Radiative heat transfer in nonlinear Kerr media

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevB.91.115406</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 25 02:13:30 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/95909</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Radiative heat transfer in nonlinear Kerr media

Chinmay Khandekar, Adi Pick, Steven G. Johnson, and Alejandro W. Rodriguez

1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 15 June 2014; revised manuscript received 4 February 2015; published 5 March 2015)

We obtain a fluctuation-dissipation theorem describing thermal electromagnetic fluctuation effects in nonlinear media that we exploit in conjunction with a stochastic Langevin framework to study thermal radiation from Kerr (χ(3)) photonic cavities coupled to external environments at and out of equilibrium. We show that, in addition to thermal broadening due to two-photon absorption, the emissivity of such cavities can exhibit asymmetric, non-Lorentzian line shapes due to self-phase modulation. When the local temperature of the cavity is larger than that of the external bath, we find that the heat transfer into the bath exceeds the radiation from a corresponding linear blackbody at the same local temperature. We predict that these temperature-tunable thermal processes can be observed in practical, nanophotonic cavities operating at relatively small temperatures.

DOI: 10.1103/PhysRevB.91.115406 PACS number(s): 05.40.—a, 78.67.—n, 44.40.+a

I. INTRODUCTION

The radiative properties of bodies play a fundamental role on the physics of many naturally occurring processes and emerging nanotechnologies [1,2]. Central to the theoretical understanding of these electromagnetic fluctuation effects is the fluctuation-dissipation theorem of electromagnetic fields, developed decades ago by Rytov and others [3–5] in order to describe radiative transport in macroscopic media. The same formalism has been recently employed in combination with new theoretical techniques [6,7] to demonstrate strong modifications of the thermal properties of nanostructured bodies, including designable selective emitters [8] and greater than blackbody heat transport between bodies in the near field [9]. To date, these studies have focused primarily on linear media, where emission depends only on the linear response functions of the underlying materials. A cubic (χ(3)) nonlinearity, however, can convert light from one frequency to another or alter the dissipation rate [10] and hence the fluctuation statistics. We show that these phenomena lead to a variety of interesting effects in nonlinear radiators, such as line-shape alterations, temperature-dependent emission, and even radiation exceeding the blackbody limit in nonequilibrium systems.

In this paper, we obtain a nonlinear fluctuation-dissipation theorem (FDT) that describes radiative thermal effects in nonlinear χ(3) media, extending previous work on nonlinear oscillators [11]. Since nonlinear optical effects are generally weak in bulk materials, we focus on nanostructured resonant systems with strong effective nonlinear interactions [10,12]. Such systems are susceptible to universal descriptions based on the coupled-mode theory framework [13,14], which we exploit to investigate the ways in which nonlinearities can enable interesting and designable radiative effects. In particular, we show that self-phase modulation (SPM) and two-photon absorption (TPA) effects lead to strong modifications of their emissivity, including thermal broadening and non-Lorentzian, asymmetric line shapes. These nonlinear effects pave the way for additional material tunability, including designable, temperature-dependent selective emitters and absorbers. We also consider nonequilibrium situations and show that TPA results in selective heat transfer exceeding the blackbody limit, a phenomenon that has only been observed in situations involving multiple bodies in the near field [9]. Finally, we show that recently proposed wavelength-scale cavities with ultralarge dimensionless lifetimes $Q \lesssim 10^6$ and small mode volumes $V \sim (\lambda/n)^3$ can be designed to display these strongly nonlinear effects at infrared wavelengths and near room temperature.

Fluctuation-dissipation relations in nonlinear media have been a subject of much interest in recent decades, starting with the early work of Bernard and Callen [15], Stratonovich [16], and Klimontovich [17]. The effects of nonlinearities of both conservative and dissipative nature on the Brownian motion of resonant systems have been studied in the context of van der Pol oscillators [17], optomechanical systems [18], and mechanical Duffing oscillators [11,19]. Despite the relatively large body of work involving noise in nonlinear systems, the role and consequences of nonlinear damping in mechanical oscillators have only recently begun to be explored [19,20], and there remains much to be known about the underlying physical mechanisms in such systems. The effects of nonlinear noise are also non-negligible and of great importance in a variety of applications, e.g., microelectromechanical system (MEMS) sensors [21], frequency stabilization [22], frequency mixing [23], and filtering [24]. While there is increased interest in studying nonlinear effects in micro- and nanomechanical oscillators, studies of nonlinear effects on thermal radiation remain scarce and are largely restricted to driven systems with conservative nonlinearities, e.g., resonators based on rf-driven Josephson junctions [25] or optomechanical oscillators [26]. (The situation is different in the quantum regime, where the effects of SPM on the tunneling rate and quantum statistics of photons have been well studied [27,28].) Following an approach analogous to the treatment of nonlinear friction in mechanical oscillators [11], we extend previous work on Duffing oscillators to the case of nonlinear photonic cavities coupled to external baths or channels, a situation of direct relevance to current-generation experiments on radiative thermal transport in photonic media [29]. Interestingly, we find that effects arising from the interference of radiation reflected and emitted from the cavity into the external bath are crucial...
in order to observe thermal radiation enhancements in realistic situations, such as in cases where the external-bath temperature is at or near room temperature. We believe that these photonic systems not only offer opportunities for understanding the role of nonlinear damping on fluctuations, but also extend the functionality and tunability of devices based on thermal radiation. As we argue below, while these effects require very strong optical nonlinearities, the increasing accessibility of ultrahigh Q resonators with small modal volumes [12,30–33], such as the nanobeam cavity explored below, offers hope that they may soon be within the reach of experiments.

II. LANGEVIN FRAMEWORK

We begin by introducing the Langevin equations of motion of a single-mode nonlinear $\chi^{(3)}$ cavity coupled to an external bath (a single output channel) and an internal reservoir (a lossy channel). As described in Ref. [34], the coupled-mode equations for the field amplitude are given by

$$\frac{da}{dt} = [i(\omega_0 - \alpha |a|^2) - \gamma]a + \sqrt{2\gamma}a_s + D\xi,$$

where $|a|^2$ is the mode energy, $|s_\pm|^2$ are the input (output) power from (to) the external bath (e.g., a waveguide), and ω_0 and $\gamma = \gamma_r + \gamma_i$ are the frequency and linear decay rate of the mode. The linear decay channels include linear absorption from coupling to phonons or other dissipative degrees of freedom (γ_d) as well as decay into the external environment (γ_e). The real and imaginary parts of the nonlinear coefficient α are given by the overlap integral $\alpha = \frac{1}{2}\omega_0 \int \varepsilon_0 \chi^{(3)} |E|^4 / (\int |E|^2)^2$ of the linear cavity fields E and lead to SPM and TPA, respectively [34]. In addition to radiation coming from the external bath $\sim s_\pm$, Eq. (1) includes a stochastic Langevin source $D\xi(t)$ given by the product of a normalized “diffusion coefficient” D, relating amplitude fluctuations to dissipation from the internal (phonon) reservoir, and a time-dependent stochastic process $\xi(t)$ whose form and properties can be derived from very general statistical considerations [16,35,36]. For linear systems ($\alpha = 0$), the stochastic terms are uncorrelated white-noise sources (assuming a narrow bandwidth $\gamma \ll \omega_0$) satisfying

$$\langle s_+^*(t)s_+(t') \rangle = k_B T_d \delta(t - t'),$$

$$\langle \xi^*(t)\xi(t') \rangle = k_B T_d \delta(t - t'),$$

$$D(\gamma_d) = \sqrt{2\gamma_d},$$

where $\langle \cdots \rangle$ is a thermodynamic ensemble average, and T_d and T_e are the local temperatures of the internal and external baths, respectively.

The presence of nonlinear dissipation $-\text{Im} \alpha |a|^2$ means that D must also depend on α and $\text{Im} \alpha$ [35]. Note that $\text{Re} \alpha$ does not play any role in nonlinear dissipation. This intuitive result also follows from a microscopic Hamiltonian approach where $\text{Re} \alpha$ appears in the isolated system Hamiltonian as the quartic nonlinearity term while $\text{Im} \alpha$ represents system-

heat bath nonlinear coupling [28]. As a result, the diffusion coefficient D which captures the cavity-bath interaction in Eq. (1) does not depend on $\text{Re} \alpha$. (Interestingly, in the case of a driven quantum oscillator, the real part of $\chi^{(3)}$ affects the tunneling rate between states and hence the fluctuation statistics [27].) Such a nonlinear FDT can be obtained from very general statistical considerations such as energy equipartition [16,35,36], derived under the assumption that the system is at equilibrium, i.e., $T = T_r = T_d$. As described in Appendix A, one can apply a standard procedure to transform the stochastic ordinary differential equation (ODE) Eq. (1) into a Fokker-Planck (FP) equation for the probability distribution $P(a,a^*)$ [37], which in our case is given by

$$\frac{dP(a,a^*)}{dt} = -\frac{\partial}{\partial a} K_a P - \frac{\partial}{\partial a^*} K_a^* P + \frac{1}{2} \frac{\partial^2}{\partial a \partial a^*} K_{aa^*} P,$$

with Fokker-Planck coefficients,

$$K_a = [i(\omega_0 - \text{Re} \alpha |a|^2) - (\gamma - \text{Im} \alpha |a|^2)]a + \lambda D \frac{\partial D}{\partial a},$$

$$K_a^* = [-i(\omega_0 - \text{Re} \alpha |a|^2) - (\gamma - \text{Im} \alpha |a|^2)]a^* + \lambda D \frac{\partial D}{\partial a},$$

$$K_{aa^*} = K_{a^*a} = (2\gamma_e + D^2), \quad K_{aa} = K_{a^*a^*} = 0.$$
\(\xi_{1,2} \) are independent Gaussian noise sources, provided that
\(D = \sqrt{-2 \text{Im} \alpha a^*} \) and that the stochastic ODE is interpreted
according to the Stratonovich rule \(\lambda = \frac{1}{2} \) [28]. Our choice of
interpretation here is chosen purely for convenience.

III. THERMAL RADIATION

Equations (1) and (7) can be solved to obtain both the
equilibrium and nonequilibrium behavior of the system.
Since they do not admit closed-form analytical solutions,
we instead solve the stochastic ODE numerically using the
Euler-Maruyama method [41], involving a simple
forward-difference discretization which for the kinetic calculus results
in additional terms compared to an Ito discretization [37]. To
lowest order in the discretization,

\[
\Delta a = [i(\omega_0 - \alpha |a|^2) + D \Delta W_{\xi}] \\
+ \frac{\partial D}{\partial a} \Delta a \Delta W_{\xi} + \frac{\partial D}{\partial a^*} \Delta a^* \Delta W_{\xi} + \sqrt{2\gamma_e} \Delta W_{t+},
\]

where \(\Delta a \equiv a(t + \Delta t) - a(t) \) and \(\Delta W_{\xi} \equiv W_{t}(t + \Delta t) - W_{t}(t) \) is a Wiener process [41] corresponding to the
white-noise stochastic signal \(f \in [\xi,s_\alpha] \). It follows that if first
order in \(\Delta t \), the discretized ODE is given by

\[
\Delta a = [i(\omega_0 - \alpha |a|^2) + \text{Im} \alpha |\xi|^2 - \gamma] a \Delta t \\
+ 2\sqrt{\gamma_e} - \text{Im} \alpha |\xi|^2 \Delta W_{\xi} + \sqrt{2\gamma_e} \Delta W_{t+},
\]

(8)

where the additional discretization term \(\sim -\text{Im} \alpha |\xi|^2 \) arises in
the kinetic and not the Ito calculus.

Equilibrium. In what follows, we demonstrate numerically
that the system described by Eqs. (1) and (7) thermalizes and
satisfies all of the properties of an equilibrium thermodynamic
system, including equipartition and detailed balance, but that
nonlinearities lead to strong modifications of the emissivity
of the cavity. We consider the equilibrium situation \(T \equiv T_\alpha = T_e \), in which case \(|s_{\alpha}|^2 = |\xi|^2 = k_B T \). To begin with,
we motivate our numerical results by performing a simple
mean-field approximation known as statistical linearization
[42], which captures basic features but ignores correlation
effects stemming from nonlinearities. Specifically, making the
substitution \(|a(t)|^2 \rightarrow |\langle a(t) \rangle|^2 \equiv k_B T \) in Eq. (1), and solving
for the steady-state linear response of the system, we obtain
The emissivity of the cavity \(\epsilon(\omega) \equiv 2\gamma_e |\langle a(\omega) \rangle|^2 / k_B T \), defined
as the emitted power into the external bath normalized by
\(k_B T \) in the limit \(s_{\alpha} \rightarrow 0 \). In particular, we find

\[
\epsilon(\omega) = \frac{4\gamma_e |\langle a_\alpha - \text{Im} a_k T \rangle|}{\delta\omega^2 + (\gamma - \text{Im} a_k T)^2} \leq 1,
\]

(9)

where \(\delta\omega_T \equiv \omega_0 - \omega + \text{Re} a_k T \) and \(\epsilon \leq 1 \), as expected from
Kirchoff’s law [35].

Equation (9) can be integrated to verify the self-consistency
condition \(|\langle a(\omega) \rangle|^2 = \int \frac{d\omega}{2\pi} |\langle a(\omega) \rangle|^2 = k_B T \), as required by
equipartition. It can also be combined with Eq. (2) to show
that detailed balance \(|s_{\alpha}(\omega)|^2 = |\langle s_{\alpha}(\omega) \rangle|^2 \) is satisfied, i.e.,
there is no net transfer of heat from the cavity to the external
bath and vice versa. More interestingly, the presence of \(\alpha \)
leads to a temperature-dependent change in the frequency
and bandwidth of the cavity proportional to \(\text{Re} \alpha \) and \(\text{Im} \alpha \),
respectively. These properties are validated by a full solution
of the ODE, as illustrated on the inset of Fig. 1, which shows
the numerically computed emissivity \(\epsilon(\omega) \) for a few values of
the dimensionless nonlinear coupling \(\zeta \equiv \alpha k_B T \gamma_e / \gamma^2 \). Although Eq. (9) yields good agreement with our numerical
results for small \(\zeta \lesssim 0.5 \), at larger temperatures correlation
effects become relevant and statistical linearization is no longer
able to describe (even qualitatively) the spectral features. For
instance, in the absence of TPA and for large \(\zeta \) (such as
\(\zeta = 6 \) in Fig. 1), SPM leads to asymmetrical broadening of
the spectrum: broadening is most pronounced along the direction
of the frequency shift, as determined by the sign of \(\text{Re} \alpha \). This
effect is known as “frequency straddling,” which has been
predicted in the context of Duffing mechanical oscillators
[37,43,44], and arises due to frequency mixing within the
cavity bandwidth, as captured by the perturbative expansion
of the emissivity in powers of \(\alpha \) in Eq. (11). In particular,
at equilibrium one finds that the first-order correction to the
emissivity \(\sim -\text{Re} \alpha k_B T \), and so SPM enhances and reduces
thermal contributions from red- and blue-detuned frequencies,
or vice versa depending on the sign of \(\text{Re} \alpha \). Intuitively, the
density of states within the cavity favors frequency conversion
away from the resonance. Hence, photons on the red side of
the resonance will experience larger frequency shifts than those
on the blue side for \(\text{Re} \alpha > 0 \) (redshifting), and vice versa
for \(\text{Re} \alpha < 0 \) (blueshifting). Note that equipartition \(|\langle a \rangle|^2 = k_B T \)
and detailed balance \(|s_{\alpha}(\omega)|^2 = |\langle s_{\alpha}(\omega) \rangle|^2 \) are satisfied even
in the presence of strong correlations.

The above SPM and TPA effects pave the way for designing
temperature-tunable thermal emissivities. For instance, it is
well known that in a linear system, a cavity can become a
perfect emitter or absorber when the emission and dissipation
rates are equal, i.e., \(\gamma_e = \gamma_d \) [45]. It follows from Eq. (9) that in
the nonlinear case there is a modified rate-matching condition
whereby \(\epsilon = 1 \) is achieved only at the critical temperature
\(T \), where \(\gamma_e = \gamma_d - \text{Im} \alpha k_B T \). Hence, a system designed to

![FIG. 1. (Color online) Peak emissivity \(\epsilon_{\max} \) of a cavity coupled to an external bath, both at temperature \(T \), as a function of nonlinear coupling \(|\xi| = |\alpha| k_B T \gamma_e / \gamma^2 \), for different ratios of the linear dissipation \(\gamma_e \) and external coupling \(\gamma_d \) rates. The inset shows the emissivity \(\epsilon(\omega) \) for \(\gamma_e = \gamma_d \), corresponding to a cavity with perfect linear emissivity, for multiple values of \(\zeta \), illustrating the effects of SPM (red/blue) and TPA (green) on the spectrum.](image)
have $\gamma_e > \gamma_d$ (since $\text{Im} \alpha < 0$ in any passive system [10]) at room temperature will become a perfect emitter at $T_e > 300$ K. To illustrate this phenomenon, Fig. 1 shows the variation of the peak emissivity of the cavity, ϵ_{max}, by tuning the effective nonlinearity $|\xi|$ for multiple values of γ_e/γ_d.

Nonequilibrium. We now consider nonequilibrium conditions and demonstrate that TPA can lead to thermal radiation exceeding the blackbody limit. Assuming local equilibrium conditions, $\langle |s_-(\omega)|^2 \rangle = k_B T_e$, $\langle |s_+| \rangle = k_B T_d$, the heat transfer between the cavity and the external bath is given by

$$H = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(\langle |s_-(\omega)|^2 \rangle - \langle |s_+| \rangle \right)$$

$$= \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\Phi(\omega) k_B \Delta T}{\Delta \omega},$$

(10)

where $\Delta T \equiv T_d - T_e$ and $\Phi(\omega)$ is known as the spectral transfer function [7], or the heat exchange between the two systems compared to two blackbodies. [The transfer function of a blackbody $\Phi_{\text{BB}}(\omega) = 1$ at all frequencies.]

To begin with, we consider a perturbative expansion of Eq. (1) in powers of α, described in Appendix B, which we find to be accurate to within a few percent up to $|\xi| \approx 0.5$. In this case we find that statistical linearization does not even qualitatively describe the behavior of the system at small α.

To linear order in α, perturbation theory leads to the following expressions for the energy and output-power spectra:

$$\langle |a(\omega)|^2 \rangle = \frac{2\gamma_e k_B T_{\text{eff}}}{\delta \omega^2 + \gamma_e^2} - \frac{4\delta \omega \gamma_e \alpha (k_B T_{\text{eff}})^2}{(\delta \omega^2 + \gamma_e^2)^2} + \frac{2 \text{Im} \alpha (k_B T_{\text{eff}})}{(\delta \omega^2 + \gamma_e^2)} \left[T_d + \frac{2\gamma_e^2 T_e}{\delta \omega^2 + \gamma_e^2} \right].$$

$$\Phi(\omega) = \frac{4\gamma_e \gamma_d}{\delta \omega^2 + \gamma_e^2} - \frac{8\delta \omega \gamma_e \gamma_d \alpha (k_B T_{\text{eff}})}{(\delta \omega^2 + \gamma_e^2)^2} - \frac{1}{4\gamma_e} \frac{\text{Im} \alpha k_B}{\Delta T (\delta \omega^2 + \gamma_e^2)} \times \left[T_{\text{eff}} T_d + \frac{2\gamma_e^2 T_{\text{eff}}}{\delta \omega^2 + \gamma_e^2} T_e (T_d - 2T_{\text{eff}}) \right].$$

(11)

(12)

where $\delta \omega \equiv \omega - \omega_0$ and $T_{\text{eff}} = \frac{\gamma_e + \gamma_d T_e}{\gamma_e}$ is the effective temperature $\langle |a(t)|^2 \rangle/k_B$ of the cavity in the linear regime. At finite α, the effective temperature is given by

$$T_{\text{eff}} = T_{\text{eff}} - \frac{2 \text{Im} \alpha k_B T_{\text{eff}}}{\gamma} (T_d - T_{\text{eff}}),$$

(13)

which reduces to T_{eff} in the absence of nonlinearities and at equilibrium. Furthermore, one can also show that in the linear regime, $\Phi \leq \Phi_{\text{BB}}$ and reaches its maximum at the resonance frequency when $\gamma_e = \gamma_d$. For finite Im $\alpha
eq 0$, we find that $T_{\text{eff}} > T_{\text{eff}}$, irrespective of system parameters and that under certain conditions Φ increases above one. Thus, one arrives at the result that, out of equilibrium, the rate at which energy is drawn from the phonon bath can be larger than the rate at which energy radiates from the cavity, causing the effective temperature and overall heat transfer to increase above its linear value, a phenomenon associated with the presence of excess heat [46]. Note that T_{eff} is not affected by Re α to first order since the perturbation is odd in $\delta \omega$ and therefore integrates to zero. One can show that the peak transfer can increase above one whenever $\frac{d}{dT_{\text{eff}}} [\Phi_{\text{eff}} (3T_d + 2T_e - 4T_{\text{eff}}) - T_e T_d] > 0$ is satisfied, which occurs, for instance, when $T_d \gg T_e$, in which case $\eta_{\text{max}} = \frac{\Phi_{\text{BB}}(\alpha)}{\Phi_{\text{max}}/k_B}$, which increases above one with increasing $\text{Im} \alpha$.

Figure 2 shows the peak spectral transfer $\eta_{\text{max}} = \Phi_{\text{max}}/\Phi_{\text{BB}}$, along with the normalized, frequency-integrated heat transfer $\tilde{H}(\xi)/H_{\text{max}}(0)$ as a function of $|\xi|$, computed by integrating Eq. (1) numerically. Here $H_{\text{max}}(0)$ denotes the maximum possible heat transfer in the linear regime which
occurs under the rate-matching condition $\gamma_e = \gamma_d$. (The inset shows a realistic structure where such nonlinear radiation effects can potentially be observed.) The largest increase in η occurs when ΔT is largest and so in the figure we consider the case $T_e = 0$, for multiple values of $Re \alpha / Im \alpha$ and γ_e / γ_d. As $|\xi|$ increases from zero, η_{max} increases and in certain regimes becomes greater than one. At larger ξ, the enhancement is spoiled due to thermal broadening causing energy in the cavity to leak out at a faster rate, thereby weakening nonlinearities and causing $\eta_{\text{max}} \to 0$ as $|\xi| \to \infty$. The maximum η is determined by a competition between these two effects, with thermal broadening becoming less detrimental and leading to larger enhancements with decreasing γ_e / γ_d. We find that TPA does not just enhance $\Phi(\omega)$ but also increases the total heat transfer and, in particular, $\Phi(\omega) = \frac{2\eta_0}{\Delta T} \to \frac{2\eta_0}{2T_e}$ in the limit as $|\xi| \to \infty$ (not shown), increasing monotonically with increasing γ_e. As expected, H is bounded by the largest achievable effective temperature $T_{\text{eff}}^{\text{NL}} < T_d$, or alternatively by the maximum rate at which energy can be drawn from the phonon bath. Examination of the reverse scenario ($T_e > T_d$), in which the external bath is held at a higher temperature than the cavity, also leads to similar enhancements. However, because only the internal bath experiences nonlinear dissipation, the system exhibits nonreciprocal behavior with respect to $T_d \leftrightarrow T_e$, which is evident in Eq. (12). Moreover, we find that $T_{\text{eff}}^{\text{NL}}$ in this reverse scenario always decreases with increasing TPA. Such nonreciprocity in the heat exchange is absent in linear systems and could potentially be useful in technological applications, such as for thermal rectification [47,48].

To illustrate the range of thermal tunability offered by TPA, we consider the on-resonance heat transfer $\Phi_{\text{max}} \equiv \Phi(\omega_0)$ in the highly nonequilibrium regime $T_e = 0$ and for $Re \alpha = 0$. While SPM offers some degree of tunability, we find that TPA has a significantly larger impact on the radiation rate of the cavity. In this regime, Eq. (12) simplifies and yields $\Phi_{\text{max}} = \frac{4\eta_0 \gamma_e^2}{\gamma_d^2} [1 + (\frac{Re \alpha}{Im \alpha}) (3 - 4 \frac{\lambda_0}{\gamma_d})] T_d$, from which it follows that at small $|\xi| < 0.5$, where Eq. (12) is applicable, Φ_{max} scales linearly with T_d and depends on the ratio $\frac{\gamma_e}{\gamma_d}$, increasing above its linear value whenever $3 \gamma_e \gg \gamma_d$. Furthermore, one finds that the largest temperature variation, related to the slope $\frac{Re \alpha}{Im \alpha} (3 - 4 \frac{\lambda_0}{\gamma_d})$, is obtained in the limit $\gamma_e \gg \gamma_d$ and $\gamma_e / \gamma_d \to 0$, corresponding to a cavity with negligible linear emissivity, large $\gamma_e \gg 1$ (for a fixed temperature and $Im \alpha$), and narrow bandwidth. Interestingly, we find that even for small $\xi < 1$ and $\gamma_e / \gamma_d \sim 20$, the emissivity of the cavity can increase dramatically from $\Phi_{\text{max}} \approx 0.2$ at $\xi = 0.4$ to $\Phi_{\text{max}} \approx 0.9$ at $\xi = 0.8$.

As mentioned above, it turns out that a nonlinear mechanical oscillator interacting with a medium through nonlinear friction exhibits similar spectral characteristics [11,28]. However, in contrast to our photonic radiator, enhancements in the spectral peak due to nonlinear friction are only observed when the nonlinear dissipation rate is much larger than the linear loss rate, or equivalently when the source of nonlinear friction is at a very high temperature compared to the internal phonon temperature [11]. While realizing these experimental conditions in mechanical oscillators, including the need to have isolated linear and nonlinear heat baths operating at vastly different temperatures, seems difficult, a photonic cavity offers alternative ways of observing thermal radiation above the linear blackbody limit, creating opportunities for studying nonlinear damping. First, while in the case of a mechanical oscillator one observes large enhancements only when the internal dissipation and hence the bandwidth $\gamma_d \to 0$, the introduction of an external radiative channel in a photonic system enables large thermal enhancement with finite γ_d and hence larger bandwidths. In particular, as long as the linear cavity losses are dominated by radiation to the external bath, corresponding to the situation $\gamma_d \ll \gamma_e$, the total cavity bandwidth γ_e can be large while still allowing internal losses to be dominated by nonlinear friction. Second, while in the case of mechanical oscillators one observes nonlinear enhancement only when the external (linear dissipation) temperature is small compared to the internal (nonlinear dissipation) temperature, $T_e < T_d$, interference effects associated with the presence of the external bath in the photonic system ameliorate this experimentally onerous constraint. In particular, the heat exchanged between the photonic cavity and external bath depends on the sensitive interference between reflected and emitted radiation from the cavity, described by Eq. (2). These interference effects result in amplitude correlations $\sim Im \alpha (\gamma_e \omega \alpha \omega^* \xi)$, corresponding to the last term of Eq. (12), whose contribution to the heat transfer cannot be ignored in situations where $T_e \lesssim T_d$. (In their absence, the spectrum of the cavity resembles that of a mechanical oscillator and one can no longer observe significant enhancements in thermal radiation unless $T_e \sim T_d$.) For illustration, consider a situation in which the cavity and external channel are held at temperatures such that $T_d = 2T_e$. In this case, we find that the maximum transfer increases from $\Phi_{\text{max}} \approx 0.6$ at $\xi = 0$ to $\Phi_{\text{max}} \approx 1.2$ at $\xi = 1$ almost entirely due to interference between the reflected and emitted radiation from the cavity, in the absence of which Φ_{max} actually decreases with increasing ξ.

IV. CONCLUSION

We conclude by proposing a practical system where the above-mentioned effects can potentially be observed. In order to reach the strongly nonlinear regime, it is desirable to have $|\xi| = \frac{\omega_k \xi_{\text{max}}}{\omega_0} \sim 1$. Given a choice of operating temperature, the goal is therefore to design a cavity with a large Purcell factor $\alpha / \gamma \sim Q / V$. If the goal is to observe large enhancements from TPA, it is also desirable to operate with materials and wavelengths where the nonlinear figure of merit (FOM) $\frac{n_2}{\beta_{\text{TPA}}}$ is small, corresponding to large TPA where n_2 and β_{TPA} are the Kerr and the TPA coefficients, respectively [10]. All of these conditions can be achieved in a number of material systems and geometries. For illustration, we consider the Ge nanobeam cavity shown in the inset of Fig. 2 and based on the family of nanobeam cavities described in Ref. [31], which supports a mode at $\lambda = 2.09 \mu m$. At this wavelength, Ge has an index of refraction $n \approx 4$ and Kerr coefficient $\chi^{(3)} \approx (1.2 - 11i) \times 10^{-17}$ (m/V)2 [49,10], corresponding to a FOM ≈ 0.008. This yields a mode with $\alpha \approx 0.001(\chi^{(3)} / \hbar \lambda^3) < 10^6$, and modal volume $V \approx 0.8(\lambda / n)^3$, leading to $|\xi| \approx 1$ for operation at $T = 1000 \, K$. (Large Purcell factors such as these were recently predicted in a similar, albeit silicon, platform [31].) We note that there are other possible cavity designs, wavelengths, and material choices, including GaP...
and ZnSe, and that it is also possible to operate with larger bandwidths at the expense of larger temperatures and/or smaller mode volumes. Because these thermal effects scale linearly with the Purcell factor, we believe that nanophotonic cavities with ultrasmall modal volumes and bandwidths are the most promising candidates for experimental realization. This is in contrast to the situation encountered in traditional nonlinear devices involving incident (nonthermal) light, where the threshold power for observing strong nonlinear effects \(\sim V/Q^2 \) and therefore favors designs that sacrifice modal volume in favor of smaller bandwidths [12].

Finally, we note that the predictions above offer only a glimpse of the potentially interesting radiative phenomena that can arise in passive nonlinear media at and out of equilibrium. In future work, it may be interesting to consider the impact of other nonlinear phenomena on thermal radiation, including free-carrier absorption and third harmonic generation, as well as applications of the Kerr effect to thermal rectification in a related context of optomechanics, the coupling of photonic and mechanical resonances leads to different nonlinear effects that are also manifested in the radiation spectrum of photonic cavities, often studied in the presence of incident, nonthermal radiation pressure [18,50]. We believe that electronic nonlinearities such as the Kerr effect in semiconductors offer an alternative approach to exploring similar ideas involving nonlinear fluctuations.

ACKNOWLEDGMENTS

We are grateful to Mark Dykman for very helpful comments and suggestions. This work was supported in part by the Army Research Office through the Institute for Soldier Nanotechnologies under Contract No. W911NF-13-D-0001, and by the National Science Foundation under Grant No. DMR-1454836.

APPENDIX A: FOKKER-PLANCK EQUATION

In this Appendix, we review the procedure for deriving the FP equation [Eq. (6)] from the corresponding nonlinear Langevin equation [Eq. (2)], which can be written in the following simplified form:

\[
\dot{a} = f(a,a^*) + D(a,a^*)\xi + \sqrt{2\gamma_\varepsilon} s_+, \quad f(a,a^*) = i(\omega_0 - \alpha|a|^2)a - \gamma_\varepsilon, \]

where \(D \) is the diffusion coefficient, and \(\xi \) and \(s_+ \) are delta-correlated white-noise sources obtained by taking the derivative of standard Wiener processes [41], \(\xi = W_t \) and \(s_+ = W_s \). For a finite discretization time \(\Delta t \), the coupled-mode equations can be written as follows [37]:

\[
\frac{a(t) - a(t - \Delta t)}{\Delta t} = f(\alpha a(t) + (1 - \lambda)a(t - \Delta t)) \\
+ D(\alpha a(t) + (1 - \lambda)a(t - \Delta t)) \\
\times \left[\frac{W_1(t) - W_1(t - \Delta t)}{\Delta t} \right] \\
+ \sqrt{2\gamma_\varepsilon} \left[\frac{W_1(t) - W_1(t - \Delta t)}{\Delta t} \right],
\]

where the choice of \(0 \leq \lambda \leq 1 \) determines the corresponding stochastic interpretation rule. Specifically, \(\lambda = 0, \frac{1}{2}, 1 \) correspond to Ito, Stratonovich and kinetic interpretations of stochastic calculus, respectively [37]. Taylor expanding each term and defining \(\Delta a(t) = a(t) - a(t - \Delta t) \) and \(\Delta W_1 = W_1(t) - W_1(t - \Delta t) \), with \(\Delta W_1 \) denoting a standard Brownian increment with zero mean and variance \(\langle \Delta W_1^2 \rangle = k_B T \Delta t \), one finds the following expression to \(O(\Delta t) \):

\[
\Delta a = f(a,a^*)\Delta t + D\Delta W_1 + \lambda D \frac{\partial D}{\partial a} \Delta W_1 \Delta W_1 \\
+ \lambda D \frac{\partial D}{\partial a^*} \Delta W_1^2 + \frac{\sqrt{2\gamma_\varepsilon}}{\sqrt{\Delta t}} \Delta W_2. \quad (A2)
\]

Transforming the Langevin equation into a FP Partial Differential Equation (PDE) involves a standard procedure [37] and leads to an equation of the form

\[
\frac{\partial P}{\partial t} = -\sum_{\alpha,\beta} \frac{\partial}{\partial a_{\alpha}} K_{\alpha,\beta} P + \sum_{\alpha,\beta} \frac{\partial^2}{\partial a_{\alpha} \partial a_{\beta}} K_{\alpha,\beta} P, \quad \text{where the FP coefficients are given by}
\]

\[
K_{\alpha} = \lim_{\Delta t \to 0} \frac{\langle a_{\alpha}(t) - a_{\alpha}(t - \Delta t) \rangle}{\Delta t},
\]

\[
K_{\alpha,\beta} = \lim_{\Delta t \to 0} \frac{\langle [a_{\alpha}(t) - a_{\alpha}(t - \Delta t)][a_{\beta}(t) - a_{\beta}(t - \Delta t)] \rangle}{\Delta t}.
\]

Carrying out the above limiting procedures, one obtains the FP equation given in Eq. (6).

APPENDIX B: PERTURBATION THEORY

In this Appendix, we derive perturbative expressions for the energy spectrum \(\langle |a(\omega)|^2 \rangle \) and transfer function \(F(\omega) \) of the nonlinear cavity. For convenience, we define \(\alpha = \alpha_1 - i\alpha_2 \), with \(\alpha_2 = -\text{Im} \alpha > 0 \), as required by any passive nonlinear system. We begin by defining a perturbed cavity field \(a(t) = a_0(t) + \delta a(t) \), where \(a_0 \) is the linear cavity field and \(\delta a \) is a correction of linear order in \(\alpha \). Plugging in the perturbed field into the coupled-mode equations and ignoring terms \(O(\alpha^2) \) and higher, one obtains the coupled equations

\[
\dot{a}_0 = (i\omega_0 - \gamma)a_0 + \sqrt{2\gamma_\varepsilon} \xi + \sqrt{2\gamma_\varepsilon} s_+, \quad (B1)
\]

\[
\delta \dot{a} = (i\omega_0 - \gamma)\delta a - (i\alpha_1 + \alpha_2)|a_0|^2 a_0 + \frac{\alpha_2}{\sqrt{2\gamma_\varepsilon}} |a_0|^2 \xi. \quad (B2)
\]

Fourier transforming both equations, their solution to first order in \(\alpha \) can be written as

\[
a_0(\omega) = D(\omega)^{-1} [\sqrt{2\gamma_\varepsilon} \xi(\omega) + \sqrt{2\gamma_\varepsilon} s_+(\omega)]. \quad (B3)
\]

\[
\delta a(\omega) = \frac{D(\omega)^{-1}}{\sqrt{2\gamma_\varepsilon}} F[a_2|a_0|^2 \xi - (i\alpha_1 + \alpha_2)\sqrt{2\gamma_\varepsilon} |a_0|^2 a_0]. \quad (B4)
\]

where \(D(\omega) \equiv i(\omega - \omega_0) + \gamma \) and \(F \equiv \int dt e^{-i\omega t} \) denotes the Fourier transform operator.

1. Energy spectrum

We first compute the energy spectrum of the perturbed cavity which, to first order in \(\delta a \), is given by

\[
\langle |a(\omega)|^2 \rangle = \langle |a_0(\omega)|^2 \rangle + 2 \text{Re} \langle a_0^*(\omega) \delta a(\omega) \rangle. \quad (B5)
\]
As discussed below, the second term can be obtained by exploiting the following linear, two-point correlation functions:

\[\langle a_0^*(\omega)\xi(\omega') \rangle = \frac{\sqrt{2\gamma_k T_a}}{D^*(\omega)} \langle \delta(\omega - \omega') \rangle, \quad (B6) \]

\[\langle a_0(\omega)\xi(\omega') \rangle = \frac{\sqrt{2\gamma_k T_a}}{D(\omega)} \langle \delta(\omega + \omega') \rangle, \quad (B7) \]

\[\langle a_0^*(\omega)x_1(\omega') \rangle = \frac{\sqrt{2\gamma_k T_a}}{D(\omega)} \langle \delta(\omega - \omega') \rangle, \quad (B8) \]

\[\langle a_0(\omega)x_1(\omega') \rangle = \frac{\sqrt{2\gamma_k T_a}}{D(\omega)} \langle \delta(\omega + \omega') \rangle, \quad (B9) \]

\[\langle a_0^*(\omega)a_0(\omega') \rangle = \gamma_k \frac{T_a^2}{D(\omega)} \langle \delta(\omega - \omega') \rangle, \quad (B10) \]

where \(T_a = \frac{\gamma_T + \gamma_e T_a}{\gamma_T + \gamma_e + \gamma_d} \) denotes the linear effective temperature of the cavity. In deriving Eqs. (B6)–(B10), we employed the fact that \(s_+ \) and \(x_1 \) are uncorrelated white-noise sources described by Eqs. (3) and (5). Equation (B10) is precisely the zeroth-order term of the energy spectrum (in the absence of nonlinearities), while the first-order correction is given by the more complicated expression

\[\langle a_0^*(\omega)\delta a(\omega') \rangle = \left(\frac{\sqrt{2\gamma_k \xi(\omega)} + \sqrt{2\gamma_e s_1^*(\omega)}}{D^*(\omega)D(\omega')} \right) \frac{G(\omega)}{2\gamma_k}, \quad (B11) \]

where the function

\[G(\omega) \equiv \langle a_2^2(\omega) \rangle = 2\gamma_k \left[\left\langle |a_0(\omega)|^2 \right\rangle - i\alpha_1 \sqrt{2\gamma_k} |a_0(\omega)|^2 a_0(\omega) \right] \]

encapsulates the spectral response of the perturbed cavity field, here simplified by exploiting the relation \(F[|a_0|^2][x] = F[a_0] \ast F[a_0]^\ast \). Focusing first on the \(\alpha_2 \) terms of the numerator of Eq. (B11), one obtains

\[\alpha_2 \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} d\omega_1 d\omega_2 e^{-i(\omega_1 x_1 + \omega_2 x_2)} a_0^*(\omega_1) a_0(\omega_2) \]

\[\times \left[\xi(\omega) - \sqrt{2\gamma_k a_0(x)} + \sqrt{2\gamma_e a_0(x)} \right] \left[\xi^*(\omega) + \sqrt{\frac{2\gamma_e}{\gamma_k}} s_1^*(\omega) \right] . \]

The ensemble average of the expression under the integrals involves four-point correlation functions and is given by

\[\langle \cdots \rangle = \langle a_0^*(\omega_1)a_0(\omega_2)\xi(\omega)x_1^*(\omega) \rangle \]

\[+ \sqrt{\frac{2\gamma_e}{\gamma_k}} \langle a_0^*(\omega_1)a_0(\omega_2)\xi(\omega)x_1^*(\omega) \rangle \]

\[- \sqrt{2\gamma_k} \langle a_0^*(\omega_1)\xi(\omega)\xi^*(\omega) \rangle \]

\[- \sqrt{2\gamma_e} \langle a_0^*(\omega_1)a_0(\omega_2)\xi^*(\omega) \rangle . \]

Because the noise sources follow Gaussian distributions, four-point correlation functions can be written in terms of products of two-point correlation functions via Wick’s theorem [35]. Summing the resulting two-point correlation functions, described by Eqs. (B6)–(B10), one obtains the following three terms:

\[T_{\text{eff}} \left[T_d - 2\gamma_r T_a + 2\gamma_T T_a \right] \langle \delta(\omega - \omega') \rangle \]

\[- \frac{2\gamma_r T_a + 2\gamma_T T_a}{D(\omega)} \left[T_d - 2\gamma_r T_a \right] \langle \delta(\omega - \omega') \rangle \]

\[- \frac{2\gamma_r T_a + 2\gamma_T T_a}{D^*(-\omega')} \left[T_d - 2\gamma_r T_a \right] \langle \gamma^2(\omega) \rangle \frac{\delta(\omega - \omega')}{D^*(\omega)D(\omega')} . \]

It follows that the \(\alpha_2 \) term in Eq. (B11) is given by

\[\frac{\alpha_2 k_B^2}{|D(\omega)|^2} \left[T_{\text{eff}} T_d - 2\gamma_r T_a^2 D(\omega) + 2\gamma_T T_a T_d D(\omega) - 2\gamma_r T_a^2 D(\omega) \right] \]

\[+ \gamma_T T_a T_d \frac{T_{\text{eff}}}{D^*(-\omega')} \left[\frac{2\gamma_r T_a^2 D^*(-\omega')}{D(\omega)} + 2\gamma_T T_a D^*(-\omega') \gamma^2 + i\omega_0 \gamma \right] . \]

Note that the last two terms can be neglected since the quantities \(\alpha^2 D^*(-\omega) \) involve off-resonant, counter-rotating fields and, furthermore, our coupled-mode theory is only valid in the regime \(\gamma \ll \omega_0 \). Performing a similar calculation for the \(\alpha_1 \) term yields

\[\frac{-i\alpha_1 k_B^2}{|D(\omega)|^2} \left[2\gamma_r T_a^2 D(\omega) + 2\gamma_T T_a^2 D(\omega) + 2\gamma_r T_a^2 D^*(-\omega') \gamma^2 + i\omega_0 \gamma \right] . \]

Putting together the above two expressions for both real and imaginary \(\alpha \) and neglecting counter-rotating terms, one obtains the energy spectrum in Eq. (11).

2. Spectral transfer function

The spectral transfer function is defined as the relative power transfer from the cavity into the output channel divided by their temperature difference,

\[\Phi(\omega) = \frac{\langle |s_-(\omega)|^2 \rangle - \langle |s_+(\omega)|^2 \rangle}{k_B \Delta T} . \]

To first order in \(\alpha \), the outgoing power is given by

\[\langle |s_-(\omega)|^2 \rangle = \langle |s_+(\omega)|^2 \rangle + 2\gamma_r S_{\omega_0}(\omega) \]

\[- 2\sqrt{2\gamma_e} \text{Re} \left\{ \langle s_1^*(\omega) [a_0(\omega) + \delta a(\omega)] \rangle \right\}, \]

where the first and second terms are the incident power and energy spectra of the cavity, obtained above, and so it only remains to calculate the third term, or the interference between the incoming and outgoing radiation. Following the same procedure as before, the zeroth- and first-order correction terms are given by

\[\langle s_1^*(\omega) a_0(\omega) \rangle = \frac{\sqrt{2\gamma_k \xi}}{\sqrt{2\gamma_k}} \]

\[\times \left[\alpha_2 a_0^*(\omega_1) a_0(\omega_2) \xi(\omega) \right] \]

\[+ \frac{1}{\sqrt{2\gamma_k}} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} d\omega_1 d\omega_2 e^{-i(\omega_1 x_1 + \omega_2 x_2)} \]

\[\left[\alpha_2 a_0^*(\omega_1) a_0(\omega_2) \xi(\omega) \right] \]

\[- \sqrt{2\gamma_k} \langle a_0^*(\omega_1) \xi(\omega) \xi^*(\omega) \rangle \]

\[- \sqrt{2\gamma_e} \langle a_0^*(\omega_1) a_0(\omega_2) \xi^*(\omega) \rangle \].
As before, these can be broken down into contributions from α_2 and α_1, which yields

$$\frac{\alpha_2\sqrt{2\gamma e k_B^2}}{|D(\omega)|^2} \left\{ -T_{\text{eff}} + T_e (T_d - T_{\text{eff}}) \right.$$

$$+ \frac{T_e D^*(\omega)}{D(-\omega)} \left[T_d - T_{\text{eff}} \left(\frac{\gamma^2 + i\omega\gamma}{\gamma^2 + \omega_0^2} \right) \right] \left\} \right.$$

\(\text{B15}\)

and

$$-\alpha_1 k_B^2 \left\{ \frac{2\sqrt{2\gamma e k_B^2} T_{\text{eff}}}{D(\omega)^2} + \frac{\sqrt{2\gamma e k_B^2} T_e T_d}{D(\omega)D^*(-\omega)} \right\} ,$$

\(\text{B16}\)

respectively. As before, the counter-rotating terms $\sim D^*(\omega)$ can be neglected, leading to the following expression:

$$\langle s_+^\alpha(\omega)\delta(\omega) \rangle = -4\alpha_2\gamma e T_e (T_d - 2T_{\text{eff}}) \frac{\gamma^2 (\omega - \omega_0)^2}{|D(\omega)|^4}$$

$$+ 8\alpha_1\gamma e T_e T_{\text{eff}} \frac{\gamma (\omega - \omega_0)}{|D(\omega)|^4} .$$

\(\text{B17}\)

Finally, after collecting like terms, one obtains the spectral transfer function in Eq. (12).

[39] To first order in $\chi^{(3)}$, the only impact of the nonlinearity is to shift the cavity frequency slightly which does not contribute to changes in the cavity energy [45].

