The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.ydbio.2009.08.005</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier B.V.</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jun 23 21:23:30 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/96139</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
The cis-regulatory system of the \textit{tbrain} gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo

Mary E. Wahl a, Julie Hahn b, Kasia Gora c, Eric H. Davidson b, Paola Oliveri d,*,x

a Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
b Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
c Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
d Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK

\textbf{A B S T R A C T}

The genomic cis-regulatory systems controlling regulatory gene expression usually include multiple modules. The regulatory output of such systems at any given time depends on which module is directing the function of the basal transcription apparatus, and ultimately on the transcription factor inputs into that module. Here we examine regulation of the \textit{Strongylocentrotus purpuratus} \textit{tbrain} gene, a required activator of the skeletogenic specification state in the lineage descendant from the embryo micromeres. Alternate cis-regulatory modules were found to convey skeletogenic expression in reporter constructs. To determine their relative developmental functions in context, we made use of recombined BAC constructs containing a GFP reporter and of derivatives from which specific modules had been deleted. The outputs of the various constructs were observed spatially by GFP fluorescence and quantitatively over time by QPCR. In the context of the complete genomic locus, early skeletogenic expression is controlled by an intron enhancer plus a proximal region containing a HesC site as predicted from network analysis. From ingression onward, however, a dedicated distal module utilizing positive Ets1/2 inputs contributes to definitive expression in the skeletogenic mesenchyme. This module also mediates a newly discovered negative Erg input which excludes non-skeletogenic mesodermal expression.

© 2009 Elsevier Inc. All rights reserved.

\textbf{INTRODUCTION}

The sea urchin regulatory gene \textit{tbrain} (\textit{tbr}) is zygotically expressed in the skeletogenic mesoderm (SM) of the cleavage and blastula stage embryo (Croce \textit{et al.}, 2001; Oliveri \textit{et al.}, 2002), and its expression is required for the postgastrular formation of the larval spicules (Fuchikami \textit{et al.}, 2002). Through transcriptional activation of a target gene, \textit{erg}, \textit{tbr} establishes an \textit{erg-hex-tgf-axl} positive feedback circuit that maintains the regulatory state of the skeletogenic mesoderm domain from early in development and eventually, together with other regulators, serves as a transcriptional driver of an initial set of differentiation genes (Oliveri \textit{et al.}, 2008). The \textit{tbr} gene thus has essential roles, first in specification of the SM and then in definitive larval skeletogenesis. Yet these roles, and the circuitry underlying them, are evolutionarily derived traits, since only modern sea urchins precociously segregate a SM lineage. In the sister group to the echinoids, the sea cucumbers, \textit{tbr} is expressed in the developing endomesoderm (Maruyama, 2000). This is the pleiomorphic function of the \textit{tbr} gene in embryogenesis, since it is also expressed in endomesoderm in the more distant sea star outgroup (Hinman and Davidson, 2007; Hinman \textit{et al.}, 2003; Shoguchi \textit{et al.}, 2000). Thus from an evolutionary standpoint the \textit{tbr} cis-regulatory system is of particular interest since it must be at least partly "new," and since it is a key mechanistic component of the skeletogenic micromere specification network: this, as a whole, is in itself a derived embryonic feature of the modern sea urchins (euechinoids).

Despite the simple pattern of \textit{tbr} expression, which is confined entirely to the SM lineage throughout embryonic development, the cis-regulatory system of the \textit{tbr} gene is anything but simple. Typically for regulatory genes (cf. Davidson, 2006), \textit{tbr} is controlled by multiple cis-regulatory modules. Regulatory modules were identified in an intron as well as proximally in the closely related (actually congeneric) strongylacentrotid known as \textit{Hemicentrotus pulcherrimus} (Ochiai \textit{et al.}, 2008). A different, also completely specific skeletogenic cis-regulatory module exists some distance upstream of the gene in \textit{Strongylocentrotus purpuratus}, as we describe below. A major objective of this work was to resolve the various roles of these modules. Gene regulatory network analysis had shown that \textit{tbr} lies under control of a double-negative gate (Oliveri \textit{et al.}, 2002, 2003, 2008; Revilla-i-Domingo \textit{et al.}, 2007). Thus the early zygotically expressed micromere repressor \textit{pmar1} acts to prevent transcription in micromeres of the \textit{hesC} gene, which encodes a dedicated repressor zygotically expressed everywhere in the embryo except in micromeres expressing the \textit{pmar1} gene. Among the targets of HesC repression...
sion is tbr, along with a small number of other initial founders of the SM regulatory state. The double-negative gate thus results in derepression of the tbr gene in the SM lineage. The putative site of HesC interaction in tbr cis-regulatory DNA had been identified (Ochiai et al., 2008), but there was little detailed information as to how effects on the tbr cis-regulatory system. In addition cis-regulatory mutations as well as other evidence indicated that some member(s) of the Ets family of transcription factors are required for tbr expression (Fuchikami et al., 2002; Ochiai et al., 2008). On the other hand, it had also been reported that morpholino-substituted antisense oligonucleotides (MASO) directed against the S. purpuratus Ets family members SpTel, SpEts1/2, and SpTel had no very significant effect (i.e., caused <3-fold change) on tbr expression up to 24 hpf (Olieri et al., 2008). The role of Ets factors in tbr regulation altogether was clearly in need of further investigation. An additional mystery was that by late mesenchyme blastula stage hesC expression disappears from the non-skeletogenic mesenchyme (NSM; Smith and Davidson, 2008b), and hesC expression spreads to include the NSM (Rizzo et al., 2008); yet tbr expression does not expand, remaining confined to the SM. Thus there appeared to be a need for either additional yet unidentified NSM repressor of tbr expression, or a spatially-dedicated SM activator of tbr in later stages.

These issues are resolved in the cis-regulatory analyses described in this paper. The approach we have taken differs from the conventional in that we have attempted to examine cis-regulatory modular function in the context of the complete genomic tbr locus. To this end we utilized recombineered BAC reporters bearing module deletions or site mutations. Thus we have been able to establish the sequence of module deployment as well as determine the functionality of key transcription factor target sites. Perhaps not surprisingly, some of the insights we obtained as to module function in context proved invisible from the vantage point of the usual minimal expression constructs.

Materials and methods

BAC homologous recombination

Deletions of the γ(2), B, and C modules from an SpTbrain GFP knock-in BAC (Damle et al., 2006) by homologous recombination were performed as described by Lee et al. (2007). The parental BAC is referred to as tbr::GFP BAC in the following. To produce a targeting cassette with homology to the regions bordering each module, a kanamycin resistance gene flanked by frt sites was amplified with the following primer pairs:

\[\Delta \gamma(2) \text{ module-Forward: 5'}-\text{GACAATGAGATTTTCATACGCATGTCATGTAATCTGATCAGTTAAGGACATC}- 3' \]

\[\Delta \gamma(2) \text{ module-Reverse: 5'}-\text{ATATATCTATAATATATGAAATCCCCAGATCTATGCGCTTAC}- 3' \]

\[\Delta \delta \text{ module-Forward: 5'}-\text{GGGTCATCAACAAGGCTAAATTGAGTAACGCTGAGATTTTCATACGCTAGTCTAGTAC}- 3' \]

\[\Delta \delta \text{ module-Reverse: 5'}-\text{AATTCTGAGTTATCTCTACTACCTGAAATCTACGCTAGTCTAGTAC}- 3' \]

ΔC module-Forward: 5’-CAGCAGTACAATTACACAGATGTCCTTCTCTCTTTGTTAAGGACATC

ΔC module-Reverse: 5’-GAGAAAACTTACTGATGACGACGAGATGTCCTTCTCTCTTTGTTAAGGACATC

Underlined sequences are homologous to the targeting cassette. Correct integration of the cassette into tbr::GFP BAC was confirmed by sequencing and diagnostic PCR. After removal of kan by induction of flippase, a 125-bp fragment of the cassette remained in the former location of each module.
Ets and bHLH binding site mutations were introduced into γ(2)::EpGFP by fusion PCR. “Left” fragments (produced using γ(2)-Forward and the mutation’s reverse primer) and “right” fragments (amplified with GFP-Reverse and the mutation’s forward primer) were mixed to produce a megaprimer template for fusion PCR with γ(2)-Forward and GFP-Reverse primers. The resulting full-length fragment was gel-purified and ligated into pGEM-T Easy vector for sequencing and amplification. The etsmut1 + 2 γ(2)::EpGFP construct was produced using etsmut1 γ(2)::EpGFP as a template for fusion PCR with the etsmut2 mutation primer.

Etsmut1-Forward: 5′-GTTACCACTCAGATACTGCGGTGCAG-3′
Etsmut1-Reverse: 5′-TCAACAGATCTGAGCCATACGCGCTT-3′

Etsmut2-Forward: 5′-CGAAATGGCTGCAAGATCCTGGATATT-3′
Etsmut2-Reverse: 5′-GCTTACTCAGGACATACGCGGTGCT-3′

The γ(2) module was located by reiterative reporter assays as described (Smith and Davidson, 2008a). eβγα::GFP, produced by fusion PCR between the 5′ intergenic region of tbr (amplified from SphörBAC using TbrA-Forward and TbrA-Reverse primers) and GFP amplified with primers homologous to the basal promoter of tbr (eβγα::GFP-Forward and GFP-Reverse), was obtained using the same scheme using a different GFP forward primer, eβγα::GFP-Forward. PCR fragments were cloned into pGEM-T Easy vector and sequenced. The eβγα::GFP, γβα::GFP, α::GFP, and α::GFP reporter constructs were produced from eβγα::GFP using GFP-Reverse and the corresponding forward primers. γα::GFP, γ::EpGFP, and γ(2)α::GFP were generated by fusion PCR using an analogous method.

γα::GFP-Forward: 5′-AGATGGTTATTCTTCCAGACTA-3′
γα::GFP-Reverse: 5′-CTTAGGACCGTGTTATATAC-3′
γα::GFP-Forward: 5′-TTGGACGTGAACTTCGA-3′
γα::GFP-Reverse: 5′-CATTTATTCGATCATCGA-3′

Quantitative PCR

Embryos injected with recombinered BACs or reporter constructs were collected at the indicated time points. DNA and RNA were extracted using the Qiagen AllPrep DNA/RNA Mini kit (catalog #80204). Reverse transcriptase PCR was performed on the extracted RNA using the Biorad iScript cDNA synthesis kit (catalog #170-8890). BAC/reporter construct incorporation number and expression level were quantified by quantitative real-time PCR performed on extracted DNA and cDNA, respectively (Revilla-i-Domingo et al., 2004). The single-copy gene foxA and two genes of well-characterized expression, Spz12 (Wang et al., 1995) and ubiquitin (ubq; Oliveri et al., 2002; Ransick et al., 2002), were also quantified for comparison. The number of transcripts per embryo was determined by multiplying the fold difference in construct expression level (relative to Spz12 or ubq) by the number of Spz12 or ubq transcripts present at that time point, adjusting for GFP construct incorporation relative to foxA (Materna and Oliveri, 2008). Spz12 and ubq standardizations gave consistent results; graphs shown are standardized relative to Spz12. The QPCR primers used are available online at: http://sugp.caltech.edu/SUGP/resources/methods/q-pcr.php.

Culture, microinjection, and fluorescence visualization

Culture and microinjection were performed as described (Rflytzanis et al., 1985; McMahon et al., 1985) with the following modifications: eggs were not filtered prior to dejellifying, and no BSA was added to dejellified eggs. Zygotes were injected with 10 pl of solution containing 150 molecules/pl of reporter construct or 40 molecules/pl of BAC and 120 mM KCl. HindIII fragment carrier DNA (4 nM) was added to injection solutions containing small reporter constructs. All BACs were linearized with Ascl prior to injection.

Translation and splice-blocking morpholino antisense oligonucleotides (MASO) were designed by GeneTools. For coinjections, MASO was added to the injection solution at the indicated concentrations. Embryos injected with a randomized mixture of morpholinos (IUPAC sequence: N2S) served as a mock-knockdown control.
Fig. 1. Accurate skeletogenic expression of tbr::GFP BAC. (A) Map of the gene-rich tbrain BAC. The GFP coding sequence was recombined into tbr exon 1 as previously described (Damle et al., 2006). Positions of relevant cis-regulatory modules are indicated relative to the transcription start site (bent arrow) and exons (red boxes). (B) QPCR measurements of GFP mRNA in embryos bearing tbr::GFP BAC, 6–48 hpf. Transcript levels were normalized to measured BAC molecules in each sample, in this and all subsequent time-courses shown (see Materials and methods). Error bars indicate SEM in repetitions of the same experiments. (C) GFP fluorescence image overlays of tbr::GFP BAC-injected embryos at 18, 24, and 48 hpf. Expression is limited to the skeletogenic cells at all stages: LV, lateral view; VV, ventral view. (D) Summary of spatial expression statistics. Green and red bars indicate the fraction of embryos expressing GFP that showed fluorescence restricted to the SM cells (correct expression) vs. partially or completely ectopic fluorescence (incorrect expression), respectively. The total number of embryos injected is given in the denominators of these fractions.
Results

Spatial and temporal expression pattern of recombineered tbr::GFP BAC

Abundant and ubiquitously distributed maternal transcript obscures the early zygotic expression pattern of the endogenous tbr gene. To visualize zygotic transcription we used a recombinant BAC, in which the coding region of GFP had been inserted at the start codon of tbr exon1 (Damle et al., 2006). Fig. 1B shows an expression time-course generated by quantifying GFP transcripts produced by this expression construct, tbr::GFP BAC, in embryos collected at 6–48 h after fertilization (hpf) and injection. GFP transcript number was normalized to the number of BAC DNA molecules incorporated per embryo. This was determined in QPCR measurements by comparing the incorporated genomic GFP coding sequence content to that of a known single copy gene, foxa.

Expression begins between 6 and 9 hpf, coincident with the disappearance of transcript encoding HesC, the predicted tbr repressor, from the micromeres between 8 and 12 hpf (Revilla-i-Domingo et al., 2007). There were ~1000 GFP transcripts/embryo between 9 and 21 hpf, increasing three-fold by 24 hpf, and remaining high at 36 and 48 hpf. This pattern of expression is consistent with previous time courses for endogenous tbr transcript (Oliveri et al., 2008 and additional unpublished data). The spatial expression pattern of tbr::GFP BAC was visualized in injected embryos by fluorescence microscopy at the blastula (18 hpf), mesenchyme blastula (24 hpf), and late gastrula (48 hpf) stages, as illustrated in Fig. 1C. Expression was highly specific to the SM lineage; the percentage of injected embryos displaying fluorescence anywhere else was ≤7% at all stages, and essentially zero at 18 h (Fig. 1D). The tbr::GFP BAC construct recapitulates both the spatial and temporal expression pattern of the endogenous gene with high fidelity.

The tbr gene is strikingly up-regulated by pmar1 mRNA injection (Oliveri et al., 2002) and by hesC morpholino antisense oligonucleotide (MASO) injection (Revilla-i-Domingo et al., 2007), as required by the double-negative gate architecture. So indeed is the tbr::GFP BAC. Embryos co-injected with this construct and with pmar1 mRNA, with hesC MASO, or with a random (N) MASO control were visualized by fluorescence microscopy at 18, 24, and 48 hpf. Both pmar1 mRNA and hesC MASO injection resulted in increased amount of expression and grossly ectopic fluorescence relative to the control (Fig. S2A, C, E; Table S1). The tbr::GFP construct thus includes the genomic sequence required for these known regulatory inputs into the gene.

Ectopic GFP expression following HesC binding site mutation

A class C bHLH factor binding site (Iso et al., 2003) near the basal promoter is necessary for repression of a Hemicentrotus tbr construct.

![Fig. 2. Ectopic expression of tbr::GFP BAC following mut mutation of a HesC site. (A) Map of tbr locus. The location of the HesC binding site (CGCGTG) in the α region is indicated. (B) Examples of ectopic expression in ectoderm, endoderm, and NSM of tbr::GFP BAC in which this site had been mutated, at 18, 24, and 48 hpf. (C) Expression statistics for mutant and control BAC constructs as in Fig. 1D.](image-url)
outside of the SM territory (Ochiai et al., 2008), and was thought to be a binding site for the HesC repressor implicated by gene network analysis in the control of tbr spatial expression in S. purpuratus (Oliveri et al., 2002; Revilla-i-Domingo et al., 2007). This sequence (CGCGTG) is conserved in the S. purpuratus tbr gene at -222 -217 relative to the transcription start site (Fig. 2A). To determine whether mutation of this single site would suffice to induce ectopic expression in the complete genomic context, a 4-bp mutation was introduced on the tbr::GFP BAC by means of homologous recombination. The mutation resulted in a significant increase in ectopic GFP expression relative to the tbr::GFP BAC control, while GFP expression in the SM lineage was unaffected (Figs. 2B, C). However, GFP misexpression was observed in only 10%, 13%, and 23% of embryos at 18 h blastula, 24 h mesenchyme blastula, and 48 h prism stages. This suggested that there could be additional undiscovered HesC sites; thus, by comparison, pmar1 mRNA, which works by shutting down hesC expression, produced 49% ectopic expression by mesenchyme blastula stage, and the hesC MASO treatment used in these particular experiments 24% (Table S1). Computational analysis of the whole tbr regulatory apparatus identifies several other potential HesC sites here not investigated; however, most of these lie in non-conserved regions of the sequence. Alternatively, this difference in misexpression rate caused by the mutation and that caused by pmar1 mRNA and hesC MASO could be due to an indirect effect: both pmar mRNA and hesC MASO injection cause the ectopic expression of ets1/2, an activator of tbr (see Discussion). In addition, we note that in a MASO injection the antisense oligo must be in excess to block the translation of the continuously transcribed hesC, which is not always attained, while the pmar1 MOE produces enough transcriptional repressor to completely turn off the hesC gene.

Deletion of conserved intronic regions from tbr::GFP BAC

Ochiai et al. (2008) reported that Snail family consensus binding sites in a conserved intronic cis-regulatory module were necessary for repression of ectopic expression in a Hemicentrotus tbr reporter construct. The corresponding region, here identified as the B module (Fig. 3A), was deleted from the S. purpuratus tbr::GFP BAC by homo-

Fig. 3. Effects of deletion of B module from tbr::GFP BAC. (A) Map of tbrain locus. The B module was deleted by recombination (see Materials and methods). (B) QPCR time course of GFP mRNA levels generated by the B module deletion, and by the parental tbr::GFP BAC. In this and the following comparisons of diverse constructs data were obtained in experiments in which both constructs were injected into the same batches of embryos; i.e., the controls of each set of experiments were those of that comparison. Transcript levels were not adjusted for DNA incorporation rate of each construct. Error bars indicate SEM. No very large differences in expression level are observed in the B module deletion. (C) Examples of GFP fluorescence image overlays showing embryos expressing the B module deletion, at 18, 24, and 48 hpf. Expression is confined to SM cells. (D) Expression statistics for mutant and control BAC constructs as in Fig. 1D.
logous recombination. Quantification of GFP transcripts revealed no very significant differences in temporal expression pattern in the \(\Delta B \) module BAC relative to the control, though there may be a transient depression of the level of activity soon after ingression (Fig. 3B). More importantly, there was no change whatsoever in the accuracy of expression caused by deletion of B module (Fig. 3C). Thus in *S. purpuratus*, the putative Snail binding site of B module has no detectable repressive spatial function when measured in complete genomic context.

An additional conserved region in the first intron of the *Tbrain* gene was identified as an enhancer in *Hemicentrotus* (Ochiai et al., 2008). When this region, here the C module, was deleted from the *tbr::GFP* BAC (Fig. 4A), a very significant decrease in GFP transcript levels was observed at all time points examined (Fig. 4B). Although the analogous deletion from a 7-kb *HpTbrain* reporter construct caused an increase in ectopic expression (Ochiai et al., 2008), we could detect no difference in the amount of ectopic expression produced by the \(\Delta C \) module BAC vs. the control *tbr::GFP* BAC (Figs. 4C, D). Thus in *S. purpuratus*, C module in the context of the complete system appears to act as a quantitative enhancer of expression, but is not required for spatial accuracy of expression.

\(\gamma(2) \) module drives expression after ingression of the SM cells

A novel cis-regulatory module, \(\gamma(2) \), which also mediates skeletogenic expression, was identified in the 5′ intergenic region of the *tbr* locus (Fig. 5A). It was found by means of iterative deletions from a large expression construct that included the whole intergenic region between *tbr* and the next gene upstream (Fig. S1). Successive deletions and results are shown in Fig. S3 and Table S2. To determine the function of \(\gamma(2) \) module in the context of the whole genomic regulatory system, this module was specifically deleted from the *tbr::GFP* BAC by homologous recombination. Study of the expression of this deletion construct revealed that it is expressed quite normally temporally and spatially until the time of ingression, but between 24 and 48 h a major decrease in expression levels is seen; this result is shown in Figs. 5B–D. In addition the \(\gamma(2) \) deletion produced a minor but significant increase in ectopic expression during this period, typically in the non-skeletogenic mesoderm. Thus in genomic context, \(\gamma(2) \) module functions after ingression. Since as shown in Fig. 4C module also functions during this period, we conclude that these two non-contiguous cis-regulatory modules collaborate in generating the definitive expression of the *tbr* gene in differentiated skeletogenic cells.

Fig. 4. Effects of deletion of C module from *tbr::GFP* BAC. (A) Map of *tbrain* locus. The C module was deleted by recombination (see Materials and methods). (B) QPCR time course of GFP mRNA levels generated by the C module deletion, and by the parental *tbr::GFP* BAC. Sharply decreased expression is observed relative to the control *tbr::GFP* BAC. Error bars indicate SEM of repeated experiments. (C) Examples of GFP fluorescence image overlays showing embryos expressing the B module deletion, at 18, 24, and 48 hpf. (D) Expression statistics for mutant and control BAC constructs as in Fig. 1D.
Expression of a short γ(2) module construct lacking any other regulatory sequence

A standard minimal expression construct was created by fusing the γ(2) module (Fig. 6 and Fig. S3) to the endo16 basal promoter::GFP reporter (construct “γ(2)::EpiGFP”). On its own this basal promoter has no specific intrinsic spatial or temporal regulatory activity, but it mediates transcription in any domain of the embryo if provided with an exogenous cis-regulatory module active in that domain (Yuh and Davidson, 1996). In a head-to-head comparison the short γ(2)::EpiGFP construct is expressed just as accurately as is tbr::GFP BAC (Fig. 6B, C).

We then compared the quantitative expression of this construct across developmental time to that of the tbr::GFP BAC from which γ(2) module had been deleted, as for the experiments of Fig. 5. The simplest case we can consider is that the activity of the whole system is just the sum of the activities of its individual cis-regulatory modules. In this case the activity of the short construct should match the calculated difference between the activities of the tbr::GFP BAC and the tbr::GFP γ(2) deletion BAC. This comparison is plotted in Fig. 6A.

There are two interesting aspects of the result. First, and most obviously, γ(2)::EpiGFP does not generate nearly as much activity per incorporated construct, in the period after 24 h, as is lost from the complete system when the γ(2) module is deleted. To test whether this might be due to the exogenous endo16 promoter used in this construct, we generated a construct in which the γ(2) module was associated only with the endogenous tbr promoter, denoted in the maps shown in Fig. S3 as “α” (construct “γ(2)α::GFP”). This construct was expressed spatially with the same accuracy as γ(2)::EpiGFP, and quantitatively at exactly the same level (Table S2; Fig. S3). Promoter strength or identity is therefore not the explanation for the weak expression per incorporated molecule of the short construct. There is some other reason, as discussed below, that the short construct functions far less efficiently in isolation than does the very same cis-regulatory module in context.

The second interesting aspect of the comparison in Fig. 6A is that in the period earlier than 21 h, the short construct is expressed at the same level, and also in the same skeletogenic cells as is tbr::GFP BAC. In other words, in the context of the whole system, Fig. 5B shows that γ(2) module plays no role whatsoever prior to ingestion, but in
isolation, as shown in Fig. 6A, it is capable of generating apparently normal spatial expression prior to ingression.

Given its accurate expression, we tested whether \(\gamma(2) :: \text{EpGFP} \) would respond similarly to \(tbr :: \text{GFP} \) BAC in perturbations of the upstream regulators. And indeed, injection of both \(\text{pmar1} \) mRNA and \(\text{hesC} \) MASO caused gross ectopic expression of the \(\gamma(2) :: \text{EpGFP} \) construct (Fig. S2; Table S1).

Ets family transcription factors regulate \(\gamma(2) \) module

To identify the transcriptional activator(s) of the \(\gamma(2) \) module and to determine whether HesC is a direct or indirect regulator, a gel shift analysis was carried out using nuclear extract from 12 hpf embryos. We found a 71-bp subregion of \(\gamma(2) \) module (Fig. 7A) which drove GFP expression specifically in the SM, though less strongly than does the full \(\gamma(2) \) module when incorporated in an expression construct (\(\gamma(2.2-3) :: \text{EpGFP} \); Fig. S3a; Table S3). As Fig. 7B shows, there are three putative kinds of DNA–protein complex in this region, which are found respectively in oligonucleotides containing Ets family consensus binding sites (Consales and Arnone, 2002), oligonucleotides containing an Otx family consensus binding site (Mao et al., 1994), and an oligonucleotide that included a 30-bp upstream region which produced an unresolved additional set of complexes. The activities of the \(\gamma(2) :: \text{EpGFP} \) construct and of derivatives in which each of these putative binding sites were mutated are given in the chart in Fig. 7C. Mutation of the putative Otx binding site had minor effect (from 38.4% in WT to 29.1% when mutated), while deletion of the 30-bp sequence (which partially overlapped an Ets binding site) decreased the level of GFP expression and the number of injected embryos visibly expressing GFP. Mutation of either Ets binding site significantly reduced the number of GFP-expressing embryos, more strongly for site 1 than for site 2, and when both Ets binding sites were mutated, GFP expression was abolished. But none of these mutations produced any ectopic expression (e.g., Fig. S4a–g). Although no corresponding DNA–protein complex was observed, a consensus bHLH binding site in this region was also considered as a candidate HesC binding site. However, mutation of this site in \(\gamma(2) :: \text{EpGFP} \) affected neither quantitative nor ectopic expression (Fig. 7C; Fig. S4g).

There are five genes of the Ets family expressed in the SM by mesenchyme blastula stage, viz. \(\text{erg, ets1/2, ets4, elk, and tel} \) (Kurokawa et al., 1999; Rizzo et al., 2006). MASO directed against each of these Ets family members was co-injected with \(\gamma(2) :: \text{EpGFP} \). The results, also summarized in Fig. 7C, reveal that Ets1/2 (and possibly Elk, which had a weak effect) are required for normal levels of expression of \(\gamma(2) :: \text{EpGFP} \). This raised the possibility that the spatial control of this short construct by HesC could be indirect, since the \(\text{ets1/2} \) gene is itself controlled by the \(\text{pmar1/ hesC} \) double-negative gate. To test this, \(\text{ets1/2} \) mRNA was co-injected with \(\gamma(2) :: \text{EpGFP} \) or with \(tbr :: \text{GFP} \) BAC. There was a striking difference in the early expression (18 hpf) outcome: \(\gamma(2) :: \text{EpGFP} \) was now expressed ectopically all over the embryo but the \(tbr :: \text{GFP} \) BAC was not (Fig. S2g,h; Table S1). Thus the complete system encompassed in the \(tbr :: \text{GFP} \) BAC is subject to dominant repression by HesC as shown above, whereas the short construct is regulated only by Ets1/2. In
contrast, at later stages, when the γ(2) module is functional, both tbr::GFP BAC and γ(2)::EpGFP are ectopically expressed in ets1/2 mRNA co-injection. This distinction in behavior excludes the possibility that γ(2) module is literally redundant with the rest of the regulatory system.

An unexpected and important result of these MASO experiments was that introduction of erg MASO caused expansion of expression of both tbr::GFP BAC (Figs. 8A, D) and γ(2)::EpGFP (Figs. 8C, D) into the NSM at 48 hpf. However, the tbr::GFP BAC construct from which the γ(2) module had been deleted (Figs. 8A, B, D) was immune to this effect. Thus another late role of the γ(2) module in the whole system is revealed: this function is to suppress transcription of the tbr gene in NSM in the gastrula stage embryo, a role necessitated by the evolutionary novelty of this derived system.

Discussion

The tbr gene lies at an essential node, high in the gene regulatory network subcircuit which establishes the initial lineage specific regulatory state of the future skeletogenic mesoderm (SM; Oliveri et al., 2008). Network analysis predicts the key features of the genomic cis-regulatory code determining the transcriptional activity of this gene, and an initial motivation of this work was to explore these predictions. But it soon devolved that there are multiple components of this regulatory system: Ochiai et al. (2008) identified several cis-regulatory modules in the tbr gene of a related species, while we had found a distinct tbr cis-regulatory module in a different region of the locus in S. purpuratus. Here we recount a system scale analysis that includes all known active modular units of the locus, based on recombineered BAC constructs which cover the complete locus and extend into the territories of the flanking genes on either side. The network prediction that tbr is a primary target of the pmar1-hesC double-negative gate (Oliveri et al., 2002; 2008; Revilla-i-Domingo et al., 2007) was demonstrated true, and in this work we also solved the identity of the missing inferred control input that precludes tbr expression in the non-skeletogenic mesoderm (NSM). But in addition to resolving the functions of its various cis-regulatory inputs, we have gained unexpected insight into two other interesting aspects of the regulatory biology of the tbr gene. We discovered how different tbr cis-regulatory modules are deployed at different stages of development, and how, in this case, cis-regulatory inputs affect module choice. Not much is known about the subject of module choice, though it is obvious that the phenomenon is pervasive, as most regulatory genes appear to utilize multiple cis-regulatory modules (for review, Davidson, 2006). A related consequence, which has sharp implications for standard operating procedures in cis-regulatory analysis, was the demonstration that a “minimal enhancer” construct may display more functionality when introduced into an embryo than it actually executes in context, where what it does depends on whether it, rather than another module, is actually deployed. Finally the whole elaborate regulatory system we have revealed is cast into a particularly interesting light by the evolutionary novelty of this derived system, for as reviewed briefly in Introduction, only in echinoids is the tbr gene utilized at all in an embryonic SM cell lineage.

The early tbr control system

Disruption of the single HesC site in the α region of the tbr::GFP BAC produces a significant amount of ectopic expression in 18 and 24 hpf embryos, which though quantitatively minor is to be compared with the almost completely accurate expression of the parental BAC (Fig. 2, Table S1). A higher rate of ectopic expression was produced at
these times by treatment with hesC MASO, using the wild type tbr::GFP BAC. The hesC MASO is clearly active as shown in earlier work (Revilla-i-Domingo et al., 2007), and as noted below, it sufficed in this study to produce 100% ectopic expression from the short γ(2)::EpGFP construct later in development (Table S1). However, early in development when hesC is intensely transcribed everywhere in the embryo (except in the SM pmar1 domain), it may be relatively difficult to block the presence of all HesC protein. We were mainly concerned to test in full genomic context the function of the single α module HesC site discovered by Ochiai et al (2008), and as noted above it is very possible that additional functional HesC sites exist elsewhere in the tbr locus.

The positive early control system consists of modules α plus C, as shown in the BAC deletions of Figs. 4 and 5. However, Figs. 4C, D shows that of these, C module is not required to produce accurate expression in the whole BAC. C module appears to contribute only a quantitative booster input since there is no increase in ectopic expression whatsoever when it is deleted, though there is a great decrease in level of expression (Fig. 4B). α module and its HesC site are able to do the job of ensuring that what expression remains is accurate. The location of any additional repressive HesC sites elsewhere in the locus would not have been tested in these deletions. Nonetheless, the significant destabilization of the very tight control executed by the early system operating in tbr::GFP BAC prior to ingression when the single known α module HesC site is destroyed, justifies the placement of this gene downstream of the pmar1-hesC double-negative gate.

tbr regulation after ingression

As shown very clearly in Fig. 5, when the upstream γ(2) module is deleted from the complete system carried in tbr::GFP BAC, there is no effect of any kind on expression prior to ingression (21–22 hpf), either quantitative or spatial. But thereafter, the level of expression is greatly compromised; and in addition ectopic expression increases significantly, particularly in NSM cells (examples in Fig. 5C, 24 and 48 h embryos). The γ(2) module is thus a late acting driver of expression in cells executing active skeletogenesis. It does not act alone, however, and again module C functions as a booster. These two modules interact cooperatively, since the sum of the expression in the late phase when C is deleted plus when γ(2) is deleted does not equal the level of late expression when neither is deleted (Figs. 4 and 5).

The γ(2) module has two different regulatory inputs, which probably use the same target sites. The experiments in Fig. 7 and Table S3 prove that the activating driver is indeed Ets1/2, interactions with which account entirely for its activity. We also demonstrated that the short γ(2) module construct, γ(2)::EpGFP, responds sharply to hesC MASO; in fact by late gastrula this treatment causes 100% of embryos to mis-express the GFP reporter (Table S1). So also does global expression of the Ets1/2 driver (Table S1). But γ(2) module has no functional HesC site, and the effect of HesC on its expression is indirect. We can understand this at once by reference to the network architecture, for the ets1/2 gene is itself a primary target of HesC repression immediately downstream of the pmar1 double-negative gate.
gate. Thus HesC MASO causes global ectopic expression of Ets1/2 which in postgastrular embryos is normally confined to SM and NSM cells. That is why it causes global expression of \(\gamma(2)::\text{EpGFP} \), the same effect on expression as direct injection into the egg of ets1/2 mRNA (Table S1).

The experiments in Fig. 8 show that the reason the \(\gamma(2) \) module does not express in the NSM even though the Ets1/2 driver is present in these cells is that another NSM Ets family factor, Erg, acts to repress the activation potential of the module. After gastrulation erg is not transcribed in SM but continues to be expressed in NSM (Rizzo et al., 2006). Erg and Ets bind similar DNA target sites and so this is likely a case of competitive binding at the Ets sites, such that if the repressor Erg is present it wins. Thus erg MASO produces ectopic NSM expression of both the \(\gamma(2)::\text{EpGFP} \) short construct and of \(tbr::\text{GFP} \) BAC (Fig. 8). But, the additional striking result in Fig. 8 is that erg MASO produces no ectopic NSM expression in the derivative of \(tbr::\text{GFP} \) from which \(\gamma(2) \) module has been deleted. This reveals another late regulatory role of \(\gamma(2) \) module in its normal context: not only does it cooperatively (with module C) drive expression in the SM, but it also represses it in the NSM.

Minimal module illusions, and the mechanism of \(\gamma(2) \) module exclusion in early development

\(\gamma(2)::\text{EpGFP} \) is a typical “minimal” expression construct, consisting of only the module itself and a promiscuous basal promoter-reporter apparatus. It gave near perfect expression both early and late (Fig. 6C), though as pointed out above, the short construct is quantitatively much less active per copy relative to its function in context. This could be due to the much greater flexibility of the longer DNA “arm” separating the module from the promoter in the normal context, allowing a greater variety of productive contact conformations, or to a greater tendency of the individual construct units to interfere with one another in the incorporated concatenate, or to titration of activators by the large number of short construct copies, or to a combination of these. The main point is not this, but the shocking discovery that in context the \(\gamma(2) \) module apparently produces no output whatsoever prior to ingestion, while when isolated in \(\gamma(2)::\text{EpGFP} \) it does function prior to ingestion. We see immediately that in the short construct, where there is no other option, the basal promoter will use whatever it can get, so to speak. The short construct does not exactly “lie” about \(\gamma(2) \) module functionality; rather it “exaggerates” only a part of what it displays may be utilized in context, because there is another layer of control, module choice. The fact that the complete system minus the \(\gamma(2) \) module functions the same in early development as when \(\gamma(2) \) module is present shows directly that \(\gamma(2) \) module provides no significant input while the early \(\alpha \) plus C module system is running. It operates differently, not redundantly with the \(\alpha \) plus C module system, as shown by the strikingly different response to Ets overexpression in pre-ingression embryos. The interactions controlling \(\gamma(2) \) module revealed in this study can also explain why it is silent in the early embryo.

In the pre-ingression SM we believe that the same thing happens to \(\gamma(2) \) module as happens in the post-ingression NSM. As network analysis has shown (Oliveri et al., 2008), just downstream of the regulatory targets activated by the \(\text{pmar1}\text{-hesc} \) double-negative gate (i.e., ets1/2, \(\text{abx1}, \text{tel} \), and \(tbr \)), a positive feedback subcircuit is activated by inputs from these primary responders. The first gene in this subcircuit is none other than \(\text{erg} \). It receives an input from \(tbr \) itself as well as from ets1/2, then forges interactions with \(\text{hex} \) and \(\text{tgf} \), including a feedback onto \(\text{erg} \) from \(\text{hex} \). As we have seen, in the context of the whole system the \(\gamma(2) \) module is dominantly repressed by Erg in the presence of ets1/2, and so in the pre-ingression SM, once \(\text{erg} \) is turned on and kept on, \(\gamma(2) \) module should be inactive. This is a case of short range repression (Gray et al., 1994) since the gene is not silenced, only the \(\gamma(2) \) module. The circuitry, summarized in Fig. 9A, is fascinating. Essentially, \(tbr \) expression is the cause of \(\gamma(2) \) module repression, via the negative feedback from the \(tbr \) target \(\text{erg} \). Or in other words the \(\text{tbr} \) gene itself ends up controlling which regulatory module will be deployed actively, and the exclusion of \(\gamma(2) \) module activation potential is probably the cause of deployment of the \(\alpha \)-C module system that operates in the early embryo rather than \(\gamma(2) \) module. Later when \(\text{erg} \) expression is extinguished in the SM (for reasons not yet known, as this occurs later than our comprehensive network analysis so far extends), \(\gamma(2) \) module is called into action, also in collaboration with C. The alternative conformations implied by these deployments are diagrammed in Fig. 9B. This is our preferred model, but it is also possible that an insulator contributes to silencing \(\gamma(2) \) module in the complete construct, since we observed that interposition of a large stretch of upstream sequence in \(\gamma(2) \) expression constructs prevents expression (Table S2; Fig. S3).

There are at least two possible reasons that the short \(\gamma(2)::\text{EpGFP} \) construct does not respond to \(\text{erg} \) repression in the early SM: first, the \(\text{Ets} \) activator may have a competitive advantage when its target sites are brought into immediate proximity of the basal transcription apparatus, forming a stable activation complex; second, the \(\gamma(2)::\text{EpGFP} \) construct runs on an exogenous, promiscuous promoter from the \(\text{endo16} \) gene, and \(\text{erg} \) repression may require elements of the endogenous promoter. As usual, negative results are subject to various interpretations, and it is what the \(\gamma(2)::\text{EpGFP} \) construct does that is more informative than what it does not do.

Evolutionary considerations: How could all this have happened?

Almost all of the embryonic SM specification and differentiation gene regulatory network appears also to be utilized in the skeletogenic centers in which the initial spines and test plates of the adult body plan are constructed during mid-late larval life (Gao and Davidson, 2008). This includes the \(\text{ets1/2} \) and \(\text{abx} \) genes, as well as the triple feedback \(\text{erg}, \text{hex}, \text{tgf} \) subcircuit genes, and downstream regulators as well. Since the same apparatus is evidently deployed in the skeletogenesis centers of the sea star larva (which has no embryonic skeletogenic mesoderm lineage whatsoever), all of these genes appear to be components of a pleisomorphic echinoderm skeletogenic network (Gao and Davidson, 2008). This network was evidently linked in toto into the embryonic specification system defining the micromere lineage in the evolutionary branch leading to the euechinoids, the modern sea urchins which display a precociously-ingressing skeletogenic micromere lineage. But none of this pertains to the \(\text{tbr} \) gene, because this gene is not part of the adult skeletogenic apparatus in either sea urchins or sea stars (Gao and Davidson, 2008). As reviewed in Introduction, \(\text{tbr} \) is expressed in the embryonic endoderm in other echinoderm classes and in echinoderm embryos exclusively in the SM.

The acquisition of \(\text{tbr} \) by the embryonic skeletogenic control apparatus of the euechinoids is a classic case of co-option, here seen directly at the network level. The switch away from its pleisiomorphic developmental processes. There is some evidence that a key role of the skeletogenic micromere lineage whatsoever), all of these genes appear to be components of a pleisomorphic echinoderm skeletogenic network (Gao and Davidson, 2008). This network was evidently linked in toto into the embryonic specification system defining the micromere lineage in the evolutionary branch leading to the euechinoids, the modern sea urchins which display a precociously-
unpublished data) show that one or two HesC sites does the job, and this aspect of the co-option process is easy to imagine.

But there is something special about \(tbr\) co-option, just because this gene is not part of the pleisiomorphic skeletogenic network apparatus, and the characteristics of \(\gamma(2)\) module may hold the answer to the conundrum. The \(tbr\) gene has acquired several downstream targets in the SM, and so it is presumably useful as a differentiation driver. However unlike most others of these, \(tbr\) is never expressed in the NSM, as are \(ets1/2\), \(erg\), \(hex\), etc. The reason, as we have seen, lies in the Erg repression function of the \(\gamma(2)\) module. SM and NSM regulatory states greatly overlap but, because of \(\gamma(2)\) module, \(tbr\) is an exception.

In the evolutionary process leading to establishment of the embryonic euechinoid SM, \(\gamma(2)\) module thus provided a mechanism for building a unique, non-skeletogenic mesodermal regulatory state. It is not the only one, for there is one other regulatory gene just downstream of the double-negative gate that is also never expressed in the NSM, viz. \(alk1\). The evolutionary role of \(\gamma(2)\) module suggested here fits with its amazingly simple cis-regulatory construction, which depends essentially only on a couple of \(ets1/2\) target sites.

In summary, evolutionary co-option of \(tbr\) may have provided the special function of differentiating the SM from the NSM, just because the means of co-option included the appearance of \(\gamma(2)\) module. Two other parts of this same function were provided by the still unknown mechanism by which transcription of the \(erg\) repressor is shut off in the SM, and by the equally SM-specific cis-regulatory apparatus of the \(alk1\) gene.

Acknowledgments

We would like to thank Prof. Andrew Murray and anonymous reviewers for critical reading and helpful suggestions. Research was...
supported by the Caltech SURF program, the Camilla Chandler Frost Fellowship, the U.S. Department of Defense NDSEG Fellowship Program, and NIH grants HD037105 and GM075089.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ydbio.2009.08.005.

References

