15% compared to baseline (n = 14, p = 0.0001, Figure 4, top left), an effect similar to that observed in WT mice. Whereas the results with LTP were unexpected, the effects of HFS on PPF in ZnT3−/− mice conformed to our predictions. That is, HFS of the mf in slices of ZnT3−/− mice failed to induce a significant reduction of PPF (before HFS 2.7 ± 0.3; after HFS 2.6 ± 0.2, p = 0.49; Figure 4, bottom right). The HFS-mediated induction of mf-LTP in the absence of reductions of PPF in slices from ZnT3−/− mice was confirmed in additional experiments utilizing field potential recordings (Figure S6).

The association of mf-LTP with reduced pPF in WT but not ZnT3−/− mice supports a presynaptic locus of expression of

Figure 3. ZX1 Inhibits Induction of LTP at the MF-CA3 Synapse

Top left: Field EPSPs (fEPSPs) were recorded from hippocampal slices acutely isolated from WT mice (P28–P42) and the effects of ZX1 were examined on LTP of mf-CA3 synapse. Representative traces from vehicle (left) and 100 μM ZX1 (right) are averages of responses collected during 10 min prior to HFS (1) and between 50 and 60 minutes following HFS (2). Arrow denotes the timing of application of HFS and arrowheads denote the baseline fEPSP (1) and fEPSP after HFS (2). Horizontal line denotes timing of application of ZX1 to bath. Top right: Reduction of LTP induced by HFS is plotted as function of increasing concentrations of ZX1. Plot is based upon the following results: compared to baseline, vehicle 149 ± 9 (n = slices from 10 mice); ZX1 50 μM 142% ± 5% (n = 4); ZX1 100 μM 124% ± 3% (n = 7); ZX1 200 μM 120% ± 5% (n = 8). Middle and bottom panels: whole-cell recordings of CA3 pyramids were performed in hippocampal slices acutely isolated from WT mice (P21–P29) and the effects of ZX1 (100 μM) were examined on LTP and PPF of mf-CA3 synapse following HFS of the mossy fibers. Percent potentiation induced by HFS (middle left and right); vehicle 188 ± 16 (n = 8); ZX1 100 μM 131% ± 21% (n = 9). PPF before and after HFS (bottom left and right); vehicle 2.8 ± 0.5 and 1.3 ± 0.1 respectively, (paired t test, p = 0.04); ZX1 3.1 ± 0.8 and 2.7 ± 0.7, respectively, (paired t test, p = 0.2). Representative traces from Vehicle (left) and ZX1 (right) before and after HFS. Arrows denote administration of HFS. Horizontal lines in right middle and bottom panels denote timing of application of ZX1 to bath. The representative traces are averages of responses collected at intervals of 30 seconds for the 10 minutes preceding HFS (before) and the last 10 minutes of the recording following HFS (after); the interval between the pair of stimulations was 60 msec. Values represent mean ± standard error of the mean. See also Figure S5.
LTP in WT but not in ZnT3−/− mice. To obtain independent evidence in support of this interpretation, additional experiments examined spontaneous release of glutamate in the presence of tetrodotoxin (TTX), which eliminates action potentials; the action potential-independent release of glutamate detected as mEPSCs measures random monounaryal release of glutamate. The occurrence of increased frequency without change in amplitude of mEPSCs accompanying mf-LTP provides additional evidence of increased release of glutamate and a presynaptic locus of expression of mf-LTP (Kamiya et al., 2002). mEPSCs evidence of increased release of glutamate and a presynaptic locus of expression of mf-LTP (Kamiya et al., 2002). mEPSCs in CA3 pyramids (Jonas et al., 1993) were examined in whole-cell recordings in the presence of tetrodotoxin (1 μM). After recording synaptically evoked responses in the absence of TTX, TTX was added to the perfusion solution and control data were obtained after synaptically evoked responses were eliminated. Following collection of control data, TTX was removed from the perfusion solution; once synaptically evoked responses were restored, HFS was applied, and soon thereafter TTX was again added to the perfusion solution. HFS of the mf in slices from WT mice induced an increase of mEPSC frequency (before HFS 3.2 ± 0.5 Hz; after HFS 4.2 ± 0.6 Hz; n = 15; paired t test, p = 0.04) but no change in amplitude (amplitude before HFS, 35.4 ± 2.6 pA; after HFS 36.2 ± 2.4 pA; n = 15, paired t test, p = 0.44; Figure 5, left). By contrast, HFS of the mf in slices from ZnT3−/− mice induced a significant decrease of frequency (before HFS 5.3 ± 0.7 Hz; after HFS 3.0 ± 0.6 Hz; n = 6, paired t test, p = 0.05) and a significant increase of amplitude (before HFS 28 ± 4.3 pA; after HFS 34.7 ± 4.9 pA; n = 6, paired t test, p = 0.02; Figure 5, right). Notably, significant differences in frequency (WT 3.2 ± 0.5 Hz; ZnT3−/− 5.3 ± 0.7 Hz, t test, p = 0.02) but not amplitude (WT 35.4 ± 2.6 pA, n = 15; ZnT3−/− 28 ± 4.3 pA, n = 6, t test p = 0.08) of mEPSCs were evident between WT and ZnT3−/− mice prior to HFS. Importantly, differences of mEPSCs between WT and ZnT3−/− mice prior to HFS were not sufficient to account for the different effects of HFS because subsets of WT and ZnT3−/− mice with similar mEPSC amplitude and frequency at baseline exhibited divergent responses to HFS like that of the entire groups (not shown). Together with the HFS-induced reduction of PPF, the HFS-induced increased frequency of mEPSCs reinforces increased PPr as the mechanism underlying expression of mf-LTP in WT mice. By contrast, together with the failure of HFS to induce reductions of PPF, the HFS-induced decrease in frequency and increase in amplitude of mEPSCs implicates a postsynaptic locus underlying expression of mf-LTP in ZnT3−/− animals.

Locus of Induction of mf-LTP Is Postsynaptic in ZnT3−/− Mice

The evidence implicating presynaptic and postsynaptic loci underlying expression of mf-LTP in WT and ZnT3−/− animals, respectively, led us to ask whether the locus underlying induction of LTP also differed. In contrast to the unanimity that the locus of expression of LTP of this synapse is presynaptic in WT animals, controversy exists as to whether calcium-dependent events intrinsic to CA3 pyramids (postsynaptic) or mf terminals (presynaptic) mediate induction of mf-LTP (reviewed by Nicoll and Schmitz, 2005). To address this question, we examined the effects of dialyzing the postsynaptic cell with the calcium chelator BAPTA (50 mM) on induction of mf-LTP. In slices from WT animals, dialyzing a CA3 pyramid with BAPTA did not inhibit induction of LTP (Figure 6, top panel). In contrast, BAPTA inhibited induction of mf-LTP in slices from ZnT3−/− mice (Figure 6, middle panel). HFS of the mossy fibers in slices from ZnT3−/− mice induced an increase in the EPSC of 166 ± 16% (n = 12, paired t test, p = 0.001) in vehicle dialyzed CA3 pyramids, but only 123% ± 11% (n = 6, paired t test, p = 0.19 versus before HFS) in BAPTA dialyzed CA3 pyramids (Figure 6, middle). We conclude that chelation of intracellular calcium within postsynaptic CA3 pyramids inhibits induction of mf-LTP in slices from ZnT3−/− but not WT mice.

Zinc Inhibits Postsynaptic LTP at the mf-CA3 Synapse

One explanation for a postsynaptic locale underlying induction of mf-LTP in ZnT3−/− mice is that vesicular zinc inhibits...
postsynaptic mf-LTP in WT mice. If so, chelation of zinc with ZX1 would be expected to reveal a postsynaptic mf-LTP in WT mice. To test this possibility, we examined the effects of dialyzing a CA3 pyramid with BAPTA on mf-LTP in the presence of ZX1 (100 μM) in the bath. In the presence of ZX1, dialyzing a CA3 pyramid with BAPTA abolished mf-LTP in slices from WT mice (Figure 6, bottom). With ZX1 (100 μM) in the bath, HFS of mf induced an increase in the EPSC of 134% ± 20% (n = 9) in vehicle dialyzed CA3 pyramids, but a small decrease in the EPSC of 82% ± 7% (n = 5) in BAPTA dialyzed CA3 pyramids (p = 0.04, t test, vehicle versus BAPTA) (Figure 6, bottom). Notably, dialyzing CA3 pyramids with BAPTA inhibits mf-LTP in the presence, but not the absence, of ZX1 in the bath (Figure 6, bottom). Thus inclusion of a chelator of extracellular zinc in the bath unmasked a postsynaptic locus for induction of mf-LTP in slices from WT mice.

To further test whether zinc inhibits postsynaptic LTP of the mf-CA3 synapse, we examined the effects of dialyzing extracellular zinc with ZX1 on the induction of mf-LTP in slices isolated from rim1α null mutant mice. The protein rim1α resides in the active zone of the presynaptic terminal and binds the synaptic vesicle protein, rab 3a; induction of mf-LTP is eliminated altogether in rim1α null mutant mice (Castillo et al., 2002). Confirming Castillo et al. (2002), with vehicle in the bath, we found that HFS of the mf did not induce LTP in slices from rim1α null mutant mice; a small nonsignificant decrease of fEPSP of 93% ± 11%, n = 4 when measured after 50–60 min compared to the 10 min immediately preceding HFS (Figure 7, top left). Remarkably, with ZX1 (100 μM) in the bath, HFS of the mf induced LTP in slices from rim1α null mutant mice. There was an increase of fEPSP of 151% ± 14%, n = 4, p = 0.016, vehicle versus ZX1 (Figure 7, top right). Notably, this mf-LTP was not accompanied by a reduction of paired pulse facilitation (Figure 7, bottom right). Thus, this extracellular zinc chelator partially inhibits induction of mf-LTP in WT mice (Figure 3, top left and right), yet promotes induction of mf-LTP in rim1α mutant mice (Figure 7, top left and right). That ZX1 promotes induction of mf-LTP in rim1α null mutant mice reinforces the conclusion that synaptically released zinc inhibits induction of postsynaptic mf-LTP.

DISCUSSION

We tested the hypothesis that vesicular zinc is required for mf-LTP. To evaluate this hypothesis, we synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large and rapid transient of zinc in the synaptic cleft induced by HFS of the mossy fibers. The results reveal that zinc is required for induction of presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits induction of a novel form of postsynaptic mf-LTP. Because the mf-CA3 synapse conveys a powerful excitatory input to hippocampus, the unique dual control of its efficacy by zinc is critical to function of hippocampal circuitry in health and disease.

The discovery of a novel zinc chelator, ZX1, provided a valuable tool with which to examine the contribution of zinc to...
Dipicolylamine (DPA) was selected as the primary zinc-binding unit, because it selectively coordinates zinc, as demonstrated by a number of zinc fluorescence or MRI sensors (Chang and Lippard, 2006; Burdette et al., 2001; Zhang et al., 2007). As revealed by potentiometric titrations, the nitrogen-rich ligand environment renders ZX1 selective for zinc over potassium, calcium, and magnesium, major intra- and extracellular free cations. Although ZX1 binds other endogenous transition metal ions, such as copper, iron, and manganese, the levels of these redox-active species as free ions in the cell are strictly regulated to be quite low. Consistent with this idea, Timm’s stain for transition metal ions is eliminated in the hippocampus of ZnT3−/− mice (Cole et al., 1999), implying that zinc is the only transitional metal ion present in sufficiently high concentrations to be detected. The rapidity of binding zinc together with its high affinity (K_d = 10^{-15} M) allowed us to estimate that ZX1 successfully chelated the majority of the bolus of free zinc that is present in the synaptic cleft following its HFS-induced release from mf terminals. Although technical limitations preclude direct measures of zinc within the synaptic cleft itself, the peak zinc concentration is thought to approximate 100 μM, an estimate based upon zinc-mediated inhibition of a synaptic I_{NMDA} in a CA3 pyramid evoked by mf stimulation (Vogt et al., 2000). Using kinetic and binding affinity data determined experimentally in the present work (Figures 2 and S4), we compute that virtually all of the 100 μM maximum concentration levels present transiently within the synaptic cleft would be chelated by 100 μM ZX1 under the experimental conditions employed in this study. The fact that inhibition of mf-LTP by 100 μM and 200 μM ZX1 is nearly identical (Figure 3, top right) is consistent with this prediction. ZX1 provides two major advantages over CaEDTA, the most commonly used reagent to chelate extracellular zinc, namely, selectivity and rate of zinc binding. Although EDTA binds zinc with high affinity (K_d = 10^{-15} M), EDTA also tightly binds calcium and magnesium. The use of the monocalcium complex (CaEDTA), rather than EDTA alone, is aimed at avoiding perturbation of extracellular calcium homeostasis. Nevertheless, because the extracellular concentrations of calcium and magnesium are approximately 2 mM, concentrations of CaEDTA used to study mf-LTP (2.5–10 mM) jeopardize the homeostasis of both extracellular calcium and magnesium. The excessive buffering of divalent cations may contribute to unstable whole-cell recordings observed with CaEDTA (Li et al., 2010). With respect to zinc itself, the affinities of CaEDTA and ZX1 are similar (1.6 and 1 nM, respectively) yet the rate of zinc chelation by ZX1 is about an order of magnitude faster than that for CaEDTA (Table S2). The greater rapidity of zinc chelation by ZX1 presumably underlies the successful disinhibition of the synaptically evoked high affinity I_{NMDA} of CA3 pyramid by ZX1 but not CaEDTA (Figure 2C). Collectively, the slow kinetics of zinc chelation together with lack of ion selectivity may explain the conflicting results reported with respect to the use of CaEDTA to modulate mf-LTP (Vogt et al., 2000; Li et al., 2010).
Vesicular Zinc Required for LTP

2001; Huang et al., 2008). By contrast, the rapid kinetics of zinc chelation together with its ion selectivity render ZX1 a valuable tool for study of the large and rapid transient of zinc within the synaptic cleft induced by mf stimulation.

The application of ZX1 has revealed a critical role for zinc induction of this classic form of presynaptic LTP in WT animals. There is universal agreement that the expression of mf-LTP is caused by an increase of glutamate release (reviewed by Henze et al., 2000 and Nicoll and Schmitz, 2005). This assertion is based upon findings that mf-LTP is accompanied by reductions of PPF, increased frequency but not amplitude of mEPSCs, and increased rate of use dependent block by MK-801 (Zalutsky and Nicoll, 1990; Tong et al., 1996; Weisskopf and Nicoll, 1995). That genetic deletion of each of two presynaptic proteins, rab3a and rim1α, eliminates mf-LTP provides additional support for a presynaptic locus (Castillo et al., 1997; Castillo et al., 2002). Our findings that mf-LTP in vehicle-treated WT slices is associated with reduced PPF and an increased mEPSC frequency without a change in amplitude is consistent with these previous findings. The discovery that ZX1 not only inhibits mf-LTP but also prevents the reduction of PPF in WT animals implicates zinc as a critical factor responsible for induction of this presynaptic plasticity. This conclusion was reinforced by studies of ZnT3−/− mice lacking vesicular zinc in which mf-LTP was induced without an accompanying reduction of PPF. Further evidence of a requirement for vesicular zinc for this presynaptic plasticity is that mf-LTP in WT mice is associated with an increased frequency of mEPSCs, but in ZnT3−/− mice with a reduced frequency and increased amplitude of mEPSCs.

One unexpected and important outcome is that vesicular zinc also inhibits induction of postsynaptic mf-LTP. The assertion that vesicular zinc masks postsynaptic mf-LTP is based on two findings. One is that mf-LTP can be induced in ZnT3−/− mice without reduction of PPF and with increased amplitude and decreased frequency of mEPSCs; these results diverge sharply from mf-LTP in WT animals. The second is that ZX1, a chelator of extrasynaptic zinc, unmasks mf-LTP in rim1α null mutant mice which lack presynaptic mf-LTP (Castillo et al., 2002); that mf-LTP in ZX1 treated slices of rim1α null mutant mice which lack presynaptic mf-LTP was inhibited by dialyzing CA3 pyramids with BAPTA. Similarly, the residual mf-LTP detected in WT mice in the presence of ZX1 was inhibited by dialyzing CA3 pyramids with BAPTA. These findings differ from mf-LTP in WT animals induced in the presence of ACSF, which was not inhibited by dialyzing CA3 pyramids with BAPTA. Notably, the magnitude of the mf-LTP observed in the ZnT3−/− and ZX1-treated rim1α−/− slices exceeded that evident in the ZX1-treated slices from WT animals; the lifelong presence of the mutations in the ZnT3−/− and the rim1α−/− may have permitted emergence of homeostatic mechanisms not present when ZX1 is acutely applied to a slice from a WT mouse. Finally, inclusion of APV throughout these experiments implies that induction and expression of this postsynaptic mf-LTP occurs independently of NMDA receptors and thus differs from a postsynaptic mf-LTP described by Kwon and Castillo (2008) and Rebola et al. (2008). The mechanisms underlying induction and expression of this novel form of postsynaptic mf-LTP remain to be determined.

What is the locale at which vesicular zinc promotes the increased glutamate P or underlying mf-LTP in WT animals? The finding that dialyzing CA3 pyramids with BAPTA inhibits induction of mf-LTP in slices from WT mice in the presence of ZX1 or in slices from ZnT3−/− mice points to a presynaptic locus underlying induction of mf-LTP in WT animals in the presence of ACSF. That is, the inhibition of mf-LTP by BAPTA implies that sufficient concentrations of BAPTA are diffusing through the dendritic tree of CA3 pyramids to chelate calcium required for induction of mf-LTP under the conditions of these experiments. The ineffectiveness of BAPTA in inhibiting mf-LTP in WT slices in ACSF supports the conclusion that events underlying induction reside presynaptically within mf terminals.

Figure 7. ZX1 Disinhibits mf-LTP in rim1α Null Mutant Mice

In rim1α null mutant mice, HFS of the mf did not induce LTP as detected in field potential recordings in presence of ACSF (a small nonsignificant decrease of fEPSP of 93% ± 11%, n = 4 when measured 50–60 min after compared to the 10 min immediately preceding HFS; left panel). By contrast, with ZX1 (100 μM) in the bath, HFS of the mf induced LTP in slices from rim1α null mutant mice (an increase of fEPSP of 151% ± 14%, n = 4, p = 0.016, vehicle versus ZX1; right panel); this mf-LTP was not accompanied by a reduction of paired pulse facilitation (bottom right). The representative traces are averages of responses collected at intervals of 30 s for the 10 min preceding HFS (before) and the last 10 min of the recording following HFS (after); the interval between the pair of stimulations was 60 ms. Values represent mean ± standard error of the mean.
Our interpretation that vesicular zinc acts presynaptically raises the question as to what molecular consequences are triggered by the ion that culminate in the increased glutamate P, that underlies mf-LTP in WT animals. We propose that vesicular zinc, released by HFS of the mf, reenters the mf terminals where it triggers a chain of molecular events. One possibility is that increased concentrations of zinc in the cytosol of the presynaptic terminal transactivate the receptor tyrosine kinase, TrkB (Huang et al., 2008; Figure 8). This model is consistent with evidence that TrkB activation can promote transmitter release from presynaptic terminals (Jovanovic et al., 2000; Tyler et al., 2002; Lohof et al., 1993), that TrkB kinase activity is required for mf-LTP (Huang et al., 2008), and that zinc can transactivate TrkB (Huang et al., 2008). Rapid chelation of synaptically released zinc by ZX1 would inhibit such a process.

Our findings establish two important functions for zinc that is localized to synaptic vesicles of the hippocampal mfs: zinc promotes the increased P, that underlies presynaptic mf-LTP and it also masks induction of postsynaptic mf-LTP. Context-dependent fear conditioning is one behavior potentially related to presynaptic mf-LTP in particular because defects in this behavior have been identified in young adult ZnT3 null mutant mice and following injection of a zinc chelator locally in CA3 of WT mice (Sindreu et al., 2011). Emergence of a postsynaptic mf-LTP may help explain the absence of detectable deficits in multiple behaviors examined in young adult ZnT3 null mutant mice (Cole et al., 2001; Adlard et al., 2010). It seems plausible that dual control of the mf-CA3 synapse by vesicular zinc supports the physiological functions subserved by this synapse while limiting pathologic hyperexcitability mediated by excessive activation of CA3 pyramids. Future investigations will seek to determine the molecular mechanisms underlying these dual functions and whether vesicular zinc exerts similar actions in diverse association cortical circuits in addition to the mf-CA3 synapse.

EXPERIMENTAL PROCEDURES

Preparation and Characterization of ZX1

Full details of the preparation, characterization, and physical properties of the new chelator are provided in Supplemental Information. The compound can be obtained from Strem Chemical Co.

Potentiometric Titrations

Potentiometric titrations were performed on a Mettler-Toledo T70 autotitrator, operated by the LabX-light software. A pH glass electrode (DGI111-SC), applied for pH measurements was calibrated with standard buffers (pH 4, 7, 10) prior to use. All solutions were degassed to avoid CO2 contamination. The titrant (0.1 M NaOH) was calibrated with analytically pure, crystalline potassium hydrogen phthalate (KHP). The titration experiments were run at 25°C controlled by a circulating thermostatted bath. The ionic strength was fixed with 100 mM KCl. Data analysis and calculation of association constants were performed with HYPERQUAD software.

Kinetic Studies

All kinetic measurements were performed in pH 7 buffered solutions containing 50 mM of PIPES and 100 mM KCl. Millipore purified water was used to prepare all aqueous solutions. A glass electrode (Orion, Boston), calibrated before each use, was employed to determine solution pH. The kinetics of fluorescence quenching experiment was performed on a Photon Technology International (Lawrenceville, NJ) Quanta Master 4 L-format scanning spectrofluorimeter equipped with an LPS-220B 75-W xenon lamp and power supply.
an A-1010B lamp housing with integrated igniter, a switchable 814 photon-counting/analogue photomultiplier detection unit, and a MD-5020 motor driver. Samples were held in 1 x 1 cm quartz cuvettes (3.5 ml volume, Starna, Atascadero, CA). The kinetic traces were obtained by following fluorescence emission at 515 nm (λex = 494 nm); the fluorescence was recorded every one second for a total of 600 s. Double-mixing stopped-flow kinetics studies were performed with a Hi-Tech SF-61 DX2 apparatus equipped with fluorescence detection. Excitation was provided at 494 nm. A GG455 glass cutoff filter (<455 nm) was placed over the exit to the photomultiplier tube, and emission was monitored from 455 to 700 nm. The observed rate constants obtained from all sets of experiments were calculated by employing the Kinet-Assyst software package (HiTech) to fit individual traces to single exponentials.

Mice

ZnT3 null mutant mice, obtained from Dr. Richard Palmiter, University of Washington, were generated by crossing male and female heterozygotes maintained on a C57BL/6 background (Cole et al., 1999). The genotype of each animal was verified twice using PCR of genomic DNA isolated from tail before and after experiments.

Hippocampal Slice Preparation and Electrophysiological Recording

Mice were anaesthetized with pentobarbital and decapitated, and hippocampal slices prepared for electrophysiological study. A bipolar tungsten-stimulating electrode was placed near the junction of the granule cell layer and hilus near the midpoint of the suprapyramidal blade of the dentate.

Supplementary Information

Supplemental Information includes Supplemental Experimental Procedures, six figures, and three tables and can be found with this article online at doi:10.1016/j.neuron.2011.07.019.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Institute of General Medical Sciences (GM005819 to S.J.L.) and from the National Institute of Neurological Disease and Stroke (NS56217 to J.O.M.). The authors thank Drs. Daniela Buccella, Nicole Calakos, Danny Jones, and Richard Mooney for valuable discussions and Wei-Hua Qian for support of mouse husbandry and genotyping.

Accepted: July 15, 2011
Published: September 21, 2011

REFERENCES

