Topologically protected excitons in porphyrin thin films

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Topologically protected excitons in porphyrin thin films

Joel Yuen-Zhou1*, Semion K. Saikin1,2, Norman Y. Yao3 and Alán Aspuru-Guzik1,2

The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov–Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

Our approach to this challenge draws on ideas from the field of disordered electronic systems—in particular, from the phenomenology broadly termed as ‘quantum Hall effects’ (QHEs; ref. 10). A hallmark of such quantum Hall systems is that they exhibit delocalized current-carrying chiral edge modes. Specifically, the breaking of time-reversal symmetry (TRS) in these systems ensures that there are no counter-propagating modes to backscatter into11. Elegant extensions of these ideas include photonic set-ups12–15 and topological insulators (TI)—materials that preserve TRS but whose edge modes are related to strong spin–orbit coupling3. We note that organometallic TIs have recently been suggested by Liu and co-workers16,17, paving the way towards a wider and possibly cheaper group of materials that may exhibit these exotic phenomena.

As QHEs have been posed in the context of electrons and photons, it is natural to inquire whether their excitonic analogue exists. The present Article answers this question positively, by explicitly constructing a minimal model of a Frenkel exciton porphyrin lattice which supports topologically protected edge states when it interacts with a magnetic field. As this effort is already challenging by itself, we limit ourselves to cryogenic temperatures and, therefore, disregard effects of vibrational dephasing of excitons, which we shall study elsewhere. As far as we are aware, this is curiously the first work that addresses the joint effects of both magnetic fields and coherence in molecular exciton transport. Furthermore, this Article is also the first example of topological phases in molecular excitons and, therefore, offers a novel approach to the design of a new generation of materials for more efficient energy harvesting and transport.

The model
Our set-up consists of a two-dimensional periodic array of unsubstituted metalloporphyrines (hereafter referred to just as porphyrins), molecules with D₄ᵥ symmetry that maintain their planarity owing to their metal centres18, and which are well-known compounds in photovoltaic applications19. These porphyrins are arranged in a square lattice in the xy plane with a unit cell of area s×s (Fig. 1a), where s ≈ 1.2–2 nm. The lattice consists of two sublattices, a and b, where the porphyrins are tilted out of the xy plane in ways that depend on two angles per sublattice, θ, and φ, (i = a, b), respectively. This two-dimensional lattice can in principle be realized by self-assembly techniques exploiting an already crystalline substrate19–23, which in our case shall be chosen to avoid exciton quenching processes (an insulating material fulfils this condition24,25).

Using a Cartesian vector notation in the ‘lab’ or array frame throughout the Article, the a sites are located at positions na = (ns,ns,0)s for ns, n₁ integers, whereas the b sites are at (ns + 1/2, ns + 1/2, 0)s. We shall be concerned with the three lowest electronic states in each molecule—namely, its ground state |g⟩ and its degenerate Q-band absorbing in the visible spectrum (ωQ ≈ 17,350 cm⁻¹; ref. 32), consisting of the orthogonal states |Q₁⟩ and |Q₂⟩ (we use capital labels for Cartesian coordinates for the molecular frame of each sublattice).

Owing to the degeneracy of the Q-band, the states |Q₁⟩ and |Q₂⟩ can be arbitrarily defined as long as their transition dipole

© 2014 Macmillan Publishers Limited. All rights reserved
moments with respect to \(|g^{(0)}\rangle \) constitute an orthogonal set of vectors of equal magnitude \(d \) spanning the plane of each porphyrin. We denote the transition dipole operator for a porphyrin in sublattice \(i \) by \(\mu_{XG}^{(i)} = \mu_{XG}^{(0)} |Q_{XG}^{(i)}| Q_{XG}^{(0)} + \mu_{YB}^{(i)} |Q_{YB}^{(i)}| Q_{YB}^{(0)} \), and \(\mu_{XG}^{(i)} = \mu_{YB}^{(i)} \), are chosen such that \(\mu_{XG}^{(0)} \) has zero projection along the \(x \) and \(y \) axis, and \(\mu_{ZQ}^{(i)} \) is orthogonal to it:

\[
\mu_{XG}^{(0)} = d(\cos \theta_0, 0, \sin \theta_0) \]

\[
\mu_{YB}^{(0)} = d(-\sin \varphi_0, \cos \theta_0, \sin \varphi_0, \cos \theta_0) \]

where \(d \approx 2–8 \text{ D} \) depending on the chemical environment of the porphyrins. These vectors define molecular frames for each sublattice, with Cartesian unit vectors \(\mathbf{X}_i = \mu_{XG}^{(i)}/d \), \(\mathbf{Y}_i = \mu_{YB}^{(i)}/d \), and \(\mathbf{Z}_i = \mathbf{X}_i \times \mathbf{Y}_i \). Also, in general, \((\theta_0, \varphi_0) \neq (\theta_i, \varphi_i) \), so the tilting angles distinguish the sublattices.

Before dealing with the dipolar interactions between the different porphyrins, we consider their Zeeman interaction with a perpendicular and homogeneous magnetic field \(\mathbf{B} = (0, 0, B) \) (see ref. 34; Fig. 2):

\[
H^{(0)} = H^{(0)}_{\text{B}} - \mu \mathbf{B} \cdot (\mathbf{L} + 2S^{(0)})
\]

Here, \(H^{(0)}_{\text{B}} = \omega_0 |Q_{XG}^{(0)}\rangle \langle Q_{XG}^{(0)}| + |Q_{YB}^{(0)}\rangle \langle Q_{YB}^{(0)}| \) is the bare Hamiltonian of each porphyrin, \(\mu_0 = 0.47 \text{ cm}^{-1} \text{ T}^{-1} \) is the Bohr magneton, and \(\mathbf{L}^{(0)} \) and \(S^{(0)} \) are the electronic orbital angular momentum and spin of the ith porphyrin. Each of the three states per molecule is a singlet state with \(S^{(0)} = 0 \). It is valid to regard the porphyrins as approximate rings in the \(XY \) planes occupied by 18 electrons. This implies that the solutions to equation (1) are states with approximately good angular momentum quantum number \(L^2 = \pm m \) perpendicular to the plane of the molecules at \(Z \), for integer \(m \) (here \(h = 1 \)). In particular, we have \(L^{(0)} \) \(g^{(0)} = 0 \) and \(L^{(0)} \) \(g^{(0)} = 0 \) \(\gamma = \gamma (\gamma + 1) \) \(\gamma^2 = \pm \gamma (\gamma + 1) \), yielding \(H^{(0)}(g^{(0)}) = 0 \) and \(H^{(0)}(g^{(0)}) = (\gamma - \Delta) |Q^{(0)}| \) (where half of the Zeeman splitting is given by \(\Delta = 0 \mu B \), and we have used \(\kappa = z, \mathbf{Z} = \cos \theta \cos \varphi \). That is, under a magnetic field, the degenerate \(Q \)-band in each porphyrin splits into two Zeeman levels \(\{Q^{(0)}\} \) with different energies. Notice that as a result of TRS breaking, their coefficients in terms of the ‘bare’ states \(\{Q^{(0)}\} \) and \(\{Q^{(0)}\} \) are in general complex. Although not essential, we simplify the model by fixing the projection of the magnetic field on both sublattices to be a constant \(|\kappa| = \kappa \neq 0 \), yielding a constant Zeeman splitting throughout \(|\Delta| = \Delta \). There is, however, a possibly different ordering of the \(\{Q^{(0)}\} \) states, depending on the sign of \(B \). With this in mind, each porphyrin has states of energy \(\omega_{1} = \omega_{0} - \Delta \) and \(\omega_{2} = \omega_{0} + \Delta \), which we call the lower and upper energy states \(\{Q^{(0)}\} \) and \(\{Q^{(0)}\} \), and \((L, U) = (\pm, \mp) \) if \(B_{\text{z}} > 0 \) and \((L, U) = (\mp, \pm) \) otherwise. Working under a magnetic field of \(|B_{\text{z}}| = 10 \text{ T} \), this splitting attains a value of \(2.4 \sim 84 \text{ cm}^{-1} \), which is confirmed by magnetic dichroism experiments (2) (the reference reports half of the actual splitting due to isotropic averaging). It is clear from this model that other chromophores with similar electronic structure, such as metallophthalocyanines, can be used instead of metalloporphyrins.

We now turn our attention to interactions between Zeeman levels across the lattice, which we characterize with the energy scale \(J \).
such that \(J \ll 2\Delta \). We are interested only in ‘single-excitation’ effects, which can be described by the following Hamiltonian:

\[
H_{\text{c}} = \sum_n \left(\omega_n (a_n^\dagger a_n + b_n^\dagger b_n) + J_{n,\text{NE}} (a_n^\dagger a_{n+1} + a_{n-1}^\dagger a_n) + J_{n,\text{NW}} (a_n^\dagger a_{n+1} + a_{n-1}^\dagger a_n) + J_{0,\text{NE}} (a_n^\dagger a_{n+2} + a_{n+2}^\dagger a_n) + J_{0,\text{NW}} (a_n^\dagger a_{n+2} + a_{n+2}^\dagger a_n) \right) + \text{c.c.} \tag{2}
\]

Here, \(a_n^\dagger \) and \(b_n^\dagger \) are creation operators for excitations \(|Q_i^\dagger\rangle \) located at \(n_i \) for \(i = a \) and at \((n_a + 1/2, n_b + 1/2, 0) \) for \(i = b \). We have considered only nearest-neighbour \(\text{NN} \) and next-nearest-neighbour \(\text{NNN} \) dipolar couplings, labelled by the vector \(\mathbf{V} \) connecting the two interacting dipoles, \(\mathbf{N} = (0, 1, 0) \) (north), \(\mathbf{E} = (1,0,0) \) (east), \(\mathbf{NE} = 1/2(1,1,0) \) (northeast) and \(\mathbf{NW} = 1/2(-1,1,0) \) (northwest). The analogous Hamiltonian \(H_{\text{c}} \) can be similarly constructed using the states \(|Q_i^\dagger\rangle \). It can be checked that NNN couplings \(J_{n,\text{NN}} \) are real-valued, whereas NN couplings \(J_{n,\text{NN}} \) are complex-valued in general owing to TRS breaking through the Zeeman effect (Methods). Importantly, the complex phases in these couplings do not represent physical observables on their own, as they can be modified via gauge transformations. Yet, the Berry phases accumulated in closed loops, and in particular those obtained by encircling the minimal three-porphyrin-loops are gauge invariant modulo \(2\pi \) and, therefore, have observable consequences. Figure 1 shows that, in each unit cell, two of the anticlockwise loops yield a phase \(\chi \equiv \arg(f_{\text{NNN}}/f_{\text{NN}}) = -\arg(f_{\text{NN}}/f_{\text{NNN}}) \) and the other two yield the opposite phase \(\arg(f_{\text{NN}}/f_{\text{NNN}})) = -\chi \). A peculiar feature of dipolar interactions between the tilted porphyrins is its anisotropic character, which renders \(\arg(f_{\text{NN}}) \) different from \(\arg(f_{\text{NNN}}) \), except for a measure-zero set of critical orientations, and therefore keeps \(\chi \) finite for every set of tilting angles as long as the magnetic field is on. This observation is also at the core of recent work on topological phases in dipolar spins for optical lattices\(^{27-28} \). Thus, equation (2) has the same structure as the Hamiltonian for electrons in a lattice under a perpendicular and inhomogeneous magnetic field threading net fluxes \(\pm \chi \) across the minimal loops, but a net zero magnetic flux per unit cell and, therefore, across the lattice. Let us summarize what we have done so far: we have constructed a model where Frenkel excitons (quasiparticles with no net charge) under a homogeneous magnetic field behave as if they were electrons (particles with charge) in an inhomogeneous magnetic field. Hence, this model is a square lattice version of Haldane’s honeycomb problem and, therefore, expected to exhibit non-trivial topological properties, in particular, chiral Frenkel exciton edge states which are robust against disorder\(^{29} \). This realization is the main finding of the Article.

Topological characterization of exciton phases

On fixing the Zeeman splitting \(2\Delta = |\mathbf{B}| / \mathbf{x} \), the unit cell distance \(s \) and transition dipole moment strength \(d \), there is a two-dimensional parameter space which is left to be explored by varying the tilting angles \(\theta_a \) and \(\theta_b \) (the possible values of \(\phi_a \) and \(\phi_b \) are fixed by \(\kappa \)). These parameters suffice to provide a topological characterization of \(H_{\text{c}} \) via the Chern numbers \(c_v \) for \(v = \text{L}, \text{U} \) (see Methods for details)\(^{40} \). The physical meaning of \(c_v \) is the following: its sign denotes the chirality of the edge states (in our convention, positive for clockwise and negative for anticlockwise); its magnitude is equal to the (integer) number of edge states per value of quasimomentum (given open boundary conditions (OBC) along one axis).

A computational exploration of the parameter space reveals that \(c_v = \pm 1 \) for every tilting configuration that respects the specified constraints, except for a measure-zero set of parameters which yields \(c_v = 0 \), when the two sublattices become identical at the critical values \(\theta_a = \theta_b = 0, \pi \) or \(\theta_a = \pi \), and the gap between the two bands in each \(H_{\text{c}} \) closes. Furthermore, we can see that \(|\mathbf{n}_i^\dagger|/|\mathbf{m}_i^\dagger\rangle = (\mathbf{n}_i^\dagger/|\mathbf{m}_i^\dagger\rangle^\dagger) \), so that every minimal loop that features a flux \(\chi \) in \(H_{\text{c}} \) (see previous section) features the opposite flux \(-\chi \) in \(H_{\text{c}} \), implying that \(\chi_e = -\chi_c \). Therefore, both clockwise and anticlockwise edge currents show up in every topologically non-trivial configuration, except that they come at different energies separated by \(\sim 2\Delta \). Yet, it is possible to control the energy level ordering of these chiral currents by tuning the direction of the magnetic field, as our numerical studies show that \(\chi_e = -\text{sign}(B) \). This picture contrasts radically with that of the integer QHE in a two-dimensional electron gas in the absence of a lattice, where the direction of the magnetic field imposes a fixed direction of cyclotron motion of the electrons and, therefore, also the chirality of all the edge currents. As an illustration of these ideas, Fig. 3 shows the topological phase diagram for the \(\kappa = 1/2, B_c > 0 \) case. Given \(\kappa \) and the fact that \(\cos \theta_a \cos \phi_b = [-1, 1] \), we must restrict \(\theta_a \in [-a \cos \kappa, a \cos \kappa] \cup [\pi-a \cos \kappa, \pi+a \cos \kappa] \). The remainder of the angles violate the condition of fixed \(|k_e| = \kappa \), but a fraction of them still contains topologically non-trivial phases. The characterization of this precise fraction is beyond the scope of this Article, but will be explored in the extension of this work.

Let us be more explicit by considering a particular point \((\theta_a, \phi_b) = (-\pi/3, 0) \) and \((\theta_a, \phi_b) = (0, \pi/3) \) of this phase diagram, where \(-\kappa_e = \kappa_b = \kappa = 1/2 \). We refer the reader to Fig. 4, which is organized in panels \(a \) and \(b \), each of which containing three parts. We show results for \(H_{\text{c}} \), with the conclusions for \(H_{\text{c}} \) being analogous except for opposite chirality of edge currents (energies and dipoles are plotted in units of \(J \) and \(d \)). In Fig. 4a, we show the ideal case where the tilting angles of the porphyrins are placed exactly at the mentioned values. In Fig. 4b, we show a specific realization of disorder where each of the site angles has been randomized with Gaussian noise with 0.13\(\pi \) standard deviation about the ideal values. The left panels show the current density for a particular eigenstate of \(H_{\text{c}} \) under OBC. These currents are concentrated along the edges of the material, so they correspond to exciton edge states and they flown clockwise, consistent with \(\chi_e = -1 \). Interestingly, in the disordered lattice, regardless of the tilting randomization, the edge current and its chirality are still preserved. To accentuate this effect, we add a potential barrier at the left corner of the lattice, simulating an obstacle. The exciton current simply circumvents the obstacle, keeping its delocalization throughout, exemplifying the properties of topological protection. We have shown lattices with approximately 200 porphyrins, corresponding to a reasonable number of molecules that remain coherently coupled at cryogenic temperatures\(^{41} \); this number might even be a lower bound, as coherence size is limited by coupling to vibrations and disorder, but the latter is somehow circumvented in these topological systems. The centre panels offer the energy diagrams of the respective lattices under OBC along \(y \) and periodic boundary conditions (PBC) along \(x \). For the ideal lattice, this corresponds to two bulk bands as a function of quasimomentum \(k \), together with edge states that span the gap between the latter from \(E \approx -2J \) to \(2J \). The dispersion of the edge states is positive and negative, corresponding to currents at the bottom and top edges of the lattice. Note that these states of opposite dispersion merge at \(k_e = 0 \) with the bulk bands. The analogous band diagram is unavailable for the disordered lattice owing to lack of translational symmetry, so we simply collapse all the eigenenergies in the same line. A study of the eigenstates reveals that the eigenstates between \(E \approx -0.8J \) and \(0.4J \) exhibit mostly edge character. We comment
that, in fact, edge states seem to survive up to a large amount of disorder—namely, with noise distributed at π/6 standard deviation. Finally, the right panels show the linear absorption spectra of the lattice with OBCs along both directions x and y. In analogy with J- and H-aggregates, most of their oscillator strength is concentrated in relatively few bulk eigenstates in the ideal lattice, although neither at top or bottom of the bands, as opposed to the simple quasi-one-dimensional scenario41. This renders the edge states in the top panel mostly dark, with the brightest edge state absorbing only 2.7% of the highest absorption peak in the spectrum. This fact is consistent with the observation that, in the dipole approximation, only states with $k_z = 0$ are bright, but there are no such states located at the edge in our particular model. Counterintuitively, moderate amounts of disorder provide a solution to this problem, as the edge states in this lattice borrow enough oscillator strength from the original bulk states to yield peaks in the absorption spectrum that are more experimentally accessible42, with some edge absorption peaks attaining intensities of about 26% of that of the highest bulk bands. Hence, linear absorption spectra provide a coarse signature of the edge states, although no actual confirmation of their topological character. To experimentally probe the latter, we forsee the use of near-field optical microscopy, where a metal tip locally creates excitons at the edge of the lattice and spatially resolved fluorescence is used to detect the chirality of the resulting exciton currents43. This phenomenology could also be inferred using far-field microscopy, albeit at a coarser spatial resolution44. The detailed proposal for the experimental preparation and detection of the edge exciton currents is a delicate subject on its own, and will be reported in some specific future directions, we plan to explore whether the non-Markovian bath, but may also sustain them non-trivially if they act as a Markovian bath.

Summary and conclusions

This Article introduces the concepts of topological phases to the field of molecular excitonics. It does so by explicitly constructing a topologically non-trivial model for Frenkel excitons in a two-dimensional lattice of porphyrins. Important ingredients of the model are the presence of two orbitally polarized excitons per porphyrin, the interaction of the lattice with a perpendicular magnetic field, the anisotropy of dipolar interactions between excitons, and the two-sublattice configuration of tilted porphyrins, yielding two pairs of exciton energy bands. The proposed system is a variant of the Haldane model, yielding one-way exciton edge states that are robust against disorder, as we have shown by calculations of topological invariants of the resulting energy bands as well as by explicit simulations of finite lattices. An experimental signature of these edge states is given by linear absorption spectra, although the experimental confirmation of their topological character requires more careful experiments, which will be proposed elsewhere.

We believe that our work is just one of many examples yet to be studied of a new pool of strategies to engineer robust ‘exciton wires’ that can efficiently transport light-harvested energy. Among some specific future directions, we plan to explore whether the
Figure 4 | Eigenstates of the lower energy Hamiltonian \mathcal{H}_L for porphyrin tilting angles $(\theta_x, \psi_x) = (-\pi/3, 0)$ and $(\theta_y, \psi_y) = (0, \pi/3)$ and magnetic field $B_z > 0$. These parameters yield a QL = -1 phase, which exhibits anticlockwise edge exciton currents. a, Ideal lattice without disorder. The left panel shows the current density (red arrows) for a particular edge state. The centre panel depicts the band diagram with bulk (blue) and edge (red) states. Positive and negative dispersion for the edge states correspond to right and left moving states that are localized at the lower and upper edges of the sample. The right panel shows the absorption spectrum of the lattice, indicating that most of the oscillator strength is primarily concentrated in a few bulk states. b, The analogous panels for a disordered lattice, where the tilting angles for each porphyrin site are randomized with noise distributed at a 0.13σ standard deviation. Furthermore, an obstacle (potential barrier) is added on the left-hand corner of the lattice. Note that the edge current density persists with disorder and, in fact, circumvents the obstacle, remaining delocalized across the edge. In the centre panel, we show the corresponding density of states, analogous panels for a disordered lattice, where the tilting angles for each porphyrin site are randomized with noise distributed at a 0.13σ standard deviation. Furthermore, an obstacle (potential barrier) is added on the left-hand corner of the lattice. Note that the edge current density persists with disorder and, in fact, circumvents the obstacle, remaining delocalized across the edge. In the centre panel, we show the corresponding density of states, highlighting the region of energy where the states still have a substantial edge character. The right panel shows the absorption spectrum, where the disorder redistributes the oscillator strength of the ideal lattice. The edge states borrow enough oscillator strength to be measured experimentally in a linear absorption experiment.

coupling of excitons with various spatially shaped electromagnetic fields, such as plasmons and optical cavities, renders topologically non-trivial motion of excitons. Furthermore, connections between this work and theories of TRS breaking in quantum transport remain to be explored. Another intriguing extension of this work is the TRS version of the model, where no magnetic field is present. Regarding the Q-band of each porphyrin as a pseudospin, the anisotropy of the dipolar couplings may be regarded as a pseudospin–orbit coupling, yielding excitonic TI analogues or, more precisely, analogues of topological crystalline insulators, which are a new class of materials where orbital degrees of freedom together with spatial symmetries of the lattice render topologically non-trivial band structures. Topological excitonics is an exciting frontier of soft condensed matter and materials physics research.

Methods

Dipolar interactions between Zeeman levels. Let us elaborate on the derivation of equation (2). We are interested only in weak, single-excitation effects, so it is convenient to introduce the global ground state $|\mathcal{G}\rangle = |g\rangle \cdots |g\rangle$ as well as the single-site excited states $|\Psi_i\rangle = |g\rangle \cdots |Q_i\rangle \cdots |g\rangle$, with $q = X, Y, L, U$, where every porphyrin in the lattice is in the ground state except for the porphyrin in sublattice i, located at n_i or $(n_i + 1/2, n_j + 1/2, 0)$ (depending on whether $i = a$ or b, respectively), which is in the $|Q_i\rangle$ excited state. Couplings between the bare porphyrins in the lattice are well approximated by the classical real-valued dipole–dipole interaction

$$
|\Psi_i\rangle = \frac{\eta}{|\mathbf{R}_{i\infty}|} \left(|\Psi_{i0}\rangle \cdot |\mathbf{R}_{i\infty}\rangle - 3(|\Psi_{i0}\rangle \cdot |\mathbf{e}_{i0}\rangle)(|\mathbf{e}_{i0}\rangle \cdot |\mathbf{e}_{i\infty}\rangle) \right)
$$

Here, $\eta = 5.04 \text{cm}^{-1} \text{nm} \text{D}^{-1}$ (we have set the index of refraction to 1), $q, r = X, Y$, and $|\mathbf{R}_{i\infty}\rangle$ is the position vector pointing from the mth porphyrin of sublattice j to the mth porphyrin of sublattice i. To establish an energy scale associated with these interactions, we define $d = d' = j/3$, which for $d = 3$ and $s = 2$ nm gives $J = 5.7 \text{cm}^{-1}$—thus, $J \ll 2\Delta$ and the Zeeman splitting is much larger than the dipolar couplings, consistent with our assumptions. Couplings between Zeeman levels follow from equation (3) and the appropriate change of basis

$$
|\Psi_i\rangle = \sum_{q', j, \lambda} (Q_i Q_{i0})(\mathcal{C}_{i0} |\Psi_{q', j}\rangle)(Q_j |\Psi_{i0}\rangle)
$$

where $a, v = L, U$. The various coupling terms in equation (2) are given by $J_{xy} = \langle n + V|J|n\rangle = \langle (n - V)|J|n\rangle$ for the different direction vectors V. From the energetic considerations above, we need to include couplings within each band of $|Q_i\rangle$ or $|Q_j\rangle$ states, but not between them. Therefore, we may write a Frenkel exciton Hamiltonian for the total lattice that reads as $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_C$. In particular, \mathcal{H}_C, which is explicitly given by equation (2), is constructed using the lower energy states $|Q_i\rangle$, or alternatively $|\Psi_i\rangle$, by
introducing the second quantized notation for each sublattice \(a^\dagger (G) = |n_i^{\sigma}\rangle \) and \(b^\dagger (G) = |n_i^{\bar{\sigma}}\rangle \).

Topological characterization of the lattice Hamiltonian \(\mathcal{H} \). By imposing periodic boundary conditions (PBC) along \(x \) and \(y \), \(\mathcal{H} \) can be rewritten in quasimomentum space using the operators \(a^\dagger = 1/\sqrt{N_x N_y} \sum_j a_j^\dagger e^{i k_x j} \) and \(b^\dagger = 1/\sqrt{N_x N_y} \sum_j b_j^\dagger e^{i k_y j} \), where \(N_x \) and \(N_y \) are the number of unit cells along the \(x \) and \(y \) directions, and \(k = (k_x, k_y) \) can take values in the Brillouin zone \(-\pi \leq k_x, k_y \leq \pi\) in discrete steps of \(\pi/2 \). In the text, we argued that \(\epsilon = -\epsilon'_i \) also reverses sign on the transformation \(\sigma \), (5) the analogous conclusions apply to \(\mathcal{H} \). In fact, one can easily show that equation (7) is also valid for \(\epsilon_i \), provided the corresponding dipolar couplings are used.

Finally, we shall discuss some symmetries of \(\epsilon_i \). In the text, we argued that \(\epsilon_i = -\epsilon_i' \). This claim can be restated as \(\epsilon_i \) changing sign on the + and - labels, \(|Q_i^+\rangle, |Q_i^-\rangle \) \(\rightarrow |Q_i^-\rangle, |Q_i^+\rangle \). By keeping track of the various matrix elements, we can see that \(\epsilon_i \) also reverses sign on the transformation \(\kappa \rightarrow -\kappa \), across both sublattices. However, inverting the projection of the magnetic field on the porphyrins, \(\kappa \rightarrow -\kappa \), also reassigns the upper and lower energy states \(|Q_i^+\rangle \) and \(|Q_i^-\rangle \) between \(|Q_i^-\rangle \) and \(|Q_i^+\rangle \), switching + and - labels. Hence, the value of \(\epsilon_i \), and consequently of \(\epsilon_i' \), is fixed across tilting configurations, and by computation seen to correspond to \(\epsilon_i' = -1 \) for \(B_i > 0 \). Because \(B_i \) also switches + and - \(\epsilon_i' = 1 \) for \(B_i < 0 \).

Received 9 March 2014; accepted 31 July 2014; published online 21 September 2014

References

Acknowledgements
J.Y-Z. is grateful to B. Halperin, I. Kassal, and X. Andrade for discussions, and to O. Starykh for kindly sharing his notes on the subject. All the authors would like to thank C. Laumann for discussions at the early stages of the project. J.Y-Z. and A.A-G. are supported by an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001088. N.Y. acknowledges support from the Department of Energy (FG02-97ER25308). Finally, S.K.S and A.A-G. are supported by the Defense Threat Reduction Agency grant HDTRA1-10-1-0046.

Author contributions
All authors contributed to the results presented in this Article.

Additional information
Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to J.Y-Z.

Competing financial interests
The authors declare no competing financial interests.