Search for quark contact interactions in dijet angular distributions in pp collisions at $s = 7$ TeV measured with the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for quark contact interactions in dijet angular distributions in pp collisions at $\sqrt{s} = 7$ TeV measured with the ATLAS detector

ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 27 September 2010
Received in revised form 12 October 2010
Accepted 13 October 2010
Available online 16 October 2010

Editor: H. Weerts

Keywords:
ATLAS
LHC
7 TeV
Dijets angular distributions
Quark compositeness
Contact interactions

A B S T R A C T

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy $\sqrt{s} = 7$ TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb$^{-1}$. Dijet χ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the χ distributions excludes quark contact interactions with a compositeness scale Λ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

© 2010 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

At hadron colliders, most events with large transverse momentum (p_T) transfer occur when a constituent parton from one of the incoming hadrons scatters from a parton in the other. At high p_T, these $2 \rightarrow 2$ scattering processes are well described within the Standard Model by perturbative Quantum Chromodynamics (QCD), the quantum field theory of strong interactions. As each high-momentum parton emerges from the collision, the subsequent parton shower and hadronization create a collimated jet of particles aligned with the direction of the original parton. In most of these collisions, two high-p_T jets emerge from the interaction. These ‘dijet’ events are particularly useful for measuring quantities associated with the initial interaction, such as the polar scattering angle in the two-parton center-of-mass (CM) frame, θ^*, and the dijet invariant mass, m_{jj}. Precise tests of QCD may be carried out by comparing the theoretical predictions to the experimental distributions. If discrepancies between data and QCD are found to be well beyond experimental and theoretical uncertainties, this would indicate that the QCD description needs improvement, or that a new process, not included in the Standard Model, has appeared.

This analysis focuses on dijet angular distributions, which have been shown by previous experiments [1–4] to be sensitive measures for testing the predictions of QCD and searching for new processes. Dijet angular distributions are well suited to the analysis of early LHC data, since they are little affected by the main systematic uncertainties associated with the jet energy scale (JES) and the luminosity. QCD calculations predict that high-p_T dijet production is dominated by t-channel gluon exchange, leading to angular distributions that are peaked at $|\cos \theta^*|$ close to 1. By contrast, models of new processes characteristically predict angular distributions that would be more isotropic than those of QCD.

This Letter reports on the first search with the ATLAS detector for quark contact interactions leading to modifications of dijet angular distributions in proton–proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC. The data sample represents an integrated luminosity of 3.1 pb$^{-1}$, recorded in periods of stable collisions, through August 2010. The two distributions under study – dijet χ distributions, and dijet centrality ratios – have been used repeatedly as benchmark measures, and will be described in detail below.

The highest exclusion limits on quark contact interactions set by any previous experiment [4], for several statistical analyses, ranged from 2.8 to 3.1 TeV at 95% confidence level (CL) for the compositeness scale Λ. A natural variable...
for analysis of parton–parton interactions is therefore the rapidity,
\(y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \), where \(E \) is the energy and \(p_z \), the \(z \)-component of momentum, of the given particle. The variable \(y \) transforms under Lorentz boosts along the \(z \)-direction as \(y \to y - y_B = y - \tan^{-1}(\beta_B) \), where \(\beta_B \) is the velocity of the boosted frame, and \(y_B \) is its rapidity boost.

The ATLAS coordinate system is a right-handed Cartesian system with the \(x \)-axis pointing to the center of the LHC ring, the \(z \)-axis following the counter-clockwise beam direction, and the \(y \)-axis going upwards. The polar angle \(\theta \) is referred to the \(z \)-axis, and \(\phi \) is the azimuthal angle about the \(z \)-axis.

Rapidity differences are boost invariant, so that under Lorentz boosts jets retain their shapes in \((y, \phi)\) coordinates. The pseudorapidity, \(\eta = -\ln(\tan(\theta/2)) \), approaches rapidity in the massless limit and can be used as an approximation to rapidity. The variables \(\eta \) and \(\phi \) are employed in the reconstruction of jets.

The variable \(\chi \), used in the first angular distributions considered in this study, is derived from the rapidities of the two jets defining the dijet topology \((y_1 \text{ and } y_2)\). For a given scattering angle \(\theta^* \), the corresponding rapidity in the CM frame (in the massless particle limit) is \(y^* = \frac{1}{2} \ln \left(\frac{1+\cos \theta^*}{1-\cos \theta^*} \right) \). The variables \(y^* \) and \(y_B \) can be found from the rapidities of the two jets using \(y^* = \frac{1}{2}(y_1 - y_2) \) and \(y_B = \frac{1}{2}(y_1 + y_2) \). Then \(y^* \) may be used to determine the partonic CM angle \(\theta^* \). Additionally, \(y^* \) is the basis for the definition of \(\chi \): \(\chi = \exp(2(y_1 - y_2)) = \exp(2(y^*)) \).

The utility of the \(\chi \) variable becomes apparent when making comparisons of angular distributions predicted for new processes to those of QCD. In QCD, gluon (massless, spin-1) exchange diagrams have approximately the same angular dependence as Rutherford scattering: \(dN/d\cos \theta^* \propto 1/\sin^4(\theta^*/2) \). Evaluation of \(dN/d\chi \) shows that this distribution is constant in \(\chi \). By contrast, the angular distributions characteristic of new processes are more isotropic, leading to additional dijet events at low \(\chi \). In QCD, sub-dominant diagrams also cause \(\chi \) distributions to rise slightly at low \(\chi \).

The other important kinematic variable derivable from jet observables is the dijet invariant mass, \(m_{jj} \), which is also the CM energy of the partonic system. In reconstruction, \(m_{jj} \) is found from the two jet four-vectors: \(m_{jj} = \sqrt{(E_j^1 + E_j^2)^2 - (p_{T,j}^1 + p_{T,j}^2)^2} \), where \(E \) and \(\vec{p} \) are the energy and momentum of the jets. Both distributions used in this Letter are binned in this variable.

The second angular distribution considered is the dijet centrality ratio, \(R_c \). For this analysis, the detector is divided into two pseudorapidity regions: central and non-central. \(R_c \) is defined as the ratio of the number of events in which the two highest \(p_T \) jets both fall into the central region to the number of events in which the two highest \(p_T \) jets both fall into the non-central region. For the current study, the central region is defined as \(|\eta_{1,2}| < 0.7\), and the non-central region as \(0.7 < |\eta_{1,2}| < 1.3\). Since new processes are expected to produce more central activity than QCD, their signal would appear as an increase in \(R_c \) above some \(m_{jj} \) threshold, with the increase being directly related to the cross section of the new signal.

\(R_c \) distributions are complementary to \(\chi \) distributions by being sensitive to different regions of phase space. \(\chi \) distributions are fine measures of \(\theta^* \) and coarse measures of \(m_{jj} \), while the opposite is true for \(R_c \) distributions as they can be binned more finely in \(m_{jj} \) for the given amount of data. This gives \(R_c \) distributions greater discrimination in determining mass scales associated with hypothetical signals. Ideally, when a signal is present, the two distributions together can be used to narrow the list of viable hypotheses and to establish the associated scale parameters.

The measured \(R_c \) and \(\chi \) distributions include corrections for the jet energy scale but are not unfolded to account for resolution effects. They are compared to theoretical predictions processed through the detector simulation software that, similarly, includes the jet energy corrections but not resolution unfolding.

3. The ATLAS detector

The ATLAS detector [5] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters, and muon chambers. Jet measurements depend most strongly on the calorimeter system. The ATLAS calorimeter is segmented in intervals of pseudorapidity and \(\eta \) to exploit the property that jet shapes are nearly boost invariant in \((\eta, \phi)\) coordinates.

Liquid argon (LAr) technology is used in the electromagnetic sampling calorimeters, with excellent energy and position resolution, to cover the pseudorapidity range \(|\eta| < 3.2\). The hadronic calorimetry in the range \(|\eta| < 1.7\) is provided by a sampling calorimeter made of steel and scintillating tiles. In the end-caps (1.5 < |\eta| < 3.2), LAr technology is also used for the hadronic calorimeters, matching the outer \(|\eta| \) limits of the electromagnetic calorimeters. To complete the \(\eta \) coverage, the LAr forward calorimeters provide both electromagnetic and hadronic energy measurements, extending the coverage to |\eta| = 4.9. In ATLAS, the calorimeter \((\eta, \phi)\) granularities are 0.1 x 0.1 for the hadronic calorimeters up to |\eta| < 2.5 (except for the third layer of the tile calorimeter, which has a segmentation of 0.2 x 0.1 up to |\eta| = 1.7), and then 0.2 x 0.2 up to |\eta| < 5.0. The EM calorimeters feature a much finer readout granularity varying by layer, with cells as small as 0.025 x 0.025 extending to |\eta| < 2.5. This segmentation of the calorimeter is sufficiently fine to assure that angular resolution uncertainties in dijet analyses are negligible. In the data taking period considered approximately 187,000 calorimeter cells (98% of the total) were active for event reconstruction.

ATLAS has a three-level trigger system, with the first level (L1) being custom built hardware. The two higher level triggers (HLT) are realized in software. The HLT was not set to reject events accepted by the L1 single-jet triggers chosen for this analysis.

4. Event selection and reconstruction

In the current 3.1 pb\(^{-1}\) data sample, specific L1 jet trigger selections have been exploited for optimal analysis of the angular observables. For both observables, bins of \(m_{jj} \) are associated with distinct L1 jet trigger requirements selected to provide maximal statistics while being fully efficient, as will be detailed for \(\chi \) in Section 7.

Jets have been reconstructed using the infrared-safe anti-\(k_t\) jet clustering algorithm [6] with the radius parameter \(R = 0.6 \). The inputs to this algorithm are clusters of calorimeter cells seeded by energy depositions significantly above the measured noise. Jet four-vectors are constructed by the vectorial addition of cell clusters, treating each cluster as an \((E, \vec{p})\) four-vector with zero mass. The jet four-vectors are then corrected, as a function of \(\eta \) and \(p_T \), for the effects of hadronic shower response and detector material distributions by using a calibration scheme based on Monte Carlo (MC) studies including full detector simulation, and validated with extensive test-beam studies [7] and collision data [8].

In order to suppress cosmic-ray and beam-related backgrounds, events are required to contain at least one primary collision vertex with a position of |\(z\)\| < 30 cm and reconstructed from at least five charged-particle tracks. Events with at least two jets are retained if the highest \(p_T \) jet (the ‘leading’ jet) satisfies \(p_T^1 > 60 \) GeV and the next-to-leading jet satisfies \(p_T^2 > 30 \) GeV. The asymmetric thresholds are required so as to avoid suppression of events where a third jet has been radiated, while the 30 GeV threshold ensures
that reconstruction is fully efficient for both leading jets. Those events containing a poorly measured jet [9] with $p_T > 15$ GeV are vetoed to avoid cases where such a jet would cause incorrect identification of the two leading jets. This criterion results in a rejection rate of 0.5% in the current data sample. The two leading jets are required to satisfy quality criteria, such as being associated with in-time energy deposits in the calorimeter. To be considered as one of the two leading jets, a jet is required to be found within the pseudorapidity region $|\eta| < 2.8$, where the jet energy scale is known to highest precision.

5. Monte Carlo simulations

The Monte Carlo simulation used for the analysis presented in this Letter has the following components. The MC samples have been produced with the PYTHIA 6.4.21 event generator [10] and the ATLAS MC09 parameter tune [11], using the modified leading-order MRST2007 [12] parton distribution functions (PDF). The generated events are passed through the detailed simulation of the ATLAS detector [13], which uses GEANT4 [14] for simulation of particle transport, interactions, and decays. This yields QCD MC samples that have been smeared by detector effects for comparison with collision data. These simulated events are then subjected to the same reconstruction process as the data to produce dijet angular distributions.

As the next step, bin-by-bin correction factors (K-factors) have been applied to the angular distributions derived from MC events to account for next-to-leading order (NLO) contributions. The K-factors are derived from dedicated samples generated separately, and are defined as the ratio N_{LO}/N_{NLO}. The N_{LO} sample is produced using matrix elements in NLOjet++ [15–17] and the NLO PDF from CTEQ6.6 [18]. The N_{NLO} sample is produced with PYTHIA restricted to leading-order (LO) matrix elements and photon showering using the modified leading order MRST2007 PDF.

The angular distributions generated with full PYTHIA already contain various non-perturbative effects modeled by this event generator (such as multiple parton interactions and hadronization). The K-factors defined above are designed to retain these effects while adjusting for differences in the perturbative sector. Multiplying the full PYTHIA predictions of angular distributions by these bin-wise K-factors results in a reshaped spectrum which includes corrections originating from NLO matrix elements.

Over the full range of χ, the K-factors change the normalized distributions by up to 6%, with little variability from one mass bin to the other. In the case of R_C, the K-factors change the distribution by less than 1%.

The QCD predictions used for comparison to data in this Letter are the end product of the two-step procedure described above.

Other ATLAS jet studies [19] have shown that the use of different event generators and different sets of parameters for non-perturbative effects has a negligible effect on the studied observables in the phase space being considered. For the high-p_T dijet shape observables studied here, χ and R_C, differences between PDF sets were found to be consistently smaller than the uncertainty associated with the CTEQ6.6 PDF set, and are not taken into account.

6. Quark contact interaction term

The benchmark beyond-the-Standard-Model process considered in this Letter is a quark contact interaction, which may be used to model the onset of kinematic properties that would characterize quark compositeness: the hypothesis that quarks are composed of more fundamental particles. The model Lagrangian for this benchmark process is a four-fermion contact interaction used to describe effects of the weak interaction. The effects of the contact interaction would be expected to appear below or near a characteristic energy scale Λ. If Λ is much larger than the partonic CM energy, these interactions are suppressed by inverse powers of Λ and the quarks would appear to be point-like. The dominant effect would then come from the lowest dimensional four-fermion interactions (contact terms).

While a number of contact terms are possible, the Lagrangian in standard use since 1984 [20] is the single (isoscalar) term:

$$L_{qqqq}(\Lambda) = \frac{g^2}{2\Lambda} \bar{q}_q \gamma^\mu q_q \bar{q}_q \gamma^\nu q_q \bar{q}_q \gamma^\rho q_q$$

where $g^2/4\pi = 1$ and the quark fields \bar{q}_q are left-handed. The full Lagrangian used for hypothesis testing is then the sum of $L_{qqqq}(\Lambda)$ and the QCD Lagrangian. The relative phase of these terms is controlled by the interference parameter, ξ, which is set for destructive interference ($\xi = +1$) in the current analysis. Previous analyses [4] showed that the choice of constructive ($\xi = -1$) or destructive ($\xi = +1$) interference changed exclusion limits by $\sim 1\%$.

MC samples are calculated in PYTHIA 6.4.21 using this Lagrangian, with each sample corresponding to a distinct value of Λ. Angular distributions of these samples are processed in the same fashion as QCD distributions, including the application of bin-wise K-factors.

Notably, in addition to quark compositeness, this same Lagrangian could be applied to a number of other beyond-the-Standard-Model theories (albeit with different coupling constants), so that it serves as a template for models of new processes with similar scattering distributions.

7. Kinematic criteria for angular distributions

The χ distributions described here are normalized to unit area, $(1/N_{ev})dN_{ev}/d\chi$ where N_{ev} is the number of observed events, to reduce the effects of uncertainties associated with absolute normalization.

Detector resolution effects smear the χ distributions, causing events to migrate between neighboring bins. This effect is reduced by configuring the χ bins to match the natural segmentation of the calorimeter, by making them intervals of constant $\Delta\eta$, approximating Δy. This is achieved by placing the χ bin boundaries at positions $\chi_n = e^{(0.3-n)}$, where n is the index for the lower χ boundary of the nth bin, starting with $n = 0$. In doing this, not only is the migration reduced, it is also equalized across the span of χ.

The χ distributions are divided, in turn, into intervals of dijet invariant mass, m_{jj}. For massless partons, the following approximate form shows the dependence of m_{jj} on p_T and χ: $m_{jj} = \sqrt{p_T^2 + \chi^2 + 1/\chi - 2\cos(\Delta\phi)}$. Since m_{jj} is the CM energy of the partonic system, new processes would be expected to appear in the high mass bins. Several m_{jj} intervals are analyzed to exploit the fact that the χ distributions in low mass bins would be similar to the QCD prediction, while these distributions would be modified by new physics processes acting in high m_{jj} bins. The sensitivity to these processes depends strongly on their cross sections relative to QCD and on the number of events in the highest mass bin.

For χ distributions, events are rejected if $|y_1| > 0.75$ or $|y_2| > 1.7$. The combined criteria limit the rapidity range of both jets to $|y_{1,2}| < 2.45$. The $|y_2|$ criterion determines the maximum χ, which is 30 for this analysis. Taken together, these two criteria define a region within the space of accessible y_1 and y_2 where the acceptance is uniform to better than 1% in χ, for all mass bins. This ensures that the expected shapes of the distributions are not significantly changed by the acceptance. Also, in low mass bins, the $|y_{88}|$ criterion emphasizes the contribution from the matrix el-
ments and reduces the influence of the effects of PDF convolution. In the highest \(m_{jj}\) bin, used for limit setting, the \(|\eta|\) criterion reduces the sample by 16%. These kinematic cuts have been optimized through full MC simulation to assure high acceptance in all dijet mass bins.

Since event migration also occurs between bins of \(m_{jj}\), studies of fully simulated jets are used to ensure that migration is small. This criterion, along with the requirement of a sufficient number of events, lead to \(m_{jj}\) bin boundaries of 340, 520, 800, and 1200 GeV, with no upper bound on the highest bin. As noted earlier, single-jet triggers are carefully selected for each bin to be 100% efficient. Prescaling of triggers leads to a different effective integrated luminosity in each mass bin, with the corresponding numbers being 0.12, 0.56, 2.0, and 3.1 pb\(^{-1}\) in the current data sample for the bins listed above.

Like the \(\chi\) distributions, the \(R_C\) distribution has reduced sensitivity to the absolute JES. However, relative differences in jet response in \(\eta\) could have a significant impact on the sensitivity. Hence, for these early studies, the \(\eta\) range is restricted to the more central regions of the calorimeter where the JES is uniform to within 1% as determined from cross-calibration studies [8]. The \(R_C\) region has been chosen to end at a maximum of \(|\eta| = 1.3\), just before the transition region between the central and end-cap calorimeters.

8. Convolution of systematic uncertainties

As mentioned before, the angular distributions have a reduced sensitivity to the JES uncertainties compared to other dijet measurements. Nevertheless, the JES still represents the dominant uncertainty for this analysis. The ATLAS JES has been determined by extensive studies [23], and its uncertainty has been tabulated in the variables \(\eta\), \(p_T\), and \(N_V\), the number of vertices in the event. The average \(N_V\) over the full current data sample is 1.7. Typical values of the JES uncertainty in the considered phase space are between 5% and 7%. The resulting bin-wise uncertainties are up to 3% for \(\chi\) observable, and up to 7% for the \(R_C\) observable.

The dominant sources of theoretical uncertainty are NLO QCD renormalization and factorization scales, and the PDF uncertainties. The corresponding bin-wise uncertainties for normalized \(\chi\) distributions are typically up to 3% for the combined NLO QCD scales and 1% for the PDF error.

Convolution of these experimental and theoretical uncertainties is done for all angular distributions through Monte Carlo pseudo-experiments (PE’s). For all events in the MC sample 1000 PE’s are performed, three random numbers being drawn from a Gaussian distribution for each PE. The first is applied to the absolute JES, obtained from the tabulation described above and assumed to be fully correlated across \(\eta\). The second number is applied to the relative JES, extracted from the same tabulation, which depends only on \(\eta\) and restores the decorrelation due to \(\eta\) dependence of the energy scale. The third number is applied to the PDF uncertainty, provided by the CTEQ6.6 PDF error sets. In a fourth and final step, the uncertainty due to the NLO QCD renormalization (\(\mu_R\)) and factorization (\(\mu_F\)) scales is found by letting \(\mu_R\) and \(\mu_F\) vary independently between 0.5, 1 and 2 times the average transverse momentum of the two leading jets, resulting in nine samples drawn from a uniform distribution. In a given PE, the data dijet selection criteria described previously are applied.

Other sources of uncertainty have been studied in separate simulations, and have not been included in the PE’s described above. As determined by in situ studies comparing data to detector simulation [24], the jet energy resolution (JER) in ATLAS evolves from 12% to 7% over the \(p_T\) range from 60 GeV to 1 TeV. To estimate the effect of JER smearing, the \(\chi\) and \(R_C\) distributions were generated with and without JER variation of this magnitude, and the differences were found to be negligible. Detector angular resolution effects in \(\phi\) and \(\eta\) were studied in a similar fashion, with smearing functions specific to the ATLAS calorimeter segmentation, and also found to be negligible.
9. Comparison of data to theory

In Fig. 1 the measured dijet χ distributions are compared to the QCD predictions, along with 1σ systematic error bands determined from the PE's, and statistical errors on the data. Fig. 2 shows the measured dijet-centrality distribution and QCD prediction. The statistical uncertainties are obtained using Poisson probabilities. In the highest mass bins, the numerator and denominator of the ratio typically contain 1 or 2 events each.

To evaluate the agreement between data and QCD in Figs. 1 and 2 a statistical significance test was performed using p-values. The p-value is the probability to obtain a fit to data further from the theoretical prediction than the observed fit, under the assumption that the QCD prediction is the correct description of physics. A chi-square goodness-of-fit is used as the test statistic, and the p-values are derived from the ensemble of PE's generated as described above, including bin-to-bin correlations due to systematic effects, but with additional statistical fluctuations. For the χ distributions shown in Fig. 1, the resulting p-value for each dijet mass bin is (from lowest to highest) 0.19, 0.11, 0.27 and 0.54, indicating good agreement with the QCD prediction. Similarly, in Fig. 2, the dijet R_C comparison has a p-value equal to 0.85, also indicating good agreement with the QCD prediction.

The best fit of the R_C distribution in Fig. 2 is obtained for a compositeness scale of 2.9 TeV. This is not statistically significant, as the QCD prediction lies within the shortest 68% confidence interval in $1/\Lambda^4$.

10. Determination of exclusion limits

Since no signal from new physics processes is apparent in these distributions, limits have been obtained on the compositeness scale Λ of quark contact interactions, based on analyses of the χ distributions. The contact term hypothesis is tested in the highest dijet mass bin in Fig. 1, which begins at $m_{jj} = 1200$ GeV. For the χ distribution in this mass bin, the parameter F_{χ} is defined as the ratio of the number of events in the first four R_C bins to the number in all four R_C bins. The upper boundary of the fourth bin is at $\chi = 3.32$. This choice of the bin boundary has been determined through a MC study that varies the number of bins in the numerator, as well as the dijet mass bin, and determines the setting that maximizes the sensitivity to quark contact interactions, given the current integrated luminosity.

A frequentist analysis is employed as follows. Predictions of F_{χ} are obtained for a range of Λ by interpolation between distinct samples generated with different $1/\Lambda^4$ values. The QCD sample provides a bound with $\Lambda = \infty$, and additional samples are generated with Λ values of 500, 750, 1000, 1500, and 3000 GeV. A full set of PE's is made for each hypothesis to construct one-sided 95% CL intervals for F_{χ}, and the Neyman construction [25] is then applied to obtain a limit on Λ.

The result is shown in Fig. 3. The measured value of F_{χ} is shown by the dashed horizontal line. The value of F_{χ} expected from QCD is the solid horizontal line, and the band around it allows one to obtain the 1σ variation of the expected limit. The dotted line is the 95% CL contour of the F_{χ} prediction for quark contact interactions plus QCD, as a function of Λ and including all systematic uncertainties. This contour decreases as a function of Λ since, for a small Λ scale, there would be more events at low χ. The observed limit on Λ is 3.4 TeV. This limit is found from the point where the F_{χ} 95% CL contour crosses the measured F_{χ} value. All values of Λ less than this value are excluded with 95% confidence. This corresponds to a distance scale of $\sim 6 \times 10^{-3}$ fm, from conversion of the limit using hc. The expected limit, found from the crossing at the QCD prediction, is 3.5 TeV.

The impact of systematic uncertainties is as follows. If all systematic uncertainties were excluded, the observed limit reported above would increase by 6% to 3.6 TeV, mainly due to the JES uncertainty. Inclusion of NLO scales and PDF uncertainties does not change the limit measurably, as shape differences arising from these are well below the statistical uncertainties.

Confirming analyses have been done using a Bayesian approach with Poisson likelihoods for all χ bins, calculated using priors flat in $1/\Lambda^2$ or $1/\Lambda^4$. These have resulted in observed exclusion limits on Λ of 3.3 TeV and 3.2 TeV, respectively, very close to the limit found in the frequentist analysis.

Similarly, an analysis has been performed to establish 95% CL limits using the dijet centrality ratio shown in Fig. 2. The likelihood for R_C is constructed as a product of likelihoods of inner and outer event counts for all mass bins, which is then analyzed with a Bayesian approach similar to that of the χ Bayesian analysis. Using priors flat in $1/\Lambda^4$ ($1/\Lambda^6$) the observed exclusion limit is 2.0 TeV (also 2.0 TeV), with an expected limit of 2.6 TeV (2.4 TeV), providing an additional benchmark for comparison with other experiments. A weaker limit than the one derived from the χ analysis is expected due to the lower η acceptance associated with the R_C observable.

11. Conclusion

Dijet angular distributions have been measured by the ATLAS experiment over a large angular range and spanning dijet masses up to 2.8 TeV. These distributions are in good agreement with QCD predictions. Using 3.1 pb^{-1} of data, quark contact interactions with a scale Λ below 3.4 TeV are excluded at the 95% CL. The sensitivity of this analysis extends significantly beyond that of previously published studies.

Acknowledgements

We are profoundly grateful to everyone at CERN involved in operating the LHC in such a superb way during this initial high-
energy data-taking period. We acknowledge equally warmly all the technical and administrative staff in the collaborating institutions without whom ATLAS could not be operated so efficiently.

We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium für Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science & Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic, Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; DNRF, DSSRC and the Lundbeck Foundation, Denmark; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and CEA-DSM/IRFU, France; Georgian Academy of Sciences; BMBF, DFG, HGF and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and CSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRST, Morocco; FOM and NWO, Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRIRES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation ROSATOM; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educació y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The STFC, the Royal Society and The Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

Open Access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

1 University of Alabama, 1400 Washington Ave, Albany, NY 12222, United States
2 University of Alberta, Department of Physics, Centre for Particle Physics, Edmonton, AB T6G 2C7, Canada
3 Ankara University 30, Faculty of Sciences, Department of Physics, TR 061000 Tandoğan, Ankara; Dumlupınar University 30, Faculty of Arts and Sciences, Department of Physics, Kütahya; Gazi University 30, Faculty of Arts and Sciences, Department of Physics, 06560, Teknikokullar, Ankara; TOBB University of Economics and Technology 30, Faculty of Arts and Sciences, Department of Physics, 06530, Sogutlu, Ankara; Turkish Atomic Energy Authority 30, 06530, Ledumlu, Ankara, Turkey
4 LAP.P. Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France
5 Argonne National Laboratory, High Energy Physics Division, 9700 S. Cass Avenue, Argonne IL 60439, United States
6 University of Arizona, Department of Physics, Tucson, AZ 85721, United States
7 The University of Texas at Arlington, Department of Physics, Box 19059, Arlington, TX 76019, United States
8 University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimiopolis, Zografou, GR 15771 Athens, Greece
9 National Technical University of Athens, Physics Department, 9-Iroon Polytechniou, GR 15780 Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
11 Institut de Física d’Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain
12 University of Belgrade 30, Faculty of Sciences, PO. Box 31, 11001 Belgrade; Vinca Institute of Nuclear Sciences 30, M. Petrovica Alesa 12-14, 11000 Belgrade, Serbia
13 University of Bergen, Department for Physics and Technology, Allegaten 55, NO-5007 Bergen, Norway
14 Lawrence Berkeley National Laboratory and University of California, Physics Division, MS08-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States
15 Humboldt University, Institute of Physics, Berlin, Newtonstr. 15, D-12489 Berlin, Germany
16 University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, Südringstrasse 5, CH-3012 Bern, Switzerland
17 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, United Kingdom
18 Bogazici University 30, Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul; Dogus University 30, Faculty of Arts and Sciences, Department of Physics, 34722, Kadikoy, Istanbul; Gaziantep University 30, Faculty of Engineering, Institute of Physics, 34710, Gaziantep, Turkey; Istanbul University 30, Faculties of Arts and Sciences, Department of Physics, 34469, Maslak, Istanbul, Turkey
19 INFN Sezione di Bologna 30, Università di Bologna, Dipartimento di Fisica 30, viale C. Berti Pichat, 6-17, J.-01427 Bologna, Italy
20 University of Bonn, Physikalisches Institut, Nussallee 12, D-53117 Bonn, Germany
21 Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, United States
22 Brandeis University, Department of Physics, MS057, 415 South Street, Waltham, MA 02454, United States
23 Universidade Federal do Rio de Janeiro, COPPE/EE/FAC, Caixa Postal 68528, Ilha do Fundao, BR-21945-970 Rio de Janeiro, Universidade de Sao Paulo 30, Instituto de Fisica, R.d.o Mata Trv. R.178, Sao Paulo SP 05508-900, Brazil
24 Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States
25 Institute of Nuclear Physics and Nuclear Engineering 30, Bucharest-Magurele, Str. Atomistilor 407, PO. Box MG-6, R-077125; University Politehnica Bucharest 30, Rectorat-AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University 30, Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania
26 Universidade de Buenos Aires, FCEyN, Dto. Fisica, Pab I - C. Universitario, 1428 Buenos Aires, Argentina
27 University of Cambridge, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
28 Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
29 CERN, CH-1211 Geneva 23, Switzerland
30 University of Chicago, Enrico Fermi Institute, 5649 S. Ellis Avenue, Chicago, IL 60637, United States
31 Pontificia Universidad Catolica de Chile, Facultad de Ciencias de la Universidad de Chile, Via C. Berti Pichat, 6-17, 16146 Genoa, Italy
32 Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
33 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Rodzinkaewego 152, PL-31342 Krakow, Poland
34 Southern Methodist University, Physics Department, 106 Founders Science Building, Dallas, TX 75275-0175, United States
35 University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3201, United States
36 DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany
37 TU Dortmund, Experimentelle Physik IV, DE-44221 Dortmund, Germany
38 Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany
39 Duke University, Department of Physics, Durham, NC 27708, United States
40 University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
41 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 AT-2700 Wiener Neustadt, Austria
42 INFN Laboratori Nazionali di Frascati, via Enrico Fermi 46, lt.-00044 Frascati, Italy
43 Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Herrmann-Herder Str. 3, D-79104 Freiburg i.B., Germany
44 Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH-1211 Genève 4, Switzerland
45 INFN Sezione di Genova 30, Università di Genova, Dipartimento di Fisica 30, via Dodecaneso 33, IT-16146 Genova, Italy
46 Institute of Physics, The Georgian Academy of Sciences, 2 Tamarashvili St., GE-380077 Tbilisi, Georgia; Tbilisi State University, HEP Institute, University St. 9, GE-380086 Tbilisi, Georgia
47 Justus-Liebig-Universität Giessen, II. Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany
48 University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom
49 Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
50 Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Université Joseph Fourier, INPG, 53 avenue des Martyrs, FR-38026 Grenoble Cedex, France
51 Hampton University, Department of Physics, Hampton, VA 23668, United States